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More than 70 scientists with expertise in model atmospheres (HE, 3D RHD and MHD), spectral 
modelling, (spectro)photometry, interferometry, SED fitting, Bayesian methods and astro-statistics, 

and analysis of fundamental stellar parameters of FGKM stars
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PLATO WP 122
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• Intro:  why non-seismic stellar parameters for PLATO?

• Methods: SAPP 

• Models: why 3D Non-LTE

• Solar chemical composition

Outline



Stellar structure  
and evolution

Asteroseismology  
masses, radii, agesExoplanets  

structure, formation, populations

Teff, [Fe/H] 
chemical abundances, 

Vsini…

Population statistics

Adibekyan+ 2021
Davies & Miglio 2018

Petigura+ 2018

Deal+ 2018, 2021; Semenova+2020

Classical stellar parameters for PLATO

Lund et al. 2017, Deheuvels et al. 2014
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Talk by Heike Rauer
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Talk by Heike Rauer

+ Teff, [Fe/H]



Goal  Impact  
error of spectroscopic parameters

 ΔTeff = 100 K 
(~2%)  Δ [Fe/H] = 0.1 dex 

 ΔR/R (radius) 2 % 1 % 1 %

ΔΜ/Μ (mass) 10 % 3 % 3 %

Δτ/τ (age) 10 % 10 % 5 %
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Serenelli+2017, Valle+2018, Bellinger+2019  
Cunha, Roxburgh+ 2021 …



Spectroscopy

Photometry

Infra-Red Flux Method

Interferometry

SBCR

parallax + other methods

Methods to determine stellar parameters

[M/H]Teff
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θLD

L, log(g)

chemical abundances 
*Fe, Mg, Li, Si, C, O, K, P…



[M/H]

θLD

Spectroscopy

Photometry

Infra-Red Flux Method

Interferometry

SBCR Teff

L, log(g)
parallax + other methods

chemical abundances 
*Fe, Mg, Li, Si, C, O,…

This is what PLATO pipeline does
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[M/H]

θLD

Spectroscopy

Photometry

Infra-Red Flux Method

Interferometry

SBCR Teff

L, log(g)
parallax + other methods

chemical abundances 
*Fe, Mg, Li, Si…

This is what PLATO pipeline does
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MSAP2

MSteSci1
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Teff_phot, logg_phot, 
M/H_phot

SAPP
Stellar Abundances and atmospheric Parameters Pipeline

also MSteSci1, MSAP2…
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Teff_phot, logg_phot, 
M/H_phot

SAPP
Stellar Abundances and atmospheric Parameters Pipeline

also MSteSci1, MSAP2…



✓Combination of heterogeneous 
data  
spectra, photometry, parallaxes, 
interferometry  
+ PLATO data (photometry, global oscillation 
parameters)

✓Efficiency and robust parameters  
parameter correlations and probability 
distribution functions

✓Flexibility  
ability to rapidly update models,  
based on new physics  
stellar atmospheres, synthetic spectra  
opacities, atomic data  
M-RHD, Non-equilibrium modelling Hansteen et al 2015

(C) GSFC Scientific Vizualisation Studio, NASA

(c) M. Gent 

(c) A. Nordlund

Stellar parameters for PLATO: how-to

 14



Observations
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Gaia

SBCRIRFM Photometry

Teff, θLD to ~2% precision  
+ log(g)

+ relationships calibrated 
on Gaia  
Casagrande et al. 2021

Salsi et al. 2020, 2021

Stellar parameters for PLATO: how-to
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CHARA / SPICA 
interferometry

• SPICA - new visible instrument for the CHARA Array 
(angular resolution of ~0.2 mas) 

• Designed for completing a survey of fundamental 
parameters of ~1000 stars in 3 years, and possible 
extension for P2

• Direct R & Teff (σ ~ 30 Κ), new accurate SBCR, direct 
measurement of the limb darkening for 10^2 stars

Teff, θLD to ~1% precision

Mourard et al 2018, Pannetier et al. 2021

Stellar parameters for PLATO: how-to
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4MOST WEAVE

2022+

SDSS-V

2023+ 2021+

Gaia

Extensive efforts to collect high-quality spectra for P1, P2, P4 P5 samples 
optical, near-IR, med- & high-resolution

Stellar parameters for PLATO: how-to

Teff, [Fe/H] to a few ~1% precision
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UVES

CARMENES

CORALIE

SOPHIE



Data + model comparison
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Observations



homogeneous full-scale quantitative probabilistic analysis 
of distributions in the multi-D parameter space

Bayesian approach

• Combine P (O|R) based on data 
taken with different facilities at 
once

• Systematic model differences 
can be directly accounted for
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Serenelli et al. 2013, Schoenrich & Bergemann 2014, Gent et al. subm.



Combined solution

Gent et al. subm.

Spectroscopy, nu_max, and photometry 
yield orthogonal constraints,  
but in the Bayesian framework  
complete correlations in the multi-D  
space are preserved.
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Asteroseismology
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SAPP
✓ tested and verified against independently determined parameters of  

PLATO ‘golden standards’ (benchmark stars, Heiter+ 2015, Jofre+ 2018), 
WP125500 by O. Creevey & P. Maxted

✓ excellent performance for FGKM stars + red giants

Gent et al. subm.
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SAPP

Bergemann et al. PLATO TN in prep.

Gaia end-of-mission data taken from Recio-Blanco et al. A&A 585, A93, 2016  
typical G-type main-sequence star at intermediate metallicity
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SAPP

Bergemann et al. PLATO TN in prep.

Gaia end-of-mission data taken from Recio-Blanco et al. A&A 585, A93, 2016  
typical G-type main-sequence star at intermediate [Fe/H]

P1, P2
P4, P5

P1, P2
P4, P5

P1, P2
P4, P5
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SAPP

Bergemann et al. PLATO TN in prep.

Gaia end-of-mission data taken from Recio-Blanco et al. A&A 585, A93, 2016  
typical F-type main-sequence star at intermediate [Fe/H]

P1, P2
P4, P5

P1, P2
P4, P5

P1, P2
P4, P5

Gaia RVS will not be sufficient to achieve PLATO goal of 2% in R, 10% in M and τ 
as the internal error does not include model error + error of actual RVS data

Is Gaia RVS + SAPP sufficient for PLATO?  
 

unfortunately no, because  
 

σ_tot = σ_internal + σ_model + 
σ_data  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SAPP

Bergemann et al. PLATO TN in prep.

Gaia end-of-mission data taken from Recio-Blanco et al. A&A 585, A93, 2016  
typical F-type main-sequence star at intermediate [Fe/H]

P1, P2
P4, P5

P1, P2
P4, P5

P1, P2
P4, P5

Gaia RVS will not be sufficient to achieve PLATO goal of 2% in R, 10% in M and τ 
as the internal error does not include model error + error of actual RVS data

Is Gaia RVS + SAPP sufficient for PLATO?  
 

unfortunately no, because  
 

σ_tot = σ_internal + σ_model + 
σ_data  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Data + model comparison
Observations

Models
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models must be as good as observations
to allow results limited by  
observational uncertainties

Models

Data + model comparison
Observations
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Same stars observed by 
APOGEE and Gaia-ESO surveys

UVES, Giraffe
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Same stars observed by 
APOGEE and Gaia-ESO surveys

error caused by observational uncertainties  
(statistical error)

• the differences are not 
caused by data quality

• up to a factor of 3 
differences
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Same stars observed by 
APOGEE and Gaia-ESO surveys

• The differences are  
caused by models

• the differences are not 
caused by data quality

• up to a factor of 3 
differences

error caused by observational uncertainties  
(statistical error)



X (Mm)

Z 
(M

m
)

colour - Temperature

1D LTE hydrostatic models
MARCS, Kurucz, MAFAGS

➡ 1D
➡ mixing length 
➡ ad-hoc correction to Doppler width  

(assuming isotropic Gaussian distribution)
➡ LTE (Saha- Boltzmann equilibrium)

convection
turbulence

dimensionality 

radiation

�32



Bensby et al. (2014)

1D LTE codes usually work well for solar analogues, 
 
but fail for stars which are hotter / cooler 
                                       more extended (lower log(g)) 
                                        lower / higher metallicity
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X (Mm)

Z 
(M

m
)

colour - Temperature

(c) R. Collet

 Stellar photosphere is here

✓ coupled magneto-hydrodynamics  
+ radiation transfer

✓ 3D turbulent velocity field
✓ No ad-hoc scalings to line opacity  

               (hence to abundances of elements) !

 ν = ν0 (1 + υ  / c)    

✓ PLATO is the first survey that will rely on physical  
parameter-free model atmospheres & spectra 

✓ Non-LTE synthetic spectra, 3D convective model atmospheres, MHD 
(w. Vilnius group), atomic and molecular data (w. Michigan group)

✓ Dedicated efforts to analyse M dwarfs (Heiter, Olander+)

Bergemann et al. 2021

Stellar parameters for PLATO: how-to
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Fe I

EW

1D LTE

Lind et al. 2017Nordlund et al. 2009

Observed granulation Center-to-limb variation Convective line asymmetries

1D LTE

Dravins 2008, Miklos et al. 2020

3D NLTE

Bergemann et al. 2019

Observations

Model 3D

Model 1D

Testing 3D NLTE models
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Fe I

Miklos et al. 2020

1D LTE

Gerber et al. in prep

Lind et al. 2017Nordlund et al. 2009

Observed granulation Center-to-limb variation

Balmer line wings

Convective line asymmetries

1D LTE

3D NLTE

1D LTE A
bu

nd
an

ce
 (l

og
10

)

Bergemann et al. 2019

Excitation - Ionisation balance

Miklos et al. 2020

Bergemann et al. 2019

Observations

Model 3D

Model 1D 3D NLTE

Testing 3D NLTE models
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Fe I

Miklos et al. 2020

1D LTE

Gerber et al. in prep

Lind et al. 2017Nordlund et al. 2009

Observed granulation Center-to-limb variation

Balmer line wings

Convective line asymmetries

1D LTE

3D NLTE

1D LTE A
bu

nd
an

ce
 (l

og
10

)

Bergemann et al. 2019

Excitation - Ionisation balance

Miklos et al. 2020

Bergemann et al. 2019

Observations

Model 3D

Model 1D 3D NLTE

PLATO 
Teff, [Fe/H], abundances 

 to a  ~1% precision + accuracy

Testing 3D NLTE models
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Stellar evolutionSolar modelsOxygen



Why better 3D NLTE models?  Sun as a reference

✓ Standard Solar Model + stellar evolution reference
✓ Galactic and extragalactic metallicity reference
✓ planet formation, exoplanet atmospheres

A(O) = 8.69  (3D NLTE)
A(O) = 8.90  (1D LTE)

Asplund et al. 2021
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Oxygen: cornerstone element in astrophysics



✓ Standard Solar Model + stellar evolution reference
✓ Galactic and extragalactic metallicity reference
✓ planet formation, exoplanet atmospheres

A(O) = 8.69  (3D NLTE)
A(O) = 8.90  (1D LTE)

Asplund et al. 2021

But
✓ Solar photospheric O still  

debated  
(Caffau et al. 2008 but Asplund et al. 
2009)

✓ difficult to reconcile with solar 
models + helioseismology 
(e.g. Serenelli et al. 2009, 2011, 
Delahaye & Pinsonneault 2006)

Why better 3D NLTE models?  Sun as a reference
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✓ improved atomic data  
3D NLTE models for O and Ni 
(blend) 

✓ realistic 3D NLTE radiative transfer  
with chromospheric effects 

✓ highest resolution solar data  
IAG  R = 700,000 data  
comprehensive error analysis  

Why better 3D NLTE models?  Sun as a reference
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✓ improved atomic data  
3D NLTE models for O and Ni 
(blend) 

✓ realistic 3D NLTE radiative transfer  
with chromospheric effects 

✓ highest resolution solar data  
IAG  R = 700,000 data  
comprehensive error analysis  

Element Bergemann+ 2021 Caffau+ 2008 Asplund+ 2021

A(O)     8.75 ± 0.03     8.76 ± 0.07     8.69 ± 0.04

Why better 3D NLTE models?  Sun as a reference
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✓ improved atomic data  
3D NLTE models for O and Ni 
(blend) 

✓ realistic 3D NLTE radiative transfer  
with chromospheric effects 

✓ highest resolution solar data  
IAG  R = 700,000 data  
comprehensive error analysis  

Magg et al. in prep  

New solar chemical composition for PLATO

Element Bergemann+ 2021 Caffau+ 2008 Asplund+ 2021

A(O)     8.75 ± 0.03     8.76 ± 0.07     8.69 ± 0.04

Why better 3D NLTE models?  Sun as a reference
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Summary

PLATO best positioned to revolutionise stellar physics 
 => all areas that rely on fundamental parameters of stars 
*exoplanets,  stellar populations, Galactic structure…

Challenges 

• Combination of new data  
PLATO + CHARA / SPICA, 4MOST, WEAVE, Gaia …

• with new models  
3D M*RHD model atmospheres + NLTE radiative transfer 
limb darkening, intensity profiles, synthetic spectra…

• => new reference  
10.000s of stars at the level of detail so far  
only accessible to solar physics
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