
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

550

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4817029320/2020©BEIESP
DOI: 10.35940/ijeat.C4817.029320
Journal Website: www.ijeat.org

Abstract: Like traditional software products, voice-based

services should be tested. However, during testing, the service is
activated and executed by a spoken command. Speaking the
command for every test case would be very time consuming. TT4V
saves testing time by enabling text-form test cases instead of
voice-form test cases. It implements an xUnit-style interface.
xUnit has been a de facto standard framework for testing tools for
many years. Without TT4V, we roughly measured the time to
speak 55 commands, listen to 55 responses, and then verify the
correctness of the responses. First, we ran five of the 55 test cases
without TT4V, and it took 28.03 seconds. For 55 test cases, it
would be multiplied by 11 roughly. We ran 55 test cases using
TT4V. It took only 0.61 seconds from executing the test cases to
showing the analysis of the testing results.

Keywords: Voice-based services, unit testing, xUnit framework,
test automation

I. INTRODUCTION

Many voice-based services have become embedded in
our daily lives [1], since Google and Amazon released the
APIs supporting their voice-based service platforms: Google
Assistant and Amazon Alexa. These platforms work through
voice-recognition speakers (e.g., Amazon Echo or Google
Home), and their services are deployed on their own
cloud-server systems, e.g., Amazon’s Lambda. Google and
Amazon provide some default services on their cloud
systems. Moreover, users can develop their own services by
importing the APIs provided by Amazon or Google.

Voice-based services should be tested, just like traditional
software products. Dynamic testing is done by executing the
SUT (Software Under Test) with a test case, which consists
of a test input and its expected output [2]. In dynamic testing,
the SUT is executed with a test case, and its actual output is
asserted to be the same as the expected output defined in the
test case.

In the development process, testing is a major and popular
quality assurance tool. The more test cases that are applied,
the more faults can be detected; however, the greater the
testing cost. That is why test designers try to select powerful
test cases that can trigger existing faults to be exposed as
failures. The test-case selection criteria are key factors that
lead to effective and efficient testing. Through the criteria, a
set of test cases is selected, and expected to detect as many

Revised Manuscript Received on February 05, 2020.

* Correspondence Author
Hoijin Yoon, Department of Computer Engineering, Hyupsung

University, Hwaseung, Kyunggi, South Korea. Email: hjyoon@uhs.ac.kr

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

faults as possible.
Imagine a test case for a voice-based service. The test input

would be a voice command, and the expected output would
be a spoken response or a specific reaction. For the testing,
we speak a voice command into a namely AI speaker, e.g.,
Echo or Google Home, as a test input. Then we listen to the
speaker to determine whether the response matches the
expected output of the test case. This “Speak-and-Listen”

process takes some time, depending on how fast the human
can speak and listen. This decreases the testing performance
and is a barrier to adapting the testing process to voice-based
services.

To address this Speak-and-Listen delay, this study
proposes and develops a testing environment where
voice-based services can be tested with text-form test cases
instead of voice-form test cases. It is named TT4V, an
abbreviation of text-based testing environment for
voice-based services. Moreover TT4V implements
xUnit-style interfaces for the user’s convenience.

Section II describes two major platforms for voice-based
services: Google Assistant and Amazon Alexa. In Section III,
we introduce the AIY project, a small platform for Google
Actions. Section IV explains how our xUnit-like TT4V works
and Section V concludes by discussing TT4V’s contributions

to testing voice-based services.

II. VOICE-BASED SERVICE PLATFORMS

A. Google Assistant

Google provides a development environment for
voice-based services and its APIs, working under a special
platform named Google Assistant [3]. Assistant accepts a
voice message and decides how the service should react. The
services are activated by saying, “Okay, Google.” In a
scenario where a voice message plays the role of test input
data, the response generated by the service should match the
expected output of the test case.

B. Amazon Alexa

The Amazon Alexa skill kit implements the Intent model,
which maps all possible outcomes for a voice invocation [4].
To publish a skill means to deploy its intent model on the
platform. Once a voice message invokes its corresponding
skill through Echo, the voice message is transformed to a text
form; then, the intent model finds an outcome that matches
the text-formatted voice message. The outcome is
transformed to voice form and sent back to the Echo speaker.

III. AIY PROJECT

Google's AIY project allows users to build their own
natural-language processor and connect it to the Google
Assistant or Cloud Speech-to-Text service. This allows the
user to ask questions and issue voice commands to their
programs. All of this fits in a small cardboard cube, powered
by a Raspberry Pi [5].

xUnit-like TT4V: Text-based Testing
Environment for Voice-based Services

Hoijin Yoon

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
mailto:hjyoon@uhs.ac.kr
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.C4817.029320&domain=www.ijeat.org

xUnit-like TT4V: Text-based Testing Environment for Voice-based Services

551

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4817029320/2020©BEIESP
DOI: 10.35940/ijeat.C4817.029320
Journal Website: www.ijeat.org

AIY supports two separate versions: a voice kit and a
vision kit. The voice kit is a Do-it-yourself intelligent speaker
implementing voice recognition and the Google Assistant.

The vision kit is a Do-it-yourself intelligent camera
implementing image recognition using neural networks. We
used the voice kit for testing voice-based services. Fig. 1
shows how the AIY system works with Google Assistant.

Fig. 1. Google Assistant and AIY

Fig. 2 Event Flow in Google Assistant

The voice input is transformed to text before calling the

services in Google Assistant. Fig. 2 shows the event flow,
where a voice-based service from the AIY voice kit takes the
user’s requests, executes the services, and responds with
answers [6]. The event named
“ON_RECOGNIZING_SPEECH_FINISHED” transforms

the voice input into its text-form message. The text message
is then sent to the service as input data.

IV. TT4V DESIGN

A. Text-based Testing Environment

Suppose that the user’s request is in the form of text. The
text-form request message can be adopted directly by the
Google Assistant service without the transformation process.
In other words, the services can be executed with text-form
test input.

Fig. 3. Voice-based Service Routine and TT4V

The tool, TT4V, includes the code explained above, and its

flow diagram is shown in Fig. 3 [7]. TT4V manages test cases
and test results. It assigns test input data to the variable,
text_query. The result of the service execution of the text
input is also in the form of text, which is assigned to the
variable, display_text.

B. xUnit-like Interface

In 1997, Erich Gamma and Kent Beck built a simple and
effective framework for unit testing. The framework was
intended for testing Java programs, so it was called JUnit [8].
JUnit followed the SUnit framework for Smalltalk [9],
previously developed by Erich Gamma. JUnit was released
under the Common Public License and hosted on
SourceForge. JUnit became a popular framework for
developing unit tests in Java [10]. Its successor, known as
xUnit, is available for ASP, C++, C#, Eiffel, Delphi, PHP,
Python, Smalltalk, and Visual Basic.

xUnit helps developers easily do unit testing and manages
test cases as a test suite, as follows. First, it manages test
codes as test methods, to distinguish from the source code.
Second, it calls assertion methods that include an expected
output. Third, it collects the test codes in a test suite to run as
a batch. Fourth, it reports how many test codes of the current
test suite failed or succeeded [11].

The following definitions are used in xUnit tools [10]:
▪ TestCase—A class that contains one or more tests,

named testXXX methods. When we mention a test, we
mean a testXXX method; when we mention a test case,
we mean a class that extends TestCase; i.e., a set of
tests.

▪ TestSuite (or test suite)—A group of tests. For
example, if a test suite is not defined for a TestCase,
xUnit automatically provides one that includes all the
tests found in the TestCase.

▪ TestRunner (or test runner)—A test-suite launcher.
xUnit provides several test runners that can be used to
execute tests.

V. IMPLEMENTATION

A. Voice to Text

Although, in reality, the user would speak the input
command to the two-way speaker, TT4V sends the input
command in the form of text,
as explained in Fig. 3.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249-8958 (Online), Volume-9 Issue-3, February 2020

552

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4817029320/2020©BEIESP
DOI: 10.35940/ijeat.C4817.029320
Journal Website: www.ijeat.org

To do this, TT4V calls the voice-based service with the
text-form command, instead of the speech-based command.
The following code illustrates the idea, which uses the input
data in text form instead of voice form.

display_text = assistant.assist(text_query)

if display_text:

 if check_text.lower() in

display_text.lower():

 All_count = All_count+1

 success_count = success_count+1

 outf.write("%s. success\n" %All_count)

 else:

 All_count = All_count+1

 outf.write("%s. fail\n" %All_count)
assistant.assist's argument is text_query, which is the input

request in the form of text. The text_query is sent to Google
Assistant, and an appropriate service catches the text query
and returns the execution result to the display_text variable.

B. xUnit-style TestCase Management

In TT4V, a TestCase is a row in a comma-separated values
(CSV) file named TestCaseTID.csv. Before launching TT4V,
the testers create TestCaseTID.csv and write a test including
the TID, test input (input command), and expected output.
Each test is written on one row, and a set of rows would be a
TestCase, in xUnit terms. Moreover, we can group multiple
rows as a TestSuite, according to the xUnit concept.

The CSV file is selected by clicking a button on the initial
window in TT4V. Once the TestCaseTID.csv file is selected,
TT4V sends the tests one by one to Google’s voice services

and receives their response. Then, it compares the responses
and the expected output, which are expected to be the same,
unless the SUT has a fault in it. TT4V saves the result of this
comparison process in a file, output.csv, and shows the result
graphically, using the pytest library. The library plays the role
of TestRunner. The following code shows how the pytest
library works in TT4V.

tests=[]

f=open("/home/tt4v/Downloads/(Source Code)

TT4V/B-Model/output.csv",'r',encoding='utf-8'

)

rdr= csv.reader(f)

for line in rdr:

 tests.append(line)

f.close()

cases=[]

for i in range(len(tests)):

 cases.append(tests[i][4])

@pytest.mark.parametrize('result',cases)

def test_Compare(result):

 assert result == 'True',"Fail!"

C. GUI with an Example

TT4V starts with empty panels in a window, as shown in
Fig. 4. Note that we have already created a .CSV file with the
test cases. In this example, the file name is TestCaseTID.csv.

Fig. 4 TT4V’s Initial GUI

We start a test by clicking the “File Load” button, shown in
Fig. 4, which opens the CSV file with the previously written
test cases. A test case includes the input command and the
expected output. The input command is supposed to be
spoken by a human to call voice-based services; however,
TT4V calls the voice-based services with the written input
command, without requiring a human to speak. Once the
“Testing” button on the bottom of Fig. 4 is clicked, TT4V
executes the SUT with the test cases.

For example, we wrote 55 test cases and tested them using
TT4V. It sent test data to the matching Google services,
received their responses, and compared them with the
expected output. The testing result would be marked “fail” if

the comparison result was “not-equal.” It would be “pass” if

the comparison was “equal.” TT4V analyzes these
pass-or-fail results, and presents them in xUnit style, as
shown in Fig. 5.

Fig. 5. UI After Testing

TT4V ran 55 test cases, as shown in Fig. 5. Eighteen of them
passed; the others failed. Like JUnit, TT4V shows the details
of a selected test case in the bottom pane.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

xUnit-like TT4V: Text-based Testing Environment for Voice-based Services

553

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: C4817029320/2020©BEIESP
DOI: 10.35940/ijeat.C4817.029320
Journal Website: www.ijeat.org

VI. RESULT ANALYSIS

We ran 55 test cases using TT4V, and it took only 0.61
seconds from executing the test cases, as shown in the bottom
of Fig. 5. It looks very quick for testing 55 cases. For making
a detail comment, we roughly measured the time to speak
input commands, to listen to their responses, and then to
decide if the responses are the same as expected. We did it on
only 5 test cases without TT4V, and we measured the time to
take those three steps, which are to speak, to listen, and to
decide. The time was 28.03 seconds. It was for only 5 test
cases, therefore, it would be multiplied by 11 roughly for 55
test cases. It was 308.55 seconds. TT4V saves 307.94
seconds approximately.

Table I. Comparison of “with-TT4V” and
“without-TT4V”

 with TT4V without TT4V
of Test cases 55 55
Time to Run 0.61 seconds 308.55 seconds
Preprocessing
(Writing TC file)

Required Not-required

Testing Repetition Possible Not-possible

Human mistake Not-acceptable Can-happen

As described in Table I, TT4V requires a test cases file that
should be written before testing. It would be a burden of
using TT4V at first, but the written test case file enables the
testing repetition. Testing can be always re-done with the test
cases with the csv file. Moreover, mistakes made by Human
cannot happen in TT4V since the tool automatically covers
all the testing activities; Speak, Listen, Decide.

VII. CONCLUSION

Like any software product, voice-based services need to be
tested. However, speaking the command for every test case is
very time consuming. Hence, we developed TT4V. It enables
voice-based services to be tested with text-form test cases.
TT4V is an xUnit-style tool. xUnit provides methods for
building tests and test suites, and manages the test codes
separately from the SUT source code. It analyzes the testing
results, showing a ratio of fails or passes and the details of
each test case.
Unlike xUnit, TT4V automatically generates the test codes. It
uses the set of test cases in a CSV file written by the user. We
utilized the pytest library for this automatic generation.
As shown at the bottom of Fig. 5, it takes only 0.61 seconds to
test 55 test cases. Imagine the time it would take to speak 55
commands, listen to 55 responses, and then verify the
correctness of the responses. TT4V contributes to saving
testing time by enabling text-form test cases, instead of
voice-form test cases.

ACKNOWLEDGMENTS

This work was supported by the Hyupsung University
Research Grant of 2019.

This research was also supported by the Basic Science
Research Program through the National Research Foundation
of Korea (NRF), funded by the Ministry of Education
(NRF-2017R1D1A1B03034557).

REFERENCES

1. Cathy Pearl, Designing Voice User Interfaces, O’Reilly, 2017.
2. Paul Ammann and Jeff Offutt, Introduction to Software Testing,

Cambridge University Press, 2016.
3. Google Assistant, https://assistant.google.com/.
4. Amazon Alexa, https://www.amazon.com › alexa-skills.
5. AIY page, https://aiyprojects.withgoogle.com.
6. Wonuk Cha and Hoijin Yoon, “An Analysis on Events-Flow of Google

Assistant in AIY project,” in Proceedings of the Korea Computer
Conference, Jun. 2018.

7. Eungjun Kim, Hoijin Yoon, and Wonuk Cha, “Text-based Testing
Environment for Voice-based Services,” in Proceedings of APSEC, Dec.
2018.

8. Kent Beck and Erich Gamma, “Test-infected: Programmers love writing
tests,” More Java Gems, 2000.

9. Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997.
10. Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory, JUnit

in Action, Manning, 2010.
11. Gerard Meszaros, xUnit Test Patterns, Pearson Education, 2007.

AUTHOR'S PROFILE

Hoijin Yoon is currently an associate professor in the
Department of Computer Science and Engineering at
Hyupsung University since 2007. She received a B.S.
degree in Computer Science from Ewha Woman's
University in Korea, and M.S. and Ph.D. degrees in
Computer Science and Engineering from Ewha in 2004. Her
research interests are in software engineering with particular

emphasis on testing. Her current research project is on the verification and
validation of interactions between intelligent things and humans.

http://www.ijeat.org/

