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Abstract: This paper emphasizes on the free vibration (FV) 

responses of functionally graded thick spherical shell in 
rectangular form using traditional mathematical formulation on 
finite element method and governed by Higher order shear 
deformation theory (HOSDT). A functionally graded spherical 
shell made up of metal-rich on the top surface and in contrast, 
base surface of the model is ceramic-rich. The FG volume fraction 
of four-parameter power-law material constituents assumed in the 
thickness direction. To highlight the potential for the current 
method, convergence studies, and validation tests performed to 
establish the stability and accuracy attained by the current 
approach. The parametric studies presented to scrutinize the 
influence of choice of four parameters employed through 
power-law distribution. The eminence effect of spherical shell 
geometrical properties, and different types of support conditions, 
skew angle on the FV behavior of non-dimensional frequency 
responses examined in detail. 

 
Keyword: Free vibration, HSDT, Finite element method, 

Spherical shell. 

I. INTRODUCTION 

The continuous evaluation of develop materials and to 
optimize the structural design have received significant 
attention in many engineering areas and manufacturing 
industries. FGMs are a structurally advanced new class of 
composites. The concept originated in the 1980s in Japan.  
FGMs continuous gradation behavior of material 
composition (metal and ceramic) and microstructure. FGMs 
preferred in many sectors because of their mechanical and 
heat-shielding characteristics while maintaining structural 
integrity and reducing stress concentrations. Many research 
works contributed to bending and buckling analysis. The 
vibration behavior of shells plays a crucial role in design 
aerospace equipment, spacecraft, rockets, missiles, 
containers, hydraulic structures, submarines, ships, storage 
tanks. 
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Loy et al. [1] examined the vibration of cylindrical with 
FGMs constituents with- general boundary conditions. The 
analysis considered based-on Love's Shell theory and 
Rayleigh-Ritz's method. A similar approach followed 
Pradhan et al. [2] studied FG Cylindrical Shells under 
different boundary conditions formulation on classical plate 
theory. Reddy [3] presented an analysis of Functionally 
graded plates. Ng et al. [4] introduced the dynamic stability 
analysis of FG shells under harmonic axial loading and 
Bolotin's approximation. K. M. Liew et al. [5] studied a 
three-dimensional vibration analysis of spherical shells panel 
subjected to various boundary conditions employing the 
P-Ritz method.  

J.N. Reddy and Z.Q. Cheng [6] studied a spherical shallow 
shell in polygonal planform resting on a Winkler Pasternak 
elastic foundation.  Hu et al. [7] studied the natural 
frequencies of rotating twisted and open conical shells. E. 
Artioli and Viola [8] presented the FV analysis of spherical 
caps using the Generalized Differential Quadrature (GDQ) 
procedure and the FEM approach. Arciniega and J.N. Reddy 
[9] described, Nonlinear analysis for functionally graded 
shells. The formulation is on the first-order shear deformation 
theory (FSDT) with seven independent parameters.  

Zhao et al. [10] analyzed the FV of functionally graded 
shells using the element-free KP-Ritz method.F. Tornabene 
and E. Viola [11], [12] investigated the dynamic behavior of 
vibration analysis of hemispherical domes and spherical shell 
panels using FSDT. Later on, the same authors developed a 
2-D solution for free vibrations of parabolic shells using a 
GDQ, and the FSDT is used to analyze the above moderately 
thick structural elements. Numerical solutions with the ones 
obtained using commercial programs such as Abaqus, Ansys, 
Femap/Nastran, Straus, Pro/Mechanica used. F. Tornabene 
[13] investigated based on the FSDT. Dynamic behavior of 
moderately thick FG conical, cylindrical shells, and annular 
plates with two different power-law distributions presented. 
Tornabene et al. [14]– [16] extended the GDQ procedure for 
the FV analysis of FG doubly-curved panels and shells of 
revolution with classical boundary conditions.  

M.H.yas and B. Sobhani Aragh [17] studied 
three-dimensional analysis for the thermoelastic response of 
functionally graded fiber-reinforced cylindrical panel. 
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Amabili and J.N. reddy [18] studied higher-order 
deformation nonlinear theory for the large amplitude of 
forced vibration of laminated doubly curved shells. 
Mohammad Talha and B.N Singh [19] studied static response 
and FV analysis of FGM plates using higher order shear 
deformation theory and conjunction with finite element 
method.  

Shen and Z.X. Wang [20] described based on HSDT, 
comparison studies of two kinds of micromechanics models, 
namely Voigt's and Mori-Tanaka models for vibration 
analysis of FG plates. Neves A.M.A et al. [21] presented with 
FV problems of FG spherical as well as cylindrical shell 
panels with all edges clamped or simply supported. The 
analysis is performed by radial basis functions collocation, 
according to a HSDT that accounts for through-the-thickness 
deformation. Discretization method-based on the FSDT.  

V. R. Kar and S. K. Panda [22]. investigated the vibration 
and thermal buckling characteristics of FG single/double 
curved panels under linear and nonlinear behaviors 
temperatures fields are studied. Kumar et al. [23] developed 
for FV analysis of laminated composite skew cylindrical 
shells. A C0 finite element formulation based on using HSDT. 

C. Zhang et al. [24] presented the improved Fourier series 
method based on Hamilton’s principle to investigate the 

vibration characteristics of circular cylindrical double-shell 
structures with different boundary conditions. Devesh Punera 
and Tarun Kant [25] developed FV of FG open cylindrical 
shells based on several refined higher-order displacement 
models. Mouli and Ramji Koona [26]-[28] examined the 
influence of different parameters on the FV behavior of FG 
Skew shallow curved panels.  

 In the present work focused on the FV characteristics of 
FGM rectangular spherical shell. The formulation based on 
Higher-order deformation theory conjunction with the 
finite-element method. The comprehensive parametric 
studies carried out to examine the influence of power-law 
distribution and Choice of four parameters on material 
composition in terms of volume fraction constituents. and the 
significance of Geometric parameters is that the shell aspect 
ratio, thickness ratio, and curvature ratio. and the impact of 
different boundary conditions, skew angle, on the 
non-dimensional frequency responses, are studied. 

II. FGM MATERIAL PROPERTIES AND 
FOUR-PARAMETER POWER-LAW DISTRIBUTION 

PARAMETERS 

In this part, the variation of volume fraction through the 
different values of power-law exponent and choice of 
distribution parameters with classic, with reference surface to 
the shell (Symmetric) and without reference surface 
(asymmetric) volume fraction profiles illustrated. The 
material properties of the FG spherical shell are assumed to 
vary throughout the thickness, where ϑm and ϑc  are the 
volume fractions of metal and ceramic. Similarly, in which 
subscripts c and m represent the ceramic and metal 
constituents, as in (1a), (1b), and (1c) mechanical properties 
are Young’s modulus E(ξ), density(ξ), and poisons ratio(ν) 

vary continuously to achieve smooth gradation of material 
phase through the spatial direction (ξ) expressed in the form 

of a linear combination. The sum of the volume fraction of 
the constituent materials should be equal to one, as in (2).  

 
E(ξ) = (𝐸𝑐 − 𝐸𝑚)𝜗𝑐 + 𝜗𝑚            (1𝑎) 

 

ρ(ξ) = (𝜌𝑐 − 𝜌𝑚)𝜗𝑐 + 𝜌𝑚             (1𝑏) 
 

ν(ξ) = (𝜗𝑐 − 𝜗𝑚)𝜗𝑐 + 𝜗𝑚           (1𝑐) 
 

  𝜗𝑐 + 𝜗𝑚 = 1                             (2) 

According to the following power-law function as in (3) 
Where φ is the power-law exponent varying as 0 ≤ φ ≤ ∞, and 

the distribution parameters u, v, w and different values of 
power law exponent generates material variation profiles 
through the thickness direction in terms of volume fraction. 
For example, FG constituents of   the shell thickness 
demonstrated through four parameter power law distribution. 
the material distribution in the FGM shell is continuously 
varied, such that the bottom surface (-h/2) of the structure is 
pure ceramic. In contrast, the top surface (+h/2) pure metal, 
by setting u = 1 and v = 0, w=0, as in (3). 

FGM(u/v/w/𝜑): ϑ𝐶 = (1 − 𝑢 (
1

2
+
𝜉

ℎ
) +v (

1

2
+ 
𝜉

ℎ
)
𝑤

)

𝜑

      (3) 

 
Fig.1 shows the classic volume fraction profiles, power-law 
distributions are considered for the volume fraction of the 
ceramic. The first distribution FGM (u=1, v=0/w=1/φ), the 

material composition is continuously varied, such that the 
bottom surface of ξ/h=-0.5 of the shell’s ceramic-rich. In 
contrast, the top surface (ξ/h=0.5) is metal-rich. 

Fig.2 shows the significance of the various power-law 
distribution of patterns by modifying the parameters u, v, w, 
and φ for the given constituents of volume fraction.by 

varying the power law exponent (φ) and symmetric respect to 
the reference surface (ξ/h=0) of the shell.by setting the first 
four parameter power law distribution FGM (u=1,v=1 and 
w=3). 

Fig.3 illustrate profiles are not symmetric with respect to 
the reference surface (ξ/h=0) of the shell. asymmetric profiles 
obtained by setting FGM (u=1, v=1, w=5/φ).  

Figs.4-6. depicts varying the parameters u, v, w. These 
material profiles characterized by the fact that one of the 
shells surfaces the top or bottom surface presents a composed 
of two constituents. For example, by setting the values as in 
(3) and the power-law distribution is FGM (u=1, v=0.4, w=3) 
and different quantity values of the power-law exponent. 
From the design point of view, it is essential to know the top 
surface is of the shell ξ/h=0.5 is ceramic or metal. If the 
bottom surface ξ/h=-0.5 is metal or ceramic- rich. One of 
these surfaces presents a mixture of two constituents. It is 
worth noting that types four-parameter power-law 
distributions as enunciated by F. Tornabene [13]-[16], and 
the author provided more detailed descriptions about the 
material variation profile of FGMs.  

The primary purpose of this section The Voigt’s rule is 

employed to estimate the ceramic volume fraction. The 
four-parameter power-law distribution affects the desired 
volume fraction of the material on the top and bottom surface 
of the structure. 
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 Thus, FGM material properties of layers change 
continuously and smoothly in the thickness direction. The 
influence of the choice of four material parameters u, v, w, φ, 

and to study the variation of the volume fraction of the 

material constituents and effects of various forms of classic, 
symmetric and asymmetric material pattern profiles which 
change the mechanical behavior of a structure. 
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Fig.1. FGM (u=1/v=0/w=1/φ) 
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Fig. 1. FGM (u=1/v=1/w=3/φ) 
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Fig.3.FGM (u=1/v=1/w=5/φ) 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.8

1.0

C
er

am
ic

 v
ol

um
e 

fr
ac

ti
on

 (
V

C
)

Non dimensitional thickness (h)

 =(1/20)
 =(1/5)
 =(1/4)
 =(1/3)
 =(1/2)
 =(1)
 =(2)
 =(5)
 =(8)
=(12)
 =(20)

 

Fig. 2. FGM (u=1/v=0.4/w=3/φ) 
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Fig.3. FGM (u=0.6/v=0.1/w=0.4/φ) 
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Fig.6. FGM (u=0.4/v=0/w=1/φ) 

Fig. 1-6. Variation of ceramic volume fraction (𝝑𝒄)through the FG structure thickness(ξ) for different values of three 

parameters u, v, w, and φ    

III. FRAMEWORK OF GOVERNING EQUATIONS 

3.1 Kinematic Paradigm and numerical procedure 
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In this framework, the formulation procedure for governing 
equations obtained by a general shallow curved spherical shell 
is represented by a, b, and thickness h, in x, y directions, as 
shown in Fig.7. Here, Rx and Ry are the radii of curvature 
along x and y direction, respectively. The TSDT mid-plane 
kinematics model utilized to define the global displacements 
(χ,λ,ψ,) at any point in terms of mid-plane displacements (χ 0, 
λ 0, ψ 0),  

rotations (θx, θy) and higher-order (𝜒0
∗, 𝜆0

∗ , 𝜃𝑥
∗, 𝜃𝑦

∗) terms, as 
per Pandya & Kant, [30]. 

𝜒 = 𝜒0 + 𝜉𝜃𝑥 + 𝜉
2𝜒0

∗ + 𝜉3𝜃𝑥
∗

𝜆 = 𝜆0 + 𝜉𝜃𝑦 + 𝜉
2𝜆0
∗ + 𝜉3𝜃𝑦

∗

𝜓 = 𝜓0

}                    (4) 

This kinematic model, (5) can be rewritten in the matrix 
form as in (5) 

   {𝛿} = [𝐹]{𝛿0}                                                        (5)                                             

where,{𝛿} = ⌊𝜒 𝜆 𝜓⌋𝑇and {𝛿0} =
⌊𝜒0 𝜆0 𝜓0  𝜃𝑥 𝜃𝑦 𝜒0

∗ 𝜆0
∗ 𝜃𝑥

∗ 𝜃𝑦
∗⌋𝑇are the global 

and mid-plane displacement vectors. [𝐹] contains the 
thickness coordinate functions, as expressed here in (6) 

 

[𝐹] = [
1 0 0 𝜉 0 𝜉2 0 𝜉3 0

0 1 0 0 𝜉 0 𝜉2 0 𝜉3

0 0 1 0 0 0 0 0 0

]          (6) 

The shallow curved shell is shown in Fig.7(ii) with 
sides a and b. To constraint the oblique edges, the local 
displacement vector is required to transform to global via 
transformation matrix [F and expressed in cosine (l) and sine 
(m) terms. The displacement transformation revealed as 

 

{
 
 
 
 

 
 
 
 
𝜒0
𝜆0
𝜓0
𝜃𝑥
𝜃𝑦
𝜒0
∗

𝜆0
∗

𝜃𝑥
∗

𝜃𝑦
∗}
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑙 −𝑚 0 0 0 0 0 0 0
𝑚 𝑙 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 𝑙 −𝑚 0 0 0 0
0 0 0 𝑚 𝑙 0 0 0 0
0 0 0 0 0 𝑙 −𝑚 0 0
0 0 0 0 0 𝑚 𝑙 0 0
0 0 0 0 0 0 0 𝑙 −𝑚
0 0 0 0 0 0 0 𝑚 𝑙 ]

 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝜒0
′

𝜆0
′

𝜓0
′

𝜃𝑥
′

𝜃𝑦
′

𝜒0
∗′

𝜆0
∗′

𝜃𝑥
∗′

𝜃𝑦
∗′
}
 
 
 
 

 
 
 
 

     (7) 

 
 (7) can also be written as 
{𝛺0} = [𝐹]{𝛺0

′ }                                                                        (8) 
where, {𝛺0

′ } is the displacement field defined in the local 
coordinates. 

The strain-displacement equation for any general shallow 
thick plate can be written as (Kar and Panda, [22]) 

 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

=

{
 
 
 
 

 
 
 
 
𝜕𝜒

𝜕𝑥
+

𝜓

𝑅𝑥
𝜕𝜆

𝜕𝑦
+

𝜓

𝑅𝑦

𝜕𝜒

𝜕𝑦
+

𝜕𝜆

𝜕𝑥

𝜕𝜒

𝜕𝑧
+

𝜕𝜓

𝜕𝑥
−

𝜒

𝑅𝑥
𝜕𝜆

𝜕𝑧
+

𝜕𝜓

𝜕𝑦
−

𝜆

𝑅𝑦}
 
 
 
 

 
 
 
 

       (9) 

By imposing the displacement terms (4) in the 
strain-displacement as in (9), the global strain tensor can be 
modified as  

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

=

{
 
 

 
 
𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

𝜀𝑥𝑧
0

𝜀𝑦𝑧
0
}
 
 

 
 

+ 𝜉

{
 
 

 
 
𝑘𝑥

1

𝑘𝑦
1

𝑘𝑥𝑦
1

𝑘𝑥𝑧
1

𝑘𝑦𝑧
1
}
 
 

 
 

+ 𝜉2

{
  
 

  
 
𝑘𝑥

2

𝑘𝑦
2

𝑘𝑥𝑦
2

𝑘𝑥𝑧
2

𝑘𝑦𝑧
2
}
  
 

  
 

+ 𝜉3

{
  
 

  
 
𝑘𝑥

3

𝑘𝑦
3

𝑘𝑥𝑦
3

𝑘𝑥𝑧
3

𝑘𝑦𝑧
3
}
  
 

  
 

    (10) 

𝜀 = 𝜀0 + 𝜉𝑘1 + 𝜉2𝑘2 + 𝜉3𝑘3                         (11) 
 
where, ɛ0, k1, k2 and k3 are the mid-plane strain, curvature 

and higher-order terms respectively as per Kar and Panda 
[22]. 

 (11) can be again rearranged as  
     {𝜀} = [𝐹]{𝜀̄}                                      (12)           
                                                                                       

where,   0 1 2 3 T
k k k  =    is the mid-plane 

strain, and 𝐹 = [𝐼 𝜉𝐼 𝜉2𝐼 𝜉3𝐼]  is the 
thickness-coordinate matrix, in which I is the unit matrix of 
size 5×5.  

3.2 Finite Element Approximations 

In this section, the present FG shallow spherical panel is 
discretized based on a finite element modeling using a 
nine-node isoperimetric element with eighty-one degrees-of 
the displacements defined in the mid-plane can in a nodal 
form as  

{𝛺0} = ∑ 𝑁𝑖{𝛺0𝑖}
9
𝑖=1          (13) 

where, {𝛺0𝑖} and iN  are the nodal displacement vector and 

the approximation function at ith node (Cook et al. [29]). 
Now, the total and geometric mid-plane strain vectors can be 
expressed as in (13) as  
 

{𝜀}  =  [𝐵]{𝛺0𝑖} and  {𝜀𝐺}  =  [𝐵𝐺]{𝛺0𝑖}     (14) 
 

where, [B] and [BG] are the differential operators of the total 
and geometrical mid-plane strains respectively. By imposing 
(12)-(15) in the above governing equation, the equilibrium 
equation of the vibrated FG shallow shell panel is achieved 
and expressed in global form, as  

([𝐾] − [𝐾𝐺] − 𝜔
2[𝑀])𝛥 = 0          (15) 

where,       
T

M N m N=  is the global mass matrix,  

       [ ] [ ] [ ][ ]TK B D B= is the global stiffness matrix,  

[ ] [ ] [ ][ ]T
G G G GK B D B=  is the geometric stiffness 

matrix and ω and ∆ are the natural frequency and 

eigenvalue type the corresponding eigen vectors. 
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Fig.  7.(i) spherical curved shell form (ii) spherical curved 

shell skew form 
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Fig. 8. Dimensionless frequency parameter SSSS 

IV. RESULTS AND DISCUSSION 

The theoretical model is developed in the present study 
using the HSDT and FG spherical shells under FV analysis. 
Material Properties play a vital role in determining the 
response of natural frequencies of the FG Spherical shell. 
Table I. shows the material properties of FGM constituents. It 
should be that the  

non-dimensional excitation frequency parameter defined. 
The results presented in Table II-XII are shown based on the 
dimensionless natural frequency, according to, as in (16).  

 

(𝜔 = 𝜔(𝑎2/ℎ)√𝜌𝑐/𝐸𝑐)                                         (16) 

 
Table I. Material properties of Strain less steel and 

Silicon nitrate[10] 
Metal: SUS304 Ceramic: Si3N4 

E(Gpa): 207.78×109 E(Gpa): 322.27×109 

μ: 0.3177 μ: 0.24 

ρ(kg/m3): 8166 ρ(kg/m3): 2370 

4.1 Convergence test  

 The convergence study of the present model analyzed to 
determine the uniform mesh size at which the natural 
frequencies converge and a suitable number of homogeneous 
layers to represent the FG Spherical panel. In the following, 
as a first part, to examine the present solution, the 
convergence properties of the fundamental frequency 
SUS304/ Si3N4 for spherical shells in the rectangular form 
with simply supported conditions considered. The results are 
In Fig.8. The discussion is made only on the present 
numerical results for the uniform mesh size of 6×6. 
Therefore, based on the above analysis, the subsequent 
investigations are carried out using a uniform mesh size of 
6×6. 

4.2 Comparison Study 

Table II. shows the frequencies of the first five modes for a 
Simply- supported, spherical shell (Rx = Ry = R) in 
rectangular form. Composed of Aluminum (Al) and Silicon 
Carbide (Sic) for four different values of the thickness ratios 
(a/h = 5,20,50, and 200).The power-law distribution 
parameters FGM (u=1, v=0, w=2, φ=2), Geometrical 
parameters R/a=5, a/b=1 and five skew angle 00, 150, 300, 
450, 600   are considered. The results of good agreement with 
the HSDT accurate solutions given by Mouli et al. [26] The 
maximum difference between them is 1.82% and by using the 
customized computer code in the MATLAB environment, 
which is developed based on HSDT formulated by the finite 
element approach. Some numerical examples solved to show 
the effectiveness of the present developed model. 

4.3 Numerical examples and results 

In this section, the FV behavior of the FG spherical shell, 
which is composed of two constituents ceramic- rich (silicon 
nitride Si3N4), and metal-rich (stainless steel SUS304), and 
the material properties same for all numerical examples, and 
the Poisson’s ratios (μ) of both materials 0.3 chosen. The 

results were analyzed using four-parameter power-law 
distribution. The material distribution applied 
through-thickness(ξ) direction. Power-law Variation and 
choice of power-law material distribution parameters (u, v, 
w). Examine the influence of the vibration behavior of the FG 
spherical shell with the effects of the material composition in 
terms of volume fraction. Four power-law distribution 
parameters FGM (u, v, w, φ) as in (3) and the significance of 
geometrical ratios, and skew angle on the non-dimensional 
frequency responses are FGM structure presented.  
 

 
Table- II. shows the comparison of Non-dimensional frequency parameter for FG spherical (Aluminum (Al) and 

Silicon Carbide (Sic)), shell panels with different Thickness (a/h) ratios. 
Skew angle(α) 

00
 150 300 450 600 

a/h Mode 
Mouli 
et.al 
[26] 

Present 
Mouli 
et.al 
[26] 

Present 
Mouli 
et.al 
[26] 

Present 
Mouli 
et.al 
[26] 

Present 
Mouli 
et.al [26] 

Present 
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5 1 3.4100 3.4723 6.8281 6.7500 6.8290 6.7509 7.4322 7.5446 7.4328 7.5452 

2 3.6408 3.7063 7.0037 6.9254 7.0591 6.9807 7.3561 7.4637 8.2882 8.4083 

3 4.4156 4.4915 7.6278 7.5454 7.7858 7.7095 8.0807 8.1815 10.1929 10.3287 

4 6.1069 6.2049 8.9230 8.8249 9.3418 9.2572 9.9786 10.0878 11.8894 11.7596 

5 10.0314 10.1768 11.6240 11.4933 12.7402 12.6242 14.4919 14.5521 14.7162 14.6343 

20 1 4.6859 4.7087 9.8392 9.8906 9.8399 9.8913 15.1368 15.2157 19.2254 19.3233 

2 5.2709 5.2962 10.1067 10.1585 11.6470 11.7064 15.8461 15.9268 20.6338 20.7377 

3 6.6948 6.7273 11.8048 11.8646 15.7501 15.8288 18.1545 18.2445 25.3188 25.4429 

4 9.5462 9.5934 15.6993 15.7782 23.3829 23.4959 23.9133 24.0316 32.7678 32.9211 

5 17.1977 17.2814 26.1756 26.3045 37.2351 37.4083 44.4248 44.6480 47.0353 46.9039 

50 1 7.9556 7.9688 11.9952 12.0188 11.9964 12.0200 16.9843 17.0197 21.5536 21.5990 

2 8.8234 8.8384 12.8408 12.8659 15.2141 15.2436 19.1813 19.2201 23.5513 23.6006 

3 10.0229 10.0410 14.7504 14.7800 19.9778 20.0184 22.5151 22.5611 29.7915 29.8538 

4 12.7876 12.8121 19.3674 19.4070 29.6364 29.6978 29.9588 30.0198 44.0315 44.1225 

5 21.6786 21.7218 33.2335 33.3015 51.2778 51.3790 56.5794 56.6961 75.5599 75.7033 

200 1 28.2112 28.2218 29.7181 29.7298 29.7252 29.7368 32.0759 32.0892 35.0713 35.0865 

2 28.7029 28.7137 30.3673 30.3793 32.3829 32.3963 34.6465 34.6614 36.9586 36.9751 

3 29.1911 29.2023 31.2642 31.2769 34.8612 34.8764 36.6680 36.6830 41.9366 41.9563 

4 30.6427 30.6547 34.2175 34.2323 42.4027 42.4227 43.4188 43.4394 55.7493 55.7774 

5 36.8841 36.9000 47.0289 47.0518 69.3334 69.3690 70.5579 70.5947 101.8152 101.8692 

4.3.1 Example  

Table III. shows the effect of general boundary 
conditions, namely- supported (SSSS), clamped boundary 
condition (CCCC), and Hinged (HHHH) all sides and FGM 
Power-law distribution(u=1/v=1/w=2/φ=2) and the following 

geometric values used for the analysis  (a/h=10, R/a=5). The 
results reveal the SSSS condition exhibit lower frequencies 
for all six modes compared to other boundary conditions.  
Clamped boundary conditions would also strengthen for all 
frequency responses. Consequently, it induces higher 
frequency responses of vibration of the shell. A similar trend 
mirrored for all the other cases. 
 

Table-III: Variation of non-dimensional frequency 
responses With (α) for FG spherical shell (SUS304/Si3N4) 

panel for different boundary conditions. 
Skew angle (α) 

BCC Mode 00 150 300 450 600 

SSSS 

1 6.6053 7.1838 9.0387 13.0503 22.9678 
2 15.1406 15.0826 17.0006 21.9219 34.2981 
3 15.1419 17.2313 22.0854 27.0449 35.4864 
4 20.5923 21.1368 23.0593 28.4055 39.1695 
5 20.5951 21.3085 23.5884 31.0722 45.2798 
6 23.0281 23.3723 25.4397 32.1331 45.6577 

CCCC 

1 11.1883 11.7655 13.8032 18.6021 30.6740 
2 20.7881 20.6460 22.6770 28.2155 42.2235 
3 20.7881 22.9958 28.1145 37.8034 53.7746 
4 29.0141 29.4013 31.6162 38.7717 58.9064 
5 34.7061 36.2572 40.9409 46.1865 63.2556 
6 35.0660 37.6715 41.5800 48.5456 66.5826 

HHHH 

1 7.0277 7.5702 9.3421 13.2590 23.0909 
2 15.1740 15.1275 17.0526 21.9776 34.3717 
3 15.1752 17.2516 22.1042 31.1155 45.5663 
4 23.0613 23.4081 25.4796 32.1119 55.4464 
5 28.3663 29.9099 35.1487 41.5272 56.5141 
6 28.3730 31.0243 35.3998 44.7038 58.4264 

4.3.2 Example  

The effect of curvature ratio (R/a), on the variation of the 
non-dimensional frequency parameter with four-parameter 
power-law distribution FGM (u=1/v=0/w=0/φ=5) and FG 

spherical shell made of SUS304/Si3N4, is described with 
SSSS CCCC, and HHHH boundary conditions.  

In Tables IV-VI, respectively the frequency response 
shown in these three tables. For the above cases, five 
different values of curvature ratio (R/a = 5,10, 20 and 50,100) 
and Skew angle range from 00 to 600 are considered. 

Tables IV and V show the frequencies for the first six 
modes for simply supported and clamped boundary 
conditions (a/h=10, a/b=1), respectively.it is observed that 
the natural frequencies in all six modes increase with rising 
the skew angle. Whereas for shells with curvature ratio grows 
resultant shell stiffness change, the natural frequencies rates 
gradually dropped. Although the curvature ratio of any 
curved shell panel increases consistent approaches to the 
flatness. 

Table VI. shows the non-dimensional frequency rate of the 
first six modes observed for accelerating trend HHHH 
boundary condition, with rising skew angle. Descent flow of 
non-dimensional frequency parameters while increasing 
curvature ratios. 

4.3.3 Example 

Tables VII to IX illustrate the effect of the aspect ratio on 
the frequency responses of the FG spherical shell panel has 
analyzed. for three different boundary conditions, and 
following geometric quantiles are five different values of 
aspect ratio (a/b =1, 1.5, 2, 2.5, 3) and the a/h=5, R/a=5 and 
power-law distribution FGM (u=1/v=1/w=2/φ=2) with five 

skew angle 00,150,300,450,600.  
The detailed numerical results depicted in Table VII to IX. 

describe the variation of the fundamental natural frequencies 
with the power-law distribution, Skew angles for under 
different boundary conditions, the trend can be seen in 
numerical results that the non-dimensional frequencies rate 
slowly improves as the skew 
angle increases from 00 to 
300.  
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Pronounced frequency increments occurring when the 
skew angle rises from 300 to 600. The result shows that the 
frequency parameter values are increasing with the aspect 
ratio. Because the large aspect ratios are comparatively 
stiffer, and it also prominent affect the structural design and 
vibration behavior of the structure.  

Tables VIII and IX. illustrate the first six frequency modes 
for Variation of Non-dimensional frequency parameter for 
clamped condition and hinged condition. The frequencies 
gradually increase as the aspect ratio increases. Between 
them CCCC boundary condition exhibit higher frequency 
parameter values compared to the other boundary condition. 

4.3.4 Example 

Tables X to XII demonstrates the effect of the thickness 
ratio on the frequency responses of the FG spherical shell 
SUS304/Si3N4 panel. With FGM (u=1/v=0/w=2/ φ=2) the 

following geometric parameters (a/b=1, R/a=5) and different 
thickness ratio values of (a/h=5,10,20,50,100,200) are 

presented. Increase the skew angle from 00 to 600, the interval 
of 150 under three different boundary conditions considered.  

Table X shows the frequencies in the first six modes for 
simply supported with the power-law distribution. The 
frequency parameters are showing the enhancing type of 
behavior with the increasing thickness ratio and skew angle. 
The trends of nondimensional frequency response attributed 
gradually intensify the first mode to the sixth mode. When the 
calculations performed with skew angle 00 to 600.generally, 
the maximum frequency responses occurred at 600. in which 
the without skew angle 00 represents a rectangular spherical 
shell. The response of the frequency parameter for the skew 
angle with the thickness ratio increases the rate of stability for 
all the FGM skew structures. 

 Table XI and XII shows similar approach the effect of 
thickness ratio increases with skew angle and power law 
distribution parameters kept constant non dimensional 
frequency parameter responses shown for clamped and 
hinged boundary condition. Increment trends noticed at skew 
angle more than 300. 

 
Table-IV, V and VI: Variation of non-dimensional frequency responses with skew angle (α) for FG spherical shell 

(SUS304/Si3N4) panel for different curvature ratios(R/a). 
 

Table-IV: (R/a) ratios under SSSS boundary condition 
 

 Table-V: (R/a) ratios under CCCC boundary 
condition 

 
R/a Mode 00 150 300 450 600  R/a Mode 00 150 300 450 600 

 5 

1 8.1342 8.8455 11.1265 16.0583 28.2408    5 1 13.7852 14.4958 17.0038 22.9074 37.7452 
2 18.6354 18.5634 20.919 26.9614 42.1294  2 25.5709 25.3974 27.8927 34.6932 51.8779 
3 18.6371 21.2048 27.1647 33.3529 43.7535  3 25.5709 28.2801 34.5590 46.4707 66.0626 
4 25.4005 26.0718 28.4416 35.0249 48.2873  4 35.6781 36.1550 38.8760 47.6140 72.5375 
5 25.4039 26.2838 29.0977 38.1963 55.6096  5 42.6532 44.5548 50.3726 56.8799 77.5000 
6 28.329 28.751 31.2875 39.5096 56.2522  6 43.1177 46.3126 51.0773 59.7193 81.8035 

10 

1 7.852 8.5889 10.9303 15.9359 28.1964 10 1 13.4253 14.1547 16.7163 22.6985 37.6241 
2 18.54 18.4677 20.8429 26.9226 42.1646  2 25.5091 25.3276 27.8275 34.6463 51.8646 
3 18.5416 21.1294 27.1325 33.3257 43.704  3 25.5091 28.2381 34.5472 46.4393 66.0542 
4 25.3819 26.0521 28.4192 35.0052 48.2337  4 35.6406 36.1137 38.8344 47.6463 72.4524 
5 25.3853 26.2626 29.0588 38.188 55.7096  5 42.6497 44.5559 50.4235 56.8535 77.6167 
6 28.286 28.7097 31.2562 39.484 56.134  6 43.0799 46.2858 51.0933 59.6466 81.7925 

20 

1 7.7809 8.5248 10.8825 15.9081 28.1906 20 1 13.3344 14.0689 16.6446 22.6473 37.5958 
2 18.5194 18.447 20.8277 26.918 42.184  2 25.4983 25.3145 27.8159 34.6402 51.8695 
3 18.521 21.1142 27.1297 33.3126 43.6821  3 25.4983 28.2329 34.5514 46.4377 66.0605 
4 25.3726 26.0424 28.4084 34.9941 48.21  4 35.6369 36.1089 38.8297 47.6655 72.4136 
5 25.376 26.2524 29.0431 38.1929 55.7586  5 42.6568 44.5645 50.4383 56.8378 77.6706 
6 28.28 28.7043 31.2538 39.4836 56.0804  6 43.0762 46.2856 51.1071 59.6299 81.7971 

50 

1 7.7618 8.5078 10.8705 15.9022 28.1924 50 1 13.3094 14.0453 16.6251 22.6338 37.5892 
2 18.5157 18.4433 20.8259 26.9201 42.1961  2 25.4983 25.3137 27.8157 34.6421 51.8761 
3 18.5173 21.1124 27.1323 33.305 43.67  3 25.4983 28.2350 34.5572 46.4414 66.0676 
4 25.367 26.0366 28.4019 34.9871 48.1968  4 35.6396 36.1112 38.8320 47.6780 72.3915 
5 25.3704 26.2464 29.0349 38.1988 55.7858  5 42.6638 44.5723 50.4424 56.8276 77.7015 
6 28.2815 28.7059 31.2567 39.4873 56.0519  6 43.0789 46.2896 51.1173 59.6262 81.8030 

100 

1 7.7594 8.5058 10.8692 15.9021 28.1939 100 1 13.3060 14.0422 16.6226 22.6322 37.5887 
2 18.5159 18.4436 20.8265 26.9215 42.2002  2 25.4994 25.3146 27.8167 34.6437 51.8789 
3 18.5175 21.113 27.1339 33.3025 43.6661  3 25.4994 28.2365 34.5596 46.4434 66.0705 
4 25.3651 26.0347 28.3998 34.9847 48.1925  4 35.6413 36.1128 38.8336 47.6824 72.3844 
5 25.3686 26.2445 29.0324 38.2013 55.7941  5 42.6666 44.5753 50.4429 56.8240 77.7115 
6 28.2828 28.7073 31.2584 39.4892 56.0433  6 43.0806 46.2916 51.1210 59.6260 81.8056 

   

Table-VI: (R/a) ratios under HHHH boundary condition 
 

 Table-VII: (a/b) ratios under SSSS boundary 
condition 

 
R/a Mode 00 150 300 450 600  a/b Mode 00 150 300 450 600 

 5 
1 8.4725 9.1523 11.3585 16.2029 28.3116    5 1 5.7832 6.1551 7.4093 10.1490 16.4495 
2 18.6498 18.5873 20.9517 27.0024 42.2158  2 10.2960 10.5675 11.5274 13.5194 17.7337 
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3 18.6514 21.2125 27.1854 38.2220 55.9456  3 10.2974 10.6524 11.7823 14.1991 19.5705 
4 28.3367 28.7615 31.3040 39.4841 68.1196  4 12.4627 12.3156 13.4380 16.4416 22.7025 
5 34.8603 36.7765 43.2093 51.0223 69.4244  5 12.4637 13.8485 15.9620 18.1586 23.5558 
6 34.8888 38.1261 43.5059 54.9756 71.7047  6 14.6075 14.9162 16.9025 22.1652 29.7113 

10 

1 7.9025 8.6339 10.9621 15.9529 28.2036 10 1 8.7493 9.2233 10.8367 13.0822 16.1514 
2 18.5404 18.4693 20.8465 26.9288 42.1888  2 10.3129 10.5758 11.4255 14.4034 22.7390 
3 18.5420 21.1300 27.1396 38.1926 55.9460  3 14.8484 15.3831 17.1976 20.9389 28.4447 
4 28.2863 28.7103 31.2579 39.4785 68.1538  4 15.4680 15.9442 17.5393 21.1489 28.5110 
5 34.8334 36.7561 43.2031 51.0244 69.3626  5 18.6116 18.9673 20.1997 22.8512 30.0434 
6 34.8634 38.1083 43.4965 54.9021 71.7217  6 20.6398 21.1333 22.7244 25.9653 32.8987 

20 

1 7.7825 8.5262 10.8835 15.9093 28.1944 20 1 10.3194 10.5320 11.2000 12.4246 14.4644 
2 18.5205 18.4478 20.8286 26.9197 42.1931  2 12.4448 13.0797 15.2538 20.0984 28.7650 
3 18.5221 21.1161 27.1342 38.1968 55.9594  3 17.9209 18.5898 20.8499 24.2538 31.4612 
4 28.2842 28.7082 31.2574 39.4832 68.1664  4 20.6370 20.9460 21.9990 25.7646 36.9860 
5 34.8369 36.7576 43.2085 51.0342 69.3353  5 20.6530 21.2952 23.5075 28.2407 38.2955 
6 34.8635 38.1141 43.5028 54.8753 71.7419  6 23.0793 23.7602 25.9268 30.3184 39.7546 

50 

1 7.7673 8.5132 10.8761 15.9096 28.2032 50 1 10.3226 10.4999 11.0476 12.0192 13.5621 
2 18.5198 18.4470 20.8291 26.9231 42.2013  2 16.6249 17.4449 20.2535 23.8835 27.4354 
3 18.5213 21.1165 27.1367 38.2054 55.9717  3 20.6595 20.9632 21.9543 26.5005 41.0208 
4 28.2905 28.7145 31.2643 39.4884 68.1723  4 21.5121 22.3313 25.1120 31.2112 41.6013 
5 34.8444 36.7623 43.2145 51.0428 69.3204  5 25.8039 26.6442 29.4697 34.9583 45.2808 
6 34.8677 38.1222 43.5102 54.8625 71.7577  6 27.7910 28.5880 31.2314 35.7258 48.8631 

100 

1 7.7718 8.5175 10.8803 15.9141 28.2085 100 1 10.3244 10.4767 10.9425 11.7546 13.0166 
2 18.5214 18.4488 20.8312 26.9257 42.2049  2 20.6632 20.9428 21.8322 23.4993 26.4443 
3 18.5230 21.1181 27.1384 38.2093 55.9765  3 21.1191 22.1321 25.5951 33.2566 40.9791 
4 28.2938 28.7178 31.2678 39.4906 68.1741  4 25.4832 26.4711 29.8332 35.2322 50.5276 
5 34.8478 36.7644 43.2169 51.0462 69.3156  5 30.9693 31.4171 32.6128 37.2392 50.9167 
6 34.8697 38.1257 43.5132 54.8588 71.7635  6 31.0842 31.9940 35.4394 42.8158 54.3551 

Table-VII, VIII and IX: Variation of non-dimensional frequency responses with skew angle (α) for FG spherical shell 
(SUS304/Si3N4) panel for different aspect ratios(a/b). 

Table-VIII: (a/b) ratios under CCCC boundary 
condition 

 Table-IX: (a/b) ratios under HHHH boundary 
condition 

a/b Mode 00 150 300 450 600  a/b Mode 00 150 300 450 600 

 5 

1 8.8081 9.2064 10.5665 13.5559 20.3344    5 1 5.9072 6.2717 7.5068 10.2225 16.5003 
2 15.1719 15.0371 16.1793 19.2491 26.5813  2 12.4582 12.3155 13.4385 16.4407 23.5516 
3 15.1719 16.5252 19.4987 23.1289 29.4766  3 12.4592 13.8363 16.8789 21.4710 27.0510 
4 19.9190 19.6581 20.5361 24.8215 32.8185  4 17.9300 18.0399 19.0909 22.1785 29.8667 
5 19.9190 20.5161 21.6284 25.3180 37.8290  5 18.4713 18.2926 19.1250 22.8874 34.8976 
6 20.3675 21.2588 24.0197 29.2839 39.4421  6 18.4714 19.5931 21.9185 26.2786 36.2695 

10 

1 12.7704 13.3237 15.2007 19.2854 28.4888 10 1 8.8343 9.3043 10.9069 14.4586 22.7780 
2 17.9687 18.5113 20.3743 24.4824 33.8373  2 14.8595 15.3941 17.2089 21.1565 30.0536 
3 22.9911 23.4205 24.9741 28.5828 37.0965  3 21.0959 22.0483 23.5298 26.9530 35.0236 
4 24.0548 25.1109 27.3669 31.4131 41.2999  4 21.6577 22.1776 24.8005 28.7235 38.2320 
5 25.5670 25.8417 28.6288 35.9897 48.6611  5 23.1498 23.3571 25.7373 32.2356 41.9301 
6 27.6275 28.6193 31.8757 38.6576 49.0154  6 24.3454 25.1272 27.6398 33.6465 43.7713 

20 

1 17.4387 18.1694 20.6443 26.0239 38.1852 20 1 12.5078 13.1401 15.3069 20.1412 31.4891 
2 21.6496 22.3581 24.7632 30.0128 41.9662  2 17.9394 18.6082 20.8683 25.7830 37.0051 
3 26.7273 27.3531 29.5185 34.3773 45.7153  3 25.5191 26.1277 28.2378 32.9834 44.0814 
4 28.3553 29.0063 31.2859 36.4409 48.5104  4 25.6167 26.2474 28.4495 33.3947 44.8479 
5 33.2734 34.5870 38.5906 44.2202 56.1039  5 29.6972 30.6271 33.4890 39.0482 49.4467 
6 35.8010 37.0181 39.8496 45.5064 57.0656  6 30.9413 32.2413 36.2565 41.3063 50.9772 

50 

1 22.3722 23.2845 26.3739 33.0956 48.3317 50 1 16.6747 17.4928 20.2963 26.5338 41.0442 
2 25.8568 26.7354 29.7175 36.2373 51.1426  2 21.5333 22.3523 25.1325 31.2312 45.2959 
3 30.8821 31.6926 34.4757 40.6673 55.0277  3 28.5877 29.3856 32.1067 38.1001 50.6459 
4 31.7374 32.5695 35.4204 41.7420 56.4424  4 29.7861 30.5863 33.3363 39.4611 51.9090 
5 39.5202 40.2735 42.9838 49.2693 63.8587  5 35.1859 36.1327 39.1974 45.2062 53.6732 
6 42.4532 43.0424 45.3010 50.7194 64.3654  6 37.1813 37.8976 40.4914 46.4918 55.8732 

100 

1 27.4183 28.5139 32.2258 40.3106 58.6562 100 1 21.1603 22.1716 25.6301 33.2848 50.5074 
2 30.3728 31.4296 35.0188 42.8773 60.8623  2 25.5048 26.4925 29.8540 37.2561 50.9363 
3 35.3061 36.3030 39.7150 47.2690 64.6982  3 31.9658 32.9208 36.1718 43.3341 54.3695 
4 35.5511 36.5563 39.9883 47.5752 65.1883  4 34.3046 35.2955 38.6883 46.2018 55.2704 
5 42.6764 43.6347 46.9519 54.4237 72.1211  5 40.0165 40.9343 44.1032 49.9764 60.0647 
6 45.8049 46.6176 49.5032 56.1805 72.2195  6 40.0737 41.0880 44.3515 50.8968 61.3982 
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Table-X, XI and XII: Variation of non-dimensional frequency responses with skew angle (α) for FG spherical shell 
(SUS304/Si3N4) panel for different thickness ratios(a/h). 

 
Table-X:(a/h) ratios under SSSS boundary condition 

 
 

Table-XI:(a/h) ratios under CCCC boundary condition 
 

a/h Mode 00 150 300 450 600  a/h Mode 00 150 300 450 600 

 5 

1 6.4517 6.8699 8.2806 11.3646 18.4674 

   5 

1 9.8794 10.3289 11.8646 15.2442 22.9182 
2 11.6504 11.9565 13.0387 15.2824 20.0147 2 17.0054 16.8584 18.1480 21.6055 29.8225 
3 11.6520 12.0521 13.3247 16.0424 22.0580 3 17.0054 18.5208 21.8475 26.1381 33.2650 
4 13.9565 13.7928 15.0633 18.4601 25.5604 4 22.5459 22.2448 23.2275 27.9311 36.9571 
5 13.9576 15.5193 18.0279 20.4892 26.5075 5 22.5459 23.0560 24.3189 28.3150 41.8291 
6 16.5076 16.8543 18.9669 24.9091 33.2308 6 22.8831 24.0663 27.1979 33.1954 44.4823 

10 

1 7.3587 8.0082 10.0863 14.5776 25.7048 

10 

1 12.4969 13.1428 15.4252 20.8108 34.4046 
2 16.8844 16.8245 18.9806 24.5054 38.4166 2 23.2365 23.0804 25.3660 31.6018 47.4040 
3 16.8859 19.2291 24.6798 30.5808 40.1139 3 23.2365 25.7121 31.4611 42.4077 60.4605 
4 23.2894 23.9049 26.0777 32.1123 44.2728 4 32.4781 32.9189 35.4217 43.4496 66.5092 
5 23.2926 24.0993 26.6772 34.7869 50.8794 5 38.8871 40.6343 46.1443 52.1455 71.0082 
6 25.7174 26.1095 28.4429 35.9860 51.5037 6 39.3024 42.2337 46.6325 54.5972 74.9676 

20 

1 8.6163 9.6496 12.3159 17.7039 31.9963 

20 

1 14.7733 15.4882 18.0953 24.6611 43.2079 
2 18.5522 18.9439 22.0618 29.3192 48.7200 2 27.3522 27.2829 30.4831 39.4002 63.8952 
3 18.5535 21.8058 29.3455 43.4518 68.7196 3 27.3522 30.4735 38.1045 55.1545 86.1917 
4 28.6498 29.7997 33.8983 44.5543 80.1802 4 39.2357 40.1434 44.2924 55.5490 99.1637 
5 36.3118 38.8862 47.4876 60.5394 82.5620 5 49.0480 51.6557 60.7964 75.1619 112.5701 
6 36.3335 40.8847 48.7292 61.2053 88.6178 6 49.4081 53.3924 61.7315 82.1526 133.1525 

50 

1 13.9863 15.6158 18.0300 23.4077 40.2479 

50 

1 21.6519 22.2498 24.5787 31.1803 52.6386 
2 22.0573 23.5621 27.2538 35.9980 61.7974 2 32.1869 32.4095 36.6455 48.6762 83.6657 
3 22.0593 27.8375 37.0190 55.2876 94.6650 3 32.1869 35.5488 44.4434 65.6432 123.1431 
4 31.7649 35.5501 41.8746 55.6843 105.5847 4 45.3456 47.1128 54.1330 72.5531 125.0019 
5 40.4874 44.1676 55.8575 81.8853 138.3160 5 58.6460 62.2989 75.3989 105.7419 175.1750 
6 40.5048 50.8533 61.1467 82.4093 153.6224 6 59.1405 63.9297 79.6030 107.1998 192.3387 

100 

1 25.0060 26.4585 28.0029 32.2984 48.5788 

100 

1 35.8385 36.2717 38.0129 43.3448 63.6282 
2 30.3975 32.1713 35.1455 43.4712 72.0867 2 39.8495 40.3595 44.7236 57.5701 98.5983 
3 30.4025 37.3366 44.9454 63.1893 113.6363 3 39.8495 42.6585 51.0047 72.8823 139.4303 
4 38.1385 43.7978 49.4988 64.8212 119.2980 4 51.7569 53.8672 62.0961 84.5981 151.6135 
5 46.1670 50.4299 62.4724 91.5951 173.9507 5 65.0468 68.9822 83.5305 120.8450 228.1453 
6 46.2108 60.4894 70.1668 96.1937 176.2264 6 66.3525 71.1334 88.5242 126.4352 228.7171 

200 

1 48.4058 49.3974 50.3769 53.3064 65.8688 

200 
 

1 60.2444 61.2051 65.1993 72.2223 88.1821 
2 51.5289 52.8462 54.7069 60.7414 86.1456 2 60.2444 61.7507 67.3210 76.5853 116.4895 
3 51.5408 56.9300 62.0211 77.0992 129.1362 3 64.4821 65.0573 67.6684 86.0960 151.9361 
4 56.4229 61.5382 65.6368 79.0476 131.7246 4 68.9093 71.2773 79.1972 100.7317 173.5670 
5 62.4662 66.2262 76.1777 103.2203 191.4092 5 79.0675 82.5304 95.8739 132.7832 249.6854 
6 62.5921 75.3887 83.7672 109.7436 197.5931 6 85.1334 88.4739 102.6578 142.6604 265.1871 

 
Table-XII:(a/h) ratios under HHHH boundary 

condition 
a/h Mode 0 150 300 450 600 

5 

1 6.5043 6.9184 8.3188 11.3914 18.4895 

2 13.9562 13.7929 15.0597 18.4501 26.485 

3 13.9574 15.5164 18.9606 24.1052 30.2169 

4 20.1151 20.2391 21.4272 24.9177 33.6033 

5 20.7755 20.5796 21.5076 25.7742 38.5514 

6 20.7755 22.0166 24.578 29.3184 40.7274 

10 

1 7.6274 8.2508 10.2663 14.6839 25.75 

2 16.8923 16.8397 19.0029 24.5347 38.4816 

3 16.8937 19.2333 24.697 34.8032 51.1046 

4 25.7194 26.1136 28.4516 35.9653 62.2911 

5 31.6884 33.4479 39.3525 46.5531 63.6993 

6 31.7164 34.6827 39.6279 50.4194 65.62 

20 

1 9.8126 10.715 13.1239 18.2154 32.2128 

2 18.6299 19.0468 22.1707 29.4154 48.7839 

3 18.6309 21.8534 29.375 43.4947 68.751 

4 28.6833 29.8391 33.9445 44.5793 82.6698 

5 36.3233 38.8906 47.4931 60.622 93.1407 

6 36.3377 40.8951 48.7465 66.8741 115.9704 

50 

1 19.0081 20.0154 21.7918 26.313 41.8617 

2 22.7683 24.2892 27.9856 36.6878 62.2776 

3 22.7685 28.3149 37.3185 55.456 94.888 

4 32.2559 36.0186 42.3101 56.0477 105.6741 

5 40.6212 44.3109 55.9463 82.0314 138.406 

6 40.7725 51.0893 61.3167 82.4648 153.6792 

100 

1 32.7629 34.3303 37.1176 40.5725 54.3817 

2 32.763 35.9367 37.5206 46.0223 74.1566 

3 35.5695 38.9013 46.0622 63.8692 114.6493 

4 40.2672 45.6218 51.2829 66.3641 119.6135 

5 46.8356 51.3067 63.0039 91.8995 174.3796 

6 48.277 61.2964 70.9567 96.8843 176.3885 

200 

1 57.0694 57.8103 60.4599 68.0053 82.6111 

2 57.0695 60.8844 65.4804 71.4613 93.7315 

3 60.1267 62.3732 65.6316 79.5537 132.8953 

4 62.6182 67.3913 73.5671 85.3047 133.4042 

5 64.7978 72.0147 78.9201 104.6425 192.0976 

6 73.2334 78.3517 86.9426 112.7345 199.6014 

HSDT conjunction with the finite element method. The 
comparison studies divulge the accuracy of the current 
model, and good agreement observed those available in the 
literature. The results computed via MATLAB 
environment.to show the robustness of the formulation 
explores different sets of geometrical parameters of the shell 
curvature ratio, aspect ratio, and thickness ratio, and choice 
of material distribution parameters, and skew angles under 
various boundary conditions considered here.  
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Based on the parametric study, numerical results revealed by 
using the four-parameter Power-law distribution on 
rectangular spherical shell and influence of u, v, and w 
parameters on the non-dimensional frequency responses 
examined. The following important conclusion from this 
study is summarized. 
▪ The frequency responses are decreasing trend as the 

curvature ratio increases. 
▪ The frequency responses are gradually rising as the 

thickness ratio and aspect ratio increases.  
▪ In all cases, the boundary conditions have a perceptible 

effect on the frequency parameter of the spherical shell. 
The frequency parameters are higher for all the FG shell 
clamped boundary conditions.  

▪ Variation of frequency parameter with a different 
power-law exponent (φ) and material parameters (u, v, 

and w) It is possible to approach to change the behavior 
of the structure. 

 
▪ The influence of skewangles the non-dimensional 

frequency parameters exhibit 00 for minimum at 600 
maximum response. all the frequency parameter values 
are escalating with skewangles. 

▪ The frequency responses are maximum and minimum 
for the spherical shells.  

V. SUMMARY AND CONCLUSIONS 

In this study, free vibration responses of FGM spherical 
shell (SUS304/(Si3N4) rectangular form observed and 
presented. The FGM material composition, material 
properties vary continuously from metal (top/bottom surface) 
to ceramic (base/top surface). Employed Voigt’s 

micromechanical model achieved through the four-parameter 
power-law distribution of the volume fractions. Convergence 
and comparison tests performed to illustrate the stability and 
exactness of the present mathematical model governed by  
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