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Surge dissipation
Wave dissipation - ‘coastal protection’
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Complexity Issues

1. Scaling up: Processes are non-linear in space
- small lab scale cannot be scaled up (e.g. to
storm surge)

2. Variability: spatial and temporal complexity
(e.g. different plant species & seasonal
canopy change) = extrapolation not possible

3. Temporal non-linearity: Over longer time
scales (> event), biogeomorphological
feedback becomes more important relative
to instantaneous processes
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(modified with permission from Cahoon et al., 1999. Current Topics in Biogeochemistry 3, 72-88)

Scales of bio-physical interactions and complexity
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Example: wave dissipation

Based on ‘wave shear stress coefficients’ or ‘drag
force’ acting on the vegetation
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e.g. artificial seaweed of Asano et al. (1993) and Dubi and
Torum (1997), Kelp of Mendez and Losada (2004)

Dalrymple et al. (1984) and Kobayashi et al. (1993)

Example: wave dissipation

PROBLEM:

* Complex but important vegetation characteristics are ignored
(buoyancy, geometry) - e.g. cylinders to approximate plants

* Empirical calibration is required to get accurate value for C,
(plant-induced drag)

P

Photo: Marco Schmidt (cc license)



15/06/2016

Solutions

1. Scaling up: Observe in true-to-scale setting
(field or 1ab) (then use to calibrate and validate models)

2. Variability: Observe variability and/or apply
and test aggregation methods (field and
model)

3. Temporal non-linearity: Implement long-term
observation / monitoring, time-space
substitution (then use to calibrate and validate models)
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Moller, I. Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van
:' lh ‘dralab Wesenbeeck, B.K., Wolters, G., Jensen, K., Bouma, T.J., Miranda-Lange,
****g M., Schimmels, S. 2014. Nature Geoscience 7, 727-731
www.thesaltmarshexperiment.wordpress.com
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Wave gauge set 2 Wave gauge set 4
Gravel
Wave paddle Direction of wave travel Reassembled saltmarsh with soil base Gravel infill back slope
= . . ; e b L
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Video observation window (see Fig. 3) Geotextile layer Soil elevation measurement transects
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Solutions

1. Scaling up: Observe in true-to-scale setting
(field or 1ab) (then use to calibrate and validate models)

2. Variability: Observe variability and/or apply
and test aggregation methods (field and
model)

3. Temporal non-linearity: Implement long-term
observation / monitoring, time-space
substitution (then use to calibrate and validate models)
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Mobller 2006, ECSS, 69, 337-351
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J. Tempest (PhD student, U. Cam)

Aggregating plant structure
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Solutions

1. Scaling up: Observe in true-to-scale setting
(field or [ab) (then use to calibrate and validate models)

2. Variability: Observe variability and/or apply
and test aggregation methods (field and
model)

3. Temporal non-linearity: Implement long-term
observation / monitoring; time-space
substitution (then use to calibrate and validate models)
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Tidal range 3.8 m
Average wave energy 715J/m? o
(ramped: 464 J/m?)



Scales of bio-physical interactions and complexity
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Solutions
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Spatial scaie (km)

1. Scaling up: Observe in true-to-scale setting
(f|E|d or Iab) (then use to calibrate and validate models)

2. Variability: Observe variability and/or apply
and test aggregation methods (field and
model)

3. Temporal non-linearity: Implement long-term
observation / monitoring; time-space
substitution (then use to calibrate and validate models)

Additional slides for discussion
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Key Remaining Issues

* How do marsh surface properties (vegetation
types/properties and topography) link to wave
dissipation?

* Marsh stability over a range of time-scales,
both laterally and vertically?

* ‘Thresholds’ and ‘recovery times’ — under what
conditions and sequencing of events can salt
marshes prevail over decadal time scales

‘System state’
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‘Poor

Man

agement through recognition of
drivers and thresholds

Self-sustaining
High self-organisation
High ‘resilience’

D* 7/ LIntrinsic
1 biogeomor

————

hological threshold

Requiring intervention
Highly responsive to external drivers
Low ‘resilience’

‘Unfavorable’

‘Favorable’
Environmental conditions
Spencer and Mdller, 2013
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Using salt marshes as coastal protection
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* Mixed NW European marsh
* Macro-tidal (4.7-6.6 m tidal range)
* 1 transect, 3 measurement stations, 2 x 200 m

* WaveH>40cm



Water-depth dependency of wave energy dissipation

20.00

0.00

-20.00 [~

—40.00 -

% E,, change

—60.00 -~

-80.00 —

1 |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
‘Water depth (m) at seaward end of the respective transect section

-100.00
0

<O Sand flat
@ Salt marsh

Moller et al. (1999) Estuarine,
Coastal and Shelf Science 49(3),

411-426

Energy loss over 200 m:

29% (sand flat)

82% (marsh)
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