
OWL: a Reliable Online Watcher for LTE
Control Channel Measurements

Nicola Bui12, Joerg Widmer1
1IMDEA Networks Institute, Madrid, Spain

2Universidad Carlos III de Madrid (UC3M), Madrid, Spain

ABSTRACT
Reliable network measurements are a fundamental compo-
nent of networking research as they enable network ana-
lysis, system debugging, performance evaluation and opti-
mization. In particular, decoding the LTE control channel
would give access to the full base station traffic at a 1 ms
granularity, thus allowing for traffic profiling and accurate
measurements. Although a few open-source implementa-
tions of LTE are available, they do not provide tools to reli-
ably decoding the LTE control channel and, thus, accessing
the scheduling information. In this paper, we present OWL,
an Online Watcher for LTE that is able to decode all the
resource blocks in more than 99% of the system frames, sig-
nificantly outperforming existing non-commercial prior de-
coders. Compared to previous attempts, OWL grounds the
decoding procedure on information obtained from the LTE
random access mechanism. This makes it possible to run our
software on inexpensive hardware coupled with almost any
software defined radio capable of sampling the LTE signal
with sufficient accuracy.

CCS Concepts
•Networks→Network measurement; Mobile networks;
Network monitoring;

Keywords
Software Defined Radio, Measurements, Mobile Networks,
Control Channel, LTE, Sniffer, DCI, RAR

1. INTRODUCTION
The evolution of mobile networking technologies is con-

tinuously pushing the hardware requirements for practical
experiments towards unprecedented levels and, at the same
time, the academic community is required to validate novel
ideas and solutions with practical tests and experiments to
play an active role in the development of 5G networks. As

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AllThingsCellular’16, October 03-07, 2016, New York City, NY, USA
c© 2016 ACM. ISBN 978-1-4503-4249-0/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2980055.2980057

a consequence, these experiments often require very expen-
sive tools that are almost always the exclusive prerogative
of industries and mobile operators.

To overcome this limitation a few open-source LTE imple-
mentations [2, 8, 11] provide a viable alternative to perform
isolated experiments. However, for what concerns real-world
network measurements current solutions either cannot pro-
vide complete and reliable information [9,14] or they demand
for specific and expensive hardware [1, 10,13].

In this paper, we introduce the Online Watcher for LTE
control channel measurements (OWL). Our tool1 is meant
for researchers and SMEs that need a simple and economic
solution to perform reliable measurements on LTE physi-
cal communications between mobile phones and base sta-
tion. OWL is built on top of srs-LTE [8] that provided us
with modular and efficient implementations of LTE physical
channels and basic procedures and works with a few software
defined radios (SDRs), such as bladeRF [12] and USRP [7],
capable of LTE signal sampling.

In particular, we extended srs-LTE by implementing an
online procedure to decode all Downlink Control Informa-
tion (DCI) transmitted on the Physical Downlink Control
CHannel (PDCCH) [3]. Our solution is more efficient than
previous attempts, because we are able to collect and main-
tain a list of active Radio Network Temporary Identifiers
(RNTIs), which identify user equipments (UEs) within a
given cell (eNodeB). In fact, RNTIs are the key for mobile
phones to distinguish the control messages destined to them
and to verify the success of DCI decoding.

This technique provides OWL with two very desirable fea-
tures: 1) it is very reliable as it can be verified via the Cyclic
Redundancy Check (CRC) field and 2) it can be executed
online on inexpensive hardware, since it does not need heavy
computation.

We measure OWL’s reliability by comparing the schedule
information obtained from DCIs to the used network re-
sources by means of power measurements on the raw signal:
in more than 99% of the captured frames in our tests OWL
detects all the scheduled transmission, scoring an average
99.85% successful decoding ratio overall. Therefore, OWL
can be used as a ground truth check for mobile phone mea-
surements, to perform extensive mobile networks measure-
ment campaigns or to evaluate mobile networks performance
and functionalities.

The rest of the paper consists of a comparative review
of the related works in Section 2, the basic LTE details to

1The code is available at: https://git.networks.imdea.org/
nicola bui/imdeaowl.

understand how OWL works in Section 3, the description of
OWL and its architecture in Section 4, OWL’s performance
evaluation and an example of measurements obtained with
it in Section 5 and our conclusions in Section 6.

2. RELATED WORK
To the best of our knowledge the first non-commercial

attempt to decode LTE control information has been LT-
Eye [9]: DCI messages are not encrypted, but only the in-
tended receiver can verify the successful decoding, because
the CRC field of the message is scrambled (binary exclu-
sive OR operation) with the UE’s RNTI. To decode DCIs
without knowledge of the destination RNTI, LTEye, first,
assumes the decoding to be successful, then obtain the des-
tination RNTI from the CRC field of the message XORed
with the CRC computed on the decoded data. The short-
coming of this is that the CRC cannot to be used to validate
the decoding operation. To solve this, the authors propose
to re-encode the decoded message and to compare the re-
sult with the original bits received before the decoding op-
eration. Although feasible under almost bit-perfect channel
condition, this approach suffers from low reliability as has
been verified in [14].

The latter paper proposes RMon, another technique to
monitor the resource allocation on the Physical Downlink
Shared CHannel (PDSCH): by comparing the received sig-
nal strength to LTE reference signals [4], RMon is able to
evaluate which resource block is used regardless of the con-
trol information. Although quite reliable, this approach does
not allow to obtain any additional information beyond the
fraction of used resources.

Instead, thanks to the list of active RNTIs, OWL is both
reliable, because it can verify the DCI decoding with the
CRC, and expressive, since it can access all DCI fields. Of
course, commercial products might offer similar features al-
beit at a much higher price and complexity, e.g., QXDM [13],
Actix Analyzer [10], or TEMS investigation [1].

For what concerns open-source LTE implementations, we
use srs-LTE [8] for its very efficient implementation. In addi-
tion, the modularity of the architecture and the adherence to
the standard terminology allowed us to realize OWL start-
ing from the provided example program to record and syn-
chronize the LTE signal. Alternative approaches include gr-
LTE [2] a solution based on GNU Radio, and openLTE [11],
which is more focused on the actual transmission and recep-
tion of PDSCH and is more suitable for isolated experiments
where both UEs and eNodeB are controllable.

3. CONTROL CHANNEL DECODING
This section is a mini-guide to LTE physical channels

and procedures needed to understand the operations per-
formed during the control channel decoding. In particular,
we cover synchronization procedures and the related chan-
nels, RNTI types and the random access procedure and,
finally, the control channel and the information carried by
DCI messages. In what follows, we limit our description to
frequency-division duplex and standard cyclic-prefix dura-
tion and most of LTE’s subtleties are omitted due to size
limitation of the paper. The interested reader is referred
to [4] for other details of LTE.

Figure 1 is an annotated power chart of half a frame of a
10 MHz LTE signal. It is obtained by expanding the ortho-

5 10 15 20 25 30 35 40 45 50

Resource block ID

594.0

594.1

594.2

594.3

594.4

S
F
N
.s
u
b
fr
a
m
e

PSS and SSS

MIB

Control Channel CFI Used RB Interference Free RB

Figure 1: Annotated capture of half a frame of a 10
MHz LTE signal. The OFDM grid spans resource
blocks on the x-axis and subframes on the y-axis. We
highlighted the synchronization sequences (PSS and
SSS) and the MIB in the center of the band. The
horizontal lines representing the control channel are
highlighted in white, while the CFI elements within
the control channel are drawn in black.

gonal frequency-division multiplexing (OFDM) grid in 600
sub-carriers (x-axis) and 70 symbols (y-axis). A resource
element (RE) is the minimum two-dimensional unit (1 sub-
carrier × 1 symbol), a resource block (RB) consists of 84
REs organized over 7 symbols and 12 subcarriers, 7 symbols
form a slot, 2 slots form a subframe and 10 subframes are a
10 ms frame.

In order to synchronize with a given eNodeB, the user
equipment (UE) computes the correlation between the re-
ceived signal and three known Zadoff-Chu sequences. This
allows the UE to acquire the location of the Primary Syn-
chronization Sequence (PSS) and to decode the Secondary
Synchronization Sequence (SSS). Both can be found in sub-
frames 0 and 5 in every frame. By doing so, the UE can
compute the eNodeB Physical Cell ID (PCI) and the sys-
tem timing, which are needed to identify all the remaining
physical channels in LTE. The next synchronization step is
decoding the Master Information Block, which is located in
subframe 0 of every frame and carries the System Frame
Number (SFN) as well as other system parameters.

RNTIs are 16-bit identifiers used by the eNodeB to dis-
tinguish among the many UEs connected at any given time.
Among the different types of RNTI, only two are relevant to
our procedures: random access RNTI (RA-RNTI) and cell
RNTI (C-RNTI). The former only takes values in [1 − 10]
and is used during the random access procedure to allow the
eNodeB to address an unknown UE. The latter can take any
unreserved value in [0x003D−FFF3] and is assigned to the
eNodeB at the end of the random access procedure.

A brief overview of the random access procedure is as
follows: 1) the UE sends one out of 64 possible preambles
(Zadoff-Chu sequences) in subframe i; 2) the eNodeB sends a
Random Access Response (RAR) message in which a tempo-
rary C-RNTI is assigned to the UE; 3) the UE sends a RRC
connection request message; 4) the eNodeB responds with
contention resolution message to UE. In order for the UE to
receive the RAR, the related DCI is sent to the RA-RNTI
address i+1, which is defined by the subframe where the UE
sent the preamble. The C-RNTI received during step 2 is
only confirmed in step 4; in fact, if two or more UEs selects

the same subframe for sending the preamble, all of them re-
ceives the RAR with the same information. However, only
one of them will successfully complete step 3, thus, receiv-
ing the final confirmation from the eNodeB. In any case, the
temporary C-RNTI sent in the RAR is assigned to one of
the users participating in the random access procedure.

Note that the DCI sent to the RA-RNTI only carries in-
formation for the UE to decode the RAR, but the actual
RAR is a proper RRC message sent in the shared downlink
channel. Thus, the UE can decode the 6 bytes of the actual
message, which consists of a short header, the time align-
ment, the upload grant to let the UE send the message in
step 3 and, in the last 2 bytes, the C-RNTI that is going to
be used by the user winning the contention.

LTE schedule is completely governed by the eNodeB and
no communication can happen without an explicit control
message being issued on the control channel that occupies
the first symbol(s) of each subframe. In the figure, we col-
ored all control channel symbols in white for an easier identi-
fication, whereas the remaining REs are colored in different
shades of blue (light, dark and medium for used, free and
interfering RBs). The actual number of symbols used for
the control channel is specified in the Control Format Indi-
cator (CFI) a 32-bit sequence spanning 16 RE, the position
of which depends on the PCI (in black within the control
channel in Figure 1) and that can assume a value in {1, 2, 3}.
Depending on the size of the control channel and the system
bandwidth, UEs need to monitor different locations on the
control channel, since, to avoid collisions, a control message
destined to a given RNTI can only occupy a subset of the
available locations.

Due to LTE’s flexibility and its many revisions, there exist
many different DCI formats. However, here we only provide
the common characteristics that allows OWL to monitor the
cell traffic. First of all, every DCI format specifies whether
it is related to the uplink or the downlink: this information
is either derived by the size of the message, if it is unique for
a given format, or by the first bit of the message, otherwise.
The second field which is always present in transmission re-
lated DCIs is the Modulation and Coding Scheme (MCS)
field: 5 bits that specify the modulation and the code rate
that will be used in the corresponding transmission. The last
two pieces of information that OWL extracts from DCIs are
the number of used resource blocks NRB and the transport
block size. The definition of the former depends on the ac-
tual DCI format, while the latter is derived by using MCS
and NRB as indices in a lookup table. The complete defi-
nitions can be found in [5]. Finally, DCI messages have a
CRC footer, which is the result of a XOR operation between
the actual CRC computed over the message payload and the
C-RNTI of the destination UE.

4. OWL ARCHITECTURE
The OWL software architecture is composed of three pro-

cesses: 1) a synchronized signal recorder, 2) the actual con-
trol channel decoder, and 3) a fine-tuner that is used when
a control message is expected to be found on the control
channel, but the main process cannot decode it. Finally, we
develop an auxiliary verifier tool that checks whether the
decoded DCIs match the actual resource allocation on the
PDSCH.

4.1 Synchronized signal recorder
OWL’s signal recorder inherits most of its functionalities

from the synchronized signal recorder provided by srs-LTE.
This tool, first, synchronizes the software to the eNodeB
transmissions by means of PSS and SSS correlation, then
acquires the remaining information by decoding the MIB,
and finally it writes an output file starting from the first
symbol of the first frames for which it obtained a successful
MIB decoding. However, it might happen that the system
synchronization degrades without the recorder being able to
notice, in particular for recordings longer than a few seconds.

To improve this, we provide the recorder with a synchro-
nization check at the beginning of every frame. In addition,
we provide the recorded trace with an error log that tracks
any synchronization issues and any other software related
error that might hamper the following operations.

4.2 Control channel decoder
OWL’s main component is the control channel decoder.

It can work either online while the signal is being sampled
by the SDR or offline processing prerecorded traces. Our
control channel decoder inherits from srs-LTE the basic de-
coding functions, such as CFI decoding, channel equalization
and mapping. However, srs-LTE provides all the functional-
ities as they would have been implemented in a UE. Instead,
OWL needs these functions to be extended to cover all pos-
sible control channel allocation: in particular, while a single
UE can monitor a limited set of control channel locations,
OWL needs to extend the procedure to all possible locations
and DCI formats.

In any case, both srs-LTE and OWL only perform actual
DCI decoding if there is an ongoing transmission on the REs
of the scanned location. If this is the case, the decoding
procedure is repeated for all possible DCI sizes. srs-LTE
considers the decoding operation successful if the CRC field,
scrambled with the CRC computed on the data, matches the
C-RNTI of the UE under test. Instead, OWL only requires
that any of the C-RNTI of the active list matches with the
decoded message.

Since the C-RNTI list is empty when the system starts,
OWL needs to populate it while decoding the control chan-
nel. To do so, OWL can either 1) exploit the random access
procedure or 2) verify the decoding success by re-encoding
the DCI as LTEye does. In the former procedure, whenever a
DCI is decoded with the CRC field XORed with a RA-RNTI
([1−10]), not only is it considered a successful decoding, but
also the RAR message, which is sent in PDSCH at the RBs
specified in the DCI by means of MCS and NRB , is actually
demodulated and decoded and provides OWL with a new
C-RNTI to be inserted in the active list.

LTE RRC messages are coded using ASN.1 [6], but the
particular configuration of the RAR messages allow us to
simplify the decoding by just taking the last two bytes of
the message, because the C-RNTI is always specified in this
location. In addition, since the actual RAR message is pro-
vided with a CRC field, OWL is able to evaluate the cor-
rectness of the whole operation by verifying the message
checksum against the CRC field.

Also, OWL implements LTEye re-encoding procedure to
bootstrap the list for those C-RNTIs that were assigned be-
fore the logging started and to recover from the missed ran-
dom access procedures in the unlikely event of de-synchroni-
zation. This gives us the added benefit to be able to com-

pare the two methodologies: whenever a transmission is de-
tected on the control channel we verify it both by checking
the re-encoded message against the received symbols and by
checking whether the C-RNTI is in the active list.

C-RNTIs are just temporary identifiers and, after a com-
plete SFN cycle (10.24 seconds) of inactivity, a UE needs to
perform the access procedure again to obtain a new one. For
this reason, OWL resets all the RNTIs in the list that are in-
active for more than a SFN cycle. Finally, while OWL uses
the LTEye re-encoding procedure to bootstrap the RNTI
list, at steady state we verified that OWL effectively de-
tects all new RNTIs assigned by the eNodeB. As such, we
only enable the DCI re-encoding when OWL detects a DCI
message whose CRC is not XORed with a C-RNTI in the
active list. This makes OWL both robust, because of the
actual decoding verification, and computationally effective,
because unneeded re-encoding operations are avoided.

We thoroughly evaluate the offline control channel decoder
performance and, on a single Core i3 processor, the overall
computational time is about half the length of the recorded
trace. Similarly, the online decoder works without ever in-
terfering with data stream arriving from the SDR.

4.3 Fine-tuner
While, theoretically, the control channel decoder should

be able to decode all DCIs, we identify a few rare condi-
tions for which power is detected on the control channel, but
no DCI message has been decoded. We believe that these
conditions are due to either equalization or synchronization
problems. The fine-tuner is able to correct the majority of
these issues by iteratively performing the decoding operation
on the specific location only and varying the timing offset of
the LTE signal.

The drawback of the fine-tuner is that its operation time
is proportional to the number of uncertain control channel
locations. Our tests show that the fine-tuner takes less than
the trace duration in 50% of the cases, less than five times
the trace duration in 90% and up to ten times in the re-
maining 10%. However, they also show that the fraction of
DCI message fixed by the fine-tuner is always lower than
5% of the overall decoded messages and the actual fraction
is independent of the time taken to decode it; in fact the
time only depends on the number of uncertain locations.

4.4 Pipeline
The overall OWL solution coordinates as many parallel

processes as cores are available on the CPU denoted by k.
The first process continuously records the LTE signal and
cyclically switches the saving location among k files. These
files are located on ramdisks in order not to interfere with the
trace recording itself. As soon as the first process switches to
the next saving location, the second process runs the con-
trol channel decoder on the recorded trace. This process
produces the main output and identifies whether and where
there are uncertain locations in the control channel trace. As
soon as the second process is done, a new process is started
to run the fine-tuner on the trace. In case the fine-tuner
takes longer than the time by which the first process needs
again the file to save the next trace, we force the fine-tuner
to timeout before this happens. In this way OWL might lose
a few control messages, but does not stop the trace record-
ing. Also, the fine-tuner processing can last at least k − 2
times the length of the recorded trace and OWL hardware

594.4

594.3

594.2

S
F
N
.s
u
b
fr
a
m
e

594.1

5 10 15 20 25 30 35 40 45 50

Resource block ID

594.0

RX power RS threshold

Figure 2: Results of the verifier on the same loca-
tions of Figure 1: the five rows compare the refer-
ence signal threshold to the average power measured
on the RBs.

can be chosen to reduce the likelihood for this to happen to
a minimum.

4.5 Verifier
Finally, to verify whether the decoded information matches

the actual PDSCH resource allocation, we develop a simple
tool that takes as inputs the decoding log and the raw LTE
signal trace. For each subframes it computes how many
RBs are detected by OWL by summing all the NRB values
of downlink messages. Similarly, it evaluates for each sub-
frame and for each RB whether the average power measured
on the PDSCH is higher or lower than the power measured
on the reference signals that are the closest to the related
RB. While the control channel decoder can decode both up-
link and downlink schedule, the verifier tool can only mea-
sure downlink information with a single SDR, because in
FDD systems the uplink physical channel is separated from
the downlink by a few hundred MHz. Hence, in this paper
we can only systematically verify the downlink schedule and
we leave the development of a verifier tool for the uplink
channel using two SDR for future work.

Figure 2 visualizes the result of the power analysis of the
verifier tool performed on the same frame used in Figure 1.
By comparing the two figures, it can be seen that the power
analysis can effectively identify ongoing transmission (lighter
areas of Figure 1 correspond to taller bars in Figure 2). Also,
the first RBs of subframe 594.2 are correctly identified as
interference.

4.6 OWL release details
OWL extends srs-LTE by adding the following:

• support for DCI formats 1B, 1C, 1D, 2, 2A

• automatic decode of DCIs sent to RA-RNTIs

• random access response messages decoding

• C-RNTI list management

• DCI verification by re-encoding.

In order to run OWL, the SDR must support a LTE com-
patible sampling rate: 30.72 Msps (samples per second) to
be standard compliant, but we successfully tested OWL at
23.04 Msps for 20 MHz bandwidth and 11.52 Msps for 10

0.1 0.2 0.5 0.75 0.9 0.95 0.99 1

Fraction of detected resource blocks per experiment

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
a
b
il
it
y

OWL

LTEye

0.01 0.02 0.05 0.1 0.2 0.5 0.75 0.9 0.95 0.99 1

Fraction of detected resource blocks per frame

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
b
a
b
il
it
y

OWL

LTEye

0 1 <2 <5 <10 >10

Resource block detection ratio [OWL/LTEye]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro
b
a
b
il
it
y

Figure 3: OWL validation campaign results. On the left plot we show the likelihood (y-axis) of detecting
the fraction of RBs specified on the x-axis computed per frame; the central plot is similar, but measured per
frame; the plot on the right illustrates the ratio between the number of decoded RBs of OWL and LTEye.

MHz. The PC must be able to receive the recorded stream
from the SDR and store it: this can be achieved by means
of USB3, 1Gbit Ethernet (up to 10 MHz only) and 10Gbit
Ethernet; although we did not try less capable devices, we
successfully used OWL on Core i3 PCs by temporarily stor-
ing and decoding the traces in RAM and only using the
physical disk to log DCI information.

At the moment of writing this paper, OWL’s alpha re-
lease is already available at https://git.networks.imdea.org/
nicola bui/imdeaowl and is being tested by a small group of
colleagues. We currently plan to run the alpha testing until
the end of September and to release a fully documented beta
version by the conference date in the same repository. OWL
is completely open-source and it is released under the Affero
General Public License v3.

5. RESULTS
In this section we provide two sets of results: a first set

validates OWL and compares it to LTEye, while second pro-
vides an example of analysis realized with our tool. All the
tests of this section are performed by capturing a 10 MHz
LTE channel in the frequency band at 1854.1 MHz through
a BladeRF x40 SDR connected to 4-processor Core i3 mini
PC equipped with 4 GB of RAM and running Ubuntu 14.04.

In order to compare OWL and LTEye we run more than a
thousand experiments in which we recorded 5-second traces
that we subsequently decoded with OWL. In all experiments
we let the fine-tuner process end, to obtain the maximum
number of decoded messages.

To evaluate the performance of LTEye, after each DCI de-
coding we verified its success by re-encoding the message and
comparing it to the received signal. If the two differ for less
then 2% of the bits we count the message as a valid decoding
for LTEye. Note that, for the sake of fairness we compute
this after having processed the trace with the fine-tuner in
order to compare OWL’s procedure based on random access
to LTEye re-encoding solution. Also, we choose the test lo-
cation in order to have the best possible reception in our
space from a nearby eNodeB.

Finally, we compute the number of RBs effectively used
in PDSCH by running the verifier tool on the raw captures.
Figure 3 (left) evaluates the fraction of RBs detected by
OWL and LTEye compared to those detected by the verifier
in each frame. We group the results in bars that show in
the ordinate the probability to successfully decode a given

fraction of RBs (x-axis) for the two solutions. In all figures
the x-axis is modified in order to highlight where the prob-
ability distributions concentrate. OWL decodes all the RBs
in about 95% of the tests and in the remaining 5% only miss
1% of them. Conversely, the most frequent result for LTEye
is decoding 90% of the RBs and it never successfully decode
all RBs in a test.

The central plot shows a similar result, but, instead of
evaluating the detection ratio averaged over experiments, it
plots the results for each frame: OWL successfully decode all
RBs in almost 99% of the frames, while LTEye achieves less
than 80%. Both solutions have non-zero probability for all
detection ratios, since different frames might have a variable
number of allocated RBs and a single error may represent
different detection ratios depending on the actual load.

The last plot of the first set shows the ratio between the
detection ratio of OWL and that of LTEye: the two solutions
decodes the same number of RB in 45% of the frames (x =
1), OWL never decodes less RBs than LTEye (x = 0), but
consistently decodes a larger number of RBs in the majority
of the frames, providing an improvement larger than a factor
of 10 in 5% of the frames and an average improvement larger
than a factor of 4.

Although mis-detection happens with higher probability,
both solutions can also generate false positives, for instance
due to strong noise/interference. However, since in our tests
false positives have been detected in very few tests only, we
deem their impact negligible.

To conclude the results section, Figure 4 shows a set of
graphs obtained from a full day measurement campaign: the
figure on the left shows the overall downlink and uplink data
rates in a 3-hour window starting at 8:30 PM averaging the
results over 1-minute bins. The central figure magnifies 10
minutes of the downlink data rates starting at 9:47 PM and
averaging the results over 5 second bins, separating the con-
tributions of the 5 most active users and aggregating the
rest. Finally, the figure on the right plots the variation of
the MCS on 2-second bins, obtained by the second user of
the central graph. Error bars are plotted one standard de-
viation above and below the average measure.

6. CONCLUSIONS
In this paper we introduced OWL, an online and reliable

solution to decode the LTE control channel and obtain the
complete schedule information of the monitored eNodeB.

9 PM 10 PM 11 PM

Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
at
a
ra
te

[M
b
p
s]

Uplink
Downlink

48 49 50 51 52 53 54 55 56 57

Time [m]

0

1

2

3

4

5

6

7

8

9

D
at
a
ra
te

[M
b
p
s]

RNTI 0x38CB
RNTI 0x3DF5
RNTI 0x33E3
RNTI 0x43D7
RNTI 0x3C73
Other RNTIs

50.2 50.4 50.6 50.8 51 51.2 51.4 51.6 51.8 52

Time [m]

0

5

10

15

20

25

M
o
d
u
la
ti
on

an
d
C
o
d
in
g
S
ch
em

e
(M

C
S
)

Figure 4: Second set of results: among the full day measurement we plot the total data rate during 3 hours
(left), a zoom of 10 minutes showing individual users (center) and a plot of about 2 minutes of the second
user’s MCS variation (right).

OWL reliability is achieved by exploiting the LTE random
access procedure that, in turn, allows our tool to obtain a
list of the active RNTIs of UEs connected to the eNodeB.

We evaluated the performance of our solution by checking
the actual utilization of the physical downlink shared chan-
nel and we found that not only did OWL decode almost
all the RBs in the majority of the tests, but also it signif-
icantly outperformed the only comparable non-commercial
tool greatly reducing the amount of undetected DCIs.

Finally, by means of a full day measurement campaign we
showed how our solution can enable a variety of different
analyses which can be subsequently used as both a valida-
tion tool for mobile phone measurements and for measuring
and testing the performance of existing and future LTE de-
ployments.

Acknowledgments
This work has been supported by the European Union H2020-
ICT grant 644399 (MONROE), by the Madrid Regional
Government through the TIGRE5-CM program (S2013/ICE-
2919), the Ramon y Cajal grant from the Spanish Ministry of
Economy and Competitiveness RYC-2012-10788 and grant
TEC2014-55713-R.

7. REFERENCES
[1] Actix International Limited. Actix analyzer.

http://www.actix.com, last accessed May 2016.

[2] ascom. TEMS Investigation. http://www.ascom.com/,
last accessed May 2016.

[3] J. Demel, S. Koslowski, and F. K. Jondral. A LTE
receiver framework using GNU Radio. Journal of
Signal Processing Systems, 78(3):313–320, Jan. 2015.

[4] ETSI. E-UTRA; Multiplexing and channel coding.
3GPP TS, 36.212:V13, 2016.

[5] ETSI. E-UTRA; Physical channel and modulation.
3GPP TS, 36.211:V13, 2016.

[6] ETSI. E-UTRA; Physical layer procedures. 3GPP TS,
36.213:V13, 2016.

[7] ETSI. E-UTRA; Radio Resource Control (RRC);
Protocol specification. 3GPP TS, 36.331:V13, 2016.

[8] Ettus Research. Universal software radio peripheral.
http://Ettus.com/, last accessed May 2016.

[9] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton,
P. Serrano, C. Cano, and D. J. Leith. srsLTE: An
Open-Source Platform for LTE Evolution and
Experimentation. preprint arXiv:1602.04629, 2016.

[10] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li.
LTE radio analytics made easy and accessible. In
ACM SIGCOMM Computer Communication Review,
volume 44, pages 211–222, Oct. 2014.

[11] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier,
C. Bonnet, D. Nussbaum, and R. Ghaddab.
OpenAirInterface 4G: an open LTE network in a PC.
In ACM MobiCom, 2014.

[12] Nuand. Bladerf software defined radio.
http://www.nuand.com, last accessed May 2016.

[13] Qualcomm. Qualcomm eXtensible Diagnostic Monitor.
https://www.qualcomm.com/, last accessed May 2016.

[14] X. Xie, X. Zhang, S. Kumar, and L. Erran Li.
piStream: Physical Layer Informed Adaptive Video

Streaming Over LTE. In ACM MobiCom, Sep. 2015.

