Fine-grained LTE Radio Link Estimation
for Mobile Phones

Nicola Bui'2, Foivos Michelinakis!2, Joerg Widmer!
'IMDEA Networks Institute, Leganes (Madrid), Spain
2UC3M, Leganes (Madrid), Spain

Abstract—Recently, spectrum optimization solutions require
mobile phones to obtain precise, accurate and fine-grained esti-
mates of the radio link data rate. In particular, the effectiveness
of anticipatory schemes depends on the granularity of these
measurements. In this paper we use a reliable LTE control
channel sniffer (OWL) to extensively compare mobile phone
measurements against exact LTE radio link data rates. We also
provide a detailed study of latencies measured on mobile phones,
the sniffer, and a server to which the phone is connected. In
this study, we show that mobile phones can accurately (if slightly
biased) estimate the physical radio link data rate. We highlight the
differences among measurements obtained using different mobile
phones, communication technologies and protocols.

I. INTRODUCTION

Can we trust mobile phone data rate measurements? This
apparently trivial question is key to evaluate the feasibility of
the anticipatory networking [1] paradigm and the related future
network solutions [2], [3]. For instance, exploiting achievable
rate prediction to optimize mobile applications [4]-[6] requires
some information exchange between mobiles and base stations
so that current decisions (e.g. scheduling, admission control)
can be made taking into account the future states of the system.
However, while prediction errors have been studied [7], [8], the
capability of mobile phones to obtain accurate measurements
has never been investigated in mobile networks.

In addition to that, many recent studies [9]-[13] rely on
crowd-sourced datasets to derive their conclusions without
questioning mobile phone measurements accuracy and whether
it is possible to aggregate them. Although reliable mobile
phone applications to measure the network bandwidth ex-
ist [14]-[16], they focus on end-to-end measurements that
do not provide the required level of granularity to enable
anticipatory optimization. In fact, while end-to-end data rate
is ideal to optimize TCP performance, the resource allocation
optimization would rather benefit from the actual radio link
data rate between eNodeB and user equipment (UE).

In this paper, we study whether mobile phones can ac-
curately measure LTE radio link data rate and with which
granularity (i.e. sampling frequency). To achieve this, we
compare the data rate estimates computed at the physical layer
of the radio link through a sniffer, at the mobile phone kernel
through tcpdump and by a mobile application.

Our study is divided into two measurement campaigns:
the first and largest set of experiments consists of burst
transmissions, where a small amount of data is sent back-to-
back to collect data rate estimates computed by the different
entities (i.e., phone, sniffer and server), while in the second set,

we evaluate latencies between single data packet transmissions
and their corresponding acknowledgements (ACKs). These
latencies allow us to study the root-causes of differences
among the behaviors of different phones. In all the tests,
we compared three mobile phones by different vendors and
equipped with different chipsets, first performing the test from
the server to the phone and, then, in the opposite direction.
The main findings of our study are the following:

1) Mobile phones achieve accurate (> 85%) and precise
(> 82%) data rate measurements with as few as 20
KB in the downlink, where accuracy and precision are
related to how close the measurement are to the sniffer
ground-truth readings.

2) Uplink measurements are less accurate and less precise
(65% and 60% respectively in the worst case), because
LTE uplink scheduling delay causes a higher variability
in the results.

3) Different chipsets exhibit variable biases and perfor-
mance, thus requiring dedicated calibration to optimize
accuracy.

4) Downlink accuracy and precision are linked to the
latency measured on the phone: chipsets providing
shorter and more deterministic latencies obtain better
estimates.

The rest of the paper provides a survey of related work in
Section II, specifies the measurement setup and the devices
involved in Section III, and discusses the two measurement
campaigns in Section IV and V. Sections VI summarizes the
main findings and Section VII concludes the paper.

II. RELATED WORK

A considerable number of recent papers focus on LTE
measurements and measurement techniques, but, to the best of
our knowledge, none of them rely on accurate LTE scheduling
information to validate their findings. Among them, Huang et
al. [10] studied LTE performance measured from mobile phone
data. In order to obtain a known reference for the results, the
authors performed experiments using controlled traffic patterns
to validate their findings.

The fraction of LTE resources used for communication is
detected in [17] by means of power measurements. The goal
of the authors is to evaluate the performance of M2M commu-
nications using experimental data. Similarly, RMon [18] is a
solution to assess which resource blocks are used by comparing
the average power measured over the resource bandwidth with
that of the closest LTE reference signals. RMon achieves good
performance and robustness, but it can only assess the average



fraction of used resources. Hence, it cannot be used to capture
the actual base station data rate.

LTEye [19] was the first attempt to decode the LTE con-
trol channel to access scheduling information. However the
authors found in their later work [18] that LTEye could not
provide sufficient reliability and a significant fraction of control
messages remain undecoded. To overcome this limitation, we
developed a reliable LTE control channel sniffer, called Online
Watcher for LTE (OWL) [20]. In our tests, OWL successfully
decoded 99.85% of LTE the control messages, thus obtaining a
complete log of the eNodeB scheduling. Mobilelnsight [21] is
a mobile phone application capable of accessing LTE control
messages directly from the radio chipset and could also have
been as an alternative to OWL.

A few papers [22]-[24] use commercial tools and/or op-
erator network information to evaluate LTE performance, but
their datasets (if released) only provide aggregate metrics that
do not allow us to achieve the objective of this paper. The
vast majority of papers however, just rely on measurement
performed using mobile phones or replicated in laboratory
experiments. Phone traces are used in [12] to evaluate network
performance. The same authors developed a framework [13]
to manage mobile phone measurements and a similar project
was developed in [9]. In [11], LTE performance predictors are
evaluated in laboratory setups. In addition, [25] uses TCPdump
traces to perform energy efficiency evaluation of smartphones
and [26] studies LTE shared access in a trial environment.

Finally, although not specifically developed for LTE, the fol-
lowing contributions discuss mobile measurements in general
terms. The most popular approach is Ookla’s Speedtest [14],
which can provide a very accurate evaluation of the steady-
state rate achievable by long-lived TCP connections. However,
Speedtest is both data intensive (with fast connections, one
test can consume more than a few tens of megabytes) and
cannot provide estimates at the granularity required in this
study. A few recent papers [15], [16] studied end-to-end
achievable throughput, also accounting for inter-arrival times
and passive monitoring techniques, but without comparing
their findings with ground-truth readings. The accuracy of
WiFi measurements performed by mobile phone is studied
in [27] based on a timing analysis. However, their results
cannot be applied to our scenario for two reasons: WiFi and
LTE differs significantly in terms of scheduling and MAC
protocols, and tcpdump traces do not provide a reliable ground
truth for the physical radio link.

This study improves over the current state of the art by, first,
evaluating data rate estimates on the radio link, instead of end-
to-end throughput and, second, by relying on an accurate LTE
sniffer to obtain a ground truth of the measurements.

III. SETUP AND DEFINITIONS

Figure 1 illustrates our experimental setup, which consists
of five entities. The target UE is the mobile device under
test which is connected to the target eNodeB. The sniffer is
a BladeRF x40 software defined radio [28] that samples and
records the LTE signal to be decoded by OWL. The sniffer
is shown as connected to the eNodeB-UE link only, but it
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Fig. 1. Experiment setup showing devices, connections and software.
actually records and decodes all control messages sent by the
eNodeB and, thus, it is aware of all of the traffic exchanged in
the cell. The server is a PC in our local network configured
with a public IP address in order to be reachable by the target
UE. The Internet cloud in the figure groups all the links that
form the backhaul of our setup including the operator network.
Finally, the controller is a second PC in our local network
which is directly connected to the target UE and the sniffer
via USB and to the server via Ethernet.

In order to assess the impact of different hardware, we
choose three mobile phones from different vendors with com-
parable technical specifications but equipped with different
chipsets. In particular, we opt for a Motorola MotoG LTE [29],
a Huawei P8 Lite [30] and a ZTE Blade A452 [31] equipped
with Qualcomm, Huawei and MediaTek chipsets, respectively.
The following list summarizes the features relevant for this
study (the short names used in the rest of the paper are written
in bold face):

e Motorola MotoG 4G (2014) — Chipset: Qualcomm
Snapdragon 400 MSM8926; CPU: ARM Cor-tex-A7,
1200 MHz (4 cores); Android: 4.4.2 KitKat; RAM: 1
GB.

e Huawei P8 lite (2015) — Chipset: Huawei HiSilicon
KIRIN 620; CPU: ARM Cortex-A53, 1200 MHz (8
cores); Android: 5.0.2 Lollipop; RAM: 2 GB.

e ZTE Blade A452 (2015) - Chipset: MediaTek
MT6735P; CPU: ARM Cortex-A53, 1000 MHz (4
cores); Android: 5.1 Lollipop; RAM: 1GB.

We have four different software modules in our setup. The
gear-shaped icon refers to the Measurement App, which
controls the communication between the target UE and the
server. For every successful socket call (either “send” or
“receive”), it logs the time and the amount of data exchanged.
This application is implemented in Python to obtain the same
behavior both on the phone and the server. The shark-fin-
shaped icon refers to TCPdump [32], which we use both on
the UE and the server to obtain transmission timestamps at
the kernel level as well as the payload size. The floppy-disk
shaped icon illustrates the Logger application that formats the
output of the other tools for later analysis.

The LTE monitor (owl-shaped icon) implements our Online
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Fig. 2. Communication diagram for downlink burst transmissions.

Watcher for LTE (OWL [20]) control channel measurements.
OWL is built starting from srs-LTE [33], an open-source im-
plementation of LTE, and extends its functionalities to provide
a reliable decoder of the physical control channel. From LTE
control messages, OWL computes the transport block size
assigned to each downlink and uplink communication. In this
way, we can measure the actual LTE radio link data rate in
every transmission time interval (TTI), i.e. 1 ms. This data rate
differs from the usual notion of end-to-end throughput and it
is the main metric needed for anticipatory networking.

The LTE cell used during the tests belongs to Yoigo, a
Spanish mobile network operator, and operates in LTE band 3
(1800 MHz) using a bandwidth of 10 MHz. The cell is chosen
due of the relatively low load and the very good signal quality
from the test location.

Our setup is characterized by three physical and five logical
measurement points: we monitor the communications at the
target UE, at the sniffer and at the server. Both the UE and
the server collect information by means of TCPdump and at
the application to capture the difference between application
and kernel measurements by means of a data rate estimation
technique using packet train dispersion [34].

As introduced above, we perform two measurement cam-
paigns, the first dealing with burst transmission (see Sec-
tion IV-A and IV-B for the test description and the results
respectively) and the second with periodic isolated transmis-
sions (Section V-A and V-B). In the first campaign our goal
is to evaluate the accuracy and the precision of fine-grained
measurements, while in the second we study latencies in the
different devices. Both campaigns consider both downlink
(from the server to the UE) and uplink communication.

IV. BURST TRANSMISSIONS

The first measurement campaign has the main objectives of
evaluating the accuracy and the precision of data rate estimates
obtained by mobile applications, and to analyze the differences
in performance obtained by the three phones.

We use the following symbols: ¢, s, n and r denote durations,
transmission sizes, number of packets, and the data rates. All
these quantities are easy to compute from the information
available in our tests and they do not require complex filtering.
In fact, we just evaluate the data rate r = s/t as the ratio
between the amount of data s transmitted in a given time and
the time ¢ itself.

A. Experiment Description

We focus on packet trains (burst) from when they are first
sent back-to-back from an application to their reception at the
other endpoint. In particular, we are interested in comparing
transmissions in the LTE radio link and the events tracked by
a mobile phone at the application and the kernel level. We use
Figure 2 as an example of a downlink test. The packets are
generated by the application almost at the same time. As they
are sent through a TCP socket they become spaced according
to TCP dynamics and delays. For all layers, empty markers
represent ACKSs, except for the phone application layer where
they mark packet receptions.

For the analysis, we define interarrival time ¢; as the interval
between two consecutive arrivals on the same layer and burst
time tp as the time between the first and the last packet of
a train. LTE may impose a further grouping of packets when
large transport blocks can fit more than a single TCP packet;
this is observed at the phone as a group of packets arriving
almost at the same time and as a single event at the sniffer.
We define group time t¢ as the time elapsed between the first
and the last packet of a series of continuous arrivals. The data
rate computed on groups is the measure that approaches the
most the physical rate. In what follows groups are identified
by those packets whose interarrival times are shorter that a
threshold ¢; < 7 < 7¢, where 7 = 1 ms is the TTI of LTE.

To compare LTE with phone and server traces, we fix
the burst size to 100 and 30 KB for downlink and uplink
experiments, respectively, to obtain at least 10 transmissions
per burst: in our setup with a 10 MHz channel, the maximum
LTE transport block size is 73392 and 28336 [35] bits in
downlink and uplink, respectively.

B. Experiment Results

In this section we compare data rates measurements by
means of an estimator ratio defined as n = r/ro, where rg
is the reference data rate, which, if not otherwise specified,
is measured by the LTE sniffer. The estimators’ accuracy
is highest when the the ratio is n» = 1 and degrades if it
is either higher (overestimation) or lower (underestimation).
Moreover, the standard deviation of the ratio is proportional to
the estimator precision. Thus, we show the distribution of the
estimators’ ratios and we provide accuracy o = [1 — [1 — 7],
and precision p = 1 — o (1), where Z, |z|, o(x) are the em-
pirical average, the absolute value and the standard deviation
of x and [z]o is = if x > 0 and O otherwise. In the following
results the overheads between the application and the kernel
(about 3.95%) and between the kernel and the sniffer (about
0.8%) are compensated.

The first and foremost results of our study are illustrated
by Figure 3, which shows the empirical probability density
function (epdf) of the estimator ratios obtained using burst by
the three different phones computed by the application (on
the left) and by the kernel (on the center) and using groups
computed by the kernel (on the right). The small plots on
the left of the figures show the density of the estimators in
a reference system where the z-axis reports the cell ground
truth and the y-axis the estimate: the darker the color the
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more estimators are in that area. The black dashed lines in the
plots show what an ideal estimator would achieve: the ratio
distribution would be a single spike in 1 and the densities
would be on the line x = y.

R1 - Phone applications can obtain accurate and precise
downlink data rates measurements: Figure 3(a) demon-
strates that the peaks of the epdfs are very close to 1. The three
phones achieves accuracy of o = 85% (Huawei), a = 96%
(MotoG), and @ = 95% (ZTE). The width of the edpfs is
related to the estimators’ precision, in particular, the three
phones have p = 89% (MotoG), p = 85% (ZTE), and
p = 82% (Huawei). The precision is also related to the width
of the estimator clouds in the small plots — wider clouds
corresponds to the lower precision.

R2 - Different phones have different biases: the slightly
lower score of the Huawei phone means that it tends to
overestimate the data rate by about a 10%, which can be easily
compensated. The same results can be verified in the small
plots: the MotoG’s and ZTE’s densities are centered on the
x = y line, while the Huawei’s is slightly above. Since the
estimators are obtained as size-over-time ratios and the bursts
have fixed size, the root cause for accuracy and precision has
to be looked for in the variability of the burst duration. In
particular, if a phone consistently measures shorter burst times,
it will overestimate the rate and, if the time measurements
are variable (e.g., random delays due to different loads on
the CPU) the corresponding precision will be lower. Thus,
systematic errors impact the accuracy, while random errors
affect the precision of the estimates. As a consequence, it is
important to compensate for the biases of the different phones
when dealing with crowd-sourced measurements, otherwise
errors could accumulate unpredictably.

R3 - Accuracy and precision are independent of the
actual data rates: examining the small plots in Figure 3(a)
the estimators span the whole = and y axes between 2 and 10
Mbps. This means that, during the experiments, the network
load varied so that the actual data rate achievable by our target
phones (all of them show similar behavior) was changing. In
addition, the actual data rate of the experiment does not affect
the estimator quality. The slightly larger cloud at higher rates
is expected since the same percentage error causes a larger
absolute error at higher rates.

Ratio,
(b) Kernel-bursts

Comparison of the estimator ratios computed on burst by the application (a) and the kernel (b) and on groups (c). The small plots on the left show
estimator densities: the x-axis is the cell ground truth and the y-axis the estimate.

Ratio, n

(c) Application—groups

R4 - Kernel measurements are slightly more precise:
Figure 3(b) shows the estimator ratios’ epdfs when the mea-
surements are performed by tcpdump. We expect these mea-
surements to show better performance than those obtained
from the application, since they are collected by tcpdump, they
are time stamped when the kernel receives packets (through an
interrupt from the chipset). However, not only are the precision
improvements very small (i.e., 3%, 1% and 1% for MotoG,
Huawei and ZTE respectively), but the accuracy scores are
almost unchanged.

Figure 3(c) is obtained using groups instead of the longer
burst. Since the transmissions within a group are expected to
belong to consecutive radio link layer transmissions, the data
rate estimate is likely to capture the exact rate used by the
eNodeB. However, these measurements are more sensitive to
timing precision. Since the group threshold for the cell is 1
ms, groups are characterized by transmissions in every TTI
and, as soon as a single TTTI is skipped, the group ends. Thus,
if timing is not precise, two or more separate groups in the
cell can be detected as a single group at the kernel or by
the phone application. As a consequence, while it is possible
to easily separate bursts and have a unique mapping between
bursts in the different layers, this is not true for groups, whose
composition is device and layer dependent.

R5 - Group-based data rate estimators are imprecise
and biased: our measurements show that the accuracy («) and
the precision (p) of data rate estimators computed on groups
are low. In particular, MotoG achieves o = 16% and p = 46%,
Huawei o = 256% and p = 48% and ZTE a = 75% and
p = 79%. Instead, the ZTE phone measurements, even though
overestimating by circa 25%, maintains a quite acceptable
precision, close to 80%.

A close examination of the density plots reveal that group-
based measurements have to estimate higher and more variable
data rates, because they are not averaged over the longer
duration of bursts. The ground truth data rate (x-axis) extends
up to 45 Mbps, which is close to the maximum throughput
in our setup. Moreover, all the phones overestimate the actual
readings, reaching estimates even higher than the maximum
reachable of our setup. This is a further proof of the importance
of precise timing and deterministic latency in the phones to
enable the most fine-grained estimation.
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Fig. 4. Interarrival time CDFs for short (left) and long (right) intervals and

the three phones.

Before moving to uplink results, a few considerations on
the packet interarrival times are in order. Figure 4 provides a
set of graphs showing the Cumulative Distribution Function
(CDF) of the interarrival times. To emphasizes the difference
between the interarrival times of packets related to the same
LTE transmission from those related to intervals separating
continuous arrivals, we plot on the left column the CDFs for
the interarrival times shorter than 2 ms (2 TTIs) and, those
longer or equal to 2 ms and shorter than 50 ms on the right
column. We don’t show interarrival times longer than 50 ms,
since those are almost always related to inter-burst rather than
intra-burst arrivals. The matrix rows show from the top to the
bottom, results for MotoG, Huawei and ZTE. We omitted the
cell CDFs in the plots on the left, since it would have been a
single spike at 1 ms.

Focusing on the left column, we can see that the CDFs of
different phones and those obtained at the kernel and at the
application are very different. For instance, the MotoG plot
shows that the majority (90%) of interarrival times measured
at the kernel are shorter than 0.3 ms, but only 30% of those
measured by the application are shorter than 0.3 ms. This
means that multiple packets that are distinguishable at the

n

5 £ 15
* B
. <
<7 ZIE N
£ 05
- a o
o 220 50 100 200
MotoG =
o S 15
S 1
£ ol ~
Huawei Zl- 05
— S)
- 0

25 3 20 200

50 100
Burst size, s [KB]

Fig. 5. Estimator ratios computed on burst in the uplink (left). Estimator
ratios against different burst size.

kernel are received by the application as a single stream, thus,
fixing the threshold 7 = 0.3 ms identify packets belonging to
the same LTE transmission from those belonging to either the
previous or the next.

Instead, the CDF of ZTE interarrival times at the kernel
shows two flat regions, one before 0.15 ms and the second
after 1 ms: this is caused by intra-transmission arrivals (the
former) and inter-transmissions arrivals (the latter). Conversely,
this noticeable distinction is not found in the application trace.
Accordingly, we fix the grouping thresholds to different values:
7 = 0.2 ms for the kernel and 7 = 1 ms for the application.

Finally, the Huawei CDFs only show slight inflections at
0.4 ms (kernel) and 0.7 ms (application), but both are less
marked than those of the other phones. We set the two thresh-
olds accordingly. As will be more evident hereafter, a more
skewed CDF with distinguishable intra- and inter-transmission
thresholds corresponds to more deterministic latencies in the
phone and, in turn, to better group data rate estimates.

Analyzing the plots on the right, we can compare the
interarrival time CDFs measured by the application, the kernel
and the sniffer. Here we observe that the Huawei phone that
has a slightly lower accuracy in terms of data rate estimation,
and also shows a larger gap between the cell CDF and the
other two, in particular between 10 and 30 ms. This confirms
that data rate measurements are influenced by timing precision.

One final observation related to the ZTE phone is that both
the application and the kernel CDFs show the same stair-
shaped trend as in the cell CDF. Again, this is due to a lower
variability of the ZTE latency, which will become more evident
in the following second set of experiments.

Figure 5 (left) shows the uplink data rate estimator ratios
of the three phones. Again, we compare kernel measurements
on the phone against the sniffer’s ground truth for the cell.
Note that uplink application measurements would require a
dedicated application that could intercept ACKs or especially
designed to monitor the sending socket. The normal socket
behavior is to accept send requests from the application until
the transmission buffer is full and, since this buffer is usually
larger than our data burst, the application can send to the socket
a whole burst at once making it impossible to measure the data
rate at the phone application.

R6 — Mobile phones can obtain accurate and precise
uplink data rates measurements: although the MotoG un-
derestimates the rate by about 30%, the other two phones
have the peaks of their epdfs very close to 1. In particular,



they achieve an accuracy « of 93% (Huawei) and 97% (ZTE),
while MotoG stops at 65%. The edpfs are also wider than
those related to the downlink. This is even more evident from
the density plots on the right of the figure, which highlight
that the precision of uplink measurements is lower than that
obtained in the downlink: 73% for the Huawei and 74% for
the ZTE. Not only does the MotoG have only 60% precision,
but also its density plot shows two regions where the densities
accumulate. This exhibits a binary behavior of the device that
will become more evident in the next section where we analyze
the phone latencies.

In addition, we compare the phone kernel to the server
data rate measurements. Since the results obtained are very
similar to those shown in Figure 5 (left) we omit the graphics.
However, it is interesting that in our experiments, uplink burst
can be measured both on the phone and the server achieving
similar results. Since phone to cell measurements are taken
before traversing the backhaul while phone to server results
include it, we can conclude that the backhaul plays a minor
role in our setup, because of the favorable location of the
measurement server.

Figure 5 (right) reports the results obtained by varying the
burst size from 10 KB to 1 MB for the downlink, and from
6 to 300 KB for the uplink. All the figures plot the average
estimator ratio in the center of a shaded area that extends one
standard deviation on each side. The figures are obtained by
mixing together the results for all the phones.

R7 — Bursts of 20 KB provide high accuracy and high
precision: the figures show that the estimator accuracy is
independent of the burst size and the precision slowly improves
with increasing size. Uplink proves to be more sensitive to very
small burst (i.e., the shaded area is larger in the uplink plots
for small bursts) as it is subject to more network randomness
and it requires slightly longer transmissions. In contrast, in the
downlink communication as few as two LTE transmissions are
sufficient to obtain an accurate estimate. In our test we choose
the minimum burst size to cause at least two transmissions
at the maximum reachable data rate. In a larger bandwidth
setup and when the next LTE releases will be deployed, the
minimum burst size to achieve this results has to be increased
proportionally to the maximum data rate.

R8 — UDP tests obtain the same results: the network
provider used in our campaigns does not allow us to make
reliable UDP tests, because of firewall and traffic shaping
policies. To overcome this limitation, we repeated all the tests
by emulating UDP by sending its packets with a TCP header
through a raw socket. All the repetitions result in performance
almost identical to that obtained by their TCP counterparts.
The reason is that the measurement characteristics are dictated
by the intra-burst timing, which, in turn, depend on the radio
link technology, and not by the inter-burst timing, which, in-
stead, depends on the protocol. Thus, radio link measurements
only need for clearly separated burst in order for mobile phones
to precisely estimate the data rate.

R9 - WiFi measurements are consistent, but different:
we repeated the main tests on WiFi (IEEE 802.11g) by
replacing OWL with a Warp Software Defined Radio [36]
using the 802.11 reference design. We consistently observe
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Fig. 6. Communication diagram for the downlink isolated transmission.
Dimension lines illustrate data-to-ack latency.

that the performance obtained on WiFi are on the same order
of magnitude of those obtained on LTE, but they are not
identical in terms of bias and precision. Thus, while we agree
on the main claims of [27] about overheads, we believe that
different technologies require specific tests to evaluate their
performance.

Before moving to the next set of experiments, we discuss
a few more results for which we do not provide dedicated
figures. We test our data rate measurements under three other
conditions: 1) we stress the phone CPU to full load during the
experiments; 2) we inject additional traffic in the cell under
test up for to 95% load. Although, we expect the CPU load to
add some delay to our measurement, we find that the phone
kernel copes well with this load and we did not notice any
significant change in the estimator performance. Similarly, the
additional traffic injected in the cell only changed the actual
measured data rates (i.e., lowering them), but did not decrease
the estimator’s accuracy.

V. ISOLATED TRANSMISSIONS

This section details the second set of measurements. The
objective of this campaign is to measure phone communication
latencies to justify the differences in their behavior. As above,
we first illustrate the experiment on a diagram (Figure 6) and
on some trace examples and then we discuss the results.

A. Experiment Description

For the analysis of latencies measured at each communica-
tion layer we take particular care to link homologous events in
the different measurement devices. While this is trivial in the
phone and the server where we can access all packet header
fields, identifying which LTE transmission contains a given
packet in the scheduling log poses several problems. First of
all, we need to find the correct RNTI of the target UE among
the rest of the traffic, but while for burst transmission we
could both rely on fixed burst size and periodicity, in isolated
transmission tests a single packet is sent from the application,
the payload of which should be large enough to differentiate
it from LTE control messages and small enough to fit in a
single transmit unit in the phone and the server interface. We
fix the packet size to 500 bytes with a periodicity of 400
ms to leave enough time between subsequent repetitions not
to confuse them with possible retransmissions. While other
UEs scheduled together with our target may have similar
periodicity, our UE could always be correctly detected.

Figure 6 shows the ideal communication diagram for the
downlink isolated transmission test. Here, we monitor the time
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elapsed between each packet and the corresponding ACK. In
what follows, we refer to this data-to-ack time as latency.

Although we only monitor relative times and we do not need
a perfect synchronization between the measurement layers, in
order to correctly couple events we make sure to capture the
first event of each test in all the layers (to have a common
reference) and, then, we run a causality check on each trace to
compensate possible violations. Since each subsequent layer
events have to occur after the events of the upper layer, we
realign traces to follow causality.

Dimension lines illustrate latencies in the different layers
with the only exception of ¢4 which refers to the time between
a packet being captured by the kernel (phone for the downlink
or server for the uplink) and when it is delivered to the
application. Note that applications cannot measure their own
latency without intercepting the communication ACKs at the
kernel level.

B. Experiment Results

Figure 7 summarizes the main results of the latency mea-
surements from which we draw conclusions about differences
in the three phones’ behaviors. All plots show the epdfs of the
latency measured at the three measuring devices. All latencies
are measured at the kernel level, since the application is not
automatically notified of ACK receptions.

The plots in the figures are grouped vertically by com-
munication direction and horizontally by layers and they are
best read from the top left in clockwise order to follow the
communication sequence.

The latency measured at the server in the downlink tests
(top left) is the sum of the delays caused by two Internet
traversals, two LTE scheduling delays (downlink first and then
uplink) and phone processing (chipset time plus protocol stack
traversal in the kernel). The latency at the cell downlink (top

center) starts when the downlink LTE transmission is already
scheduled and, as a consequence, it only contains the phone
processing and the LTE uplink scheduling delays. The latency
at the phone downlink (top right) starts from when the kernel
receives the reception interrupt from the chipset to when the
ACK transmission to the communication interface.

R10 - Chipsets with short and deterministic latency
achieve more accurate and precise data rate estimation:
in downlink tests, the latencies are similar in all the layers,
except on the phone. The ZTE latencies exhibit a single peak
before 0.5 ms, the Huawei a single, slightly wider peak at
about 0.9 ms, while the MotoG shows a wider distribution of
its latencies ranging from 0.3 to almost 2 ms. Recalling from
Figure 3(a) that MotoG and ZTE achieve higher accuracy and
precision in their data rate estimates, we can conclude that
chipsets with a shorter latency are more accurate in estimating
the data rate. Instead, the Huawei latency is closer to the length
of the LTE TTI and is the cause of the overestimation of the
data rate. To explain the difference in performance between the
ZTE and MotoG, we need to consider the CDFs of their short
interarrival time (recall Figure 4 top and bottom graphs on the
left). While the MotoG application captures intra-group events
(shorter than 0.5 ms), the ZTE application distribution starts
only after 0.5 ms, but it is very precise at the kernel. Thus, the
MotoG application data rate estimate fares better than ZTE,
which, instead, is more precise at the kernel level only.

The low variability of ZTE latencies explains why the ZTE
long interarrival time distribution has the same stair-shaped
trend as the cell distribution. As a consequence of this higher
precision at the kernel, the ZTE phone can better discriminate
between LTE transmissions, which, instead, are smoothed in
the other two phones, and is able to obtain more accurate
group-based data rate estimates (recall Figure 3(c)). Also,
since the three phones show similar times for server and cell
latencies we can exclude that network traversals and LTE
scheduling impact data rate estimates between phone and cell
in our setup.

R11 - LTE discontinuous reception configuration [37]
influences uplink data rate estimates: the bottom row of
Figure 7 illustrates the epdfs of uplink experiments. Laten-
cies measured on the phone kernel include both uplink and
downlink LTE scheduling, two Internet traversals and the
server processing; latencies at the cell include the Internet
traversals and the server processing delays, while the server
latencies only include processing delay. The server processing
is negligible, since it is shorter than 50 ps. Similarly, we can
exclude that the network delays play an important role in the
uplink data rate estimates, since the three phones show almost
identical latencies when measured at the cell. Conversely it is
the LTE uplink scheduling delay that influences the estimator
the most. This delay is expected to be about 20 ms for a
connected device starting a new transmission, while in our
measurements the epdfs are centered at about 50 ms (Huawei
and ZTE) and 85 ms (MotoG) with a smaller peak at 40 ms.
All these longer uplink delays are due to LTE discontinuous
reception (DRX), which is an energy saving feature that
allows mobile phones to duty-cycle between sleep and wake
phases. Since to discriminate among different transmissions we
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Fig. 8. Overall comparison among the data rate estimators. All boxplots show the distribution of the estimator ratios from the 25'" and 75" percentiles.

separate them by 400 ms (1 s for bursts), all the transmissions
start with the devices in DRX mode. The actual duration of the
sleep time depends on agreements between UE capabilities and
eNodeB requirements. Thus, MotoG uses a more conservative
DRX setup (with a longer sleeping period), most likely due
to the fact that it is an earlier (2014) model than the other
phones (2015). The overall effect of this latency is that uplink
data rate estimators are less precise than downlink estimates
by circa 10% due to the wider distributions of the latencies.

VI. SUMMARY

Figure 8 provides a visual summary of the results discussed
in the paper. In the figure, one boxplot is shown for each of
the main experiments, highlighting the median (central mark
of the boxes) and the 25" and 75" percentiles (box edges)
of the estimator ratios 7. At the bottom of the figure we
specify the type of 7 used. BA are ratios between data rate
measurements performed on bursts (B) at the application (A)
and cell estimate. BP are the same but computed by the phone
kernel (P), while GA are the same as BA, but computed on
groups (G). All downlink ratios use the sniffer as a reference.
On the uplink side, we show PC, which compares phone kernel
(P) estimates with cell (C) and PS which use the server (S)
application as a reference. All uplink results are computed on
bursts. Note that we do not show graphs for PS in the previous
results, since PC and PS are quite similar. This shows that in
our setup uplink data rate estimates on the server and the phone
obtain comparable results.

Looking at all the results side-by-side, it is evident that
on the one hand side, all the phones are capable of accurate
and precise data rate estimation, but on the other hand they
have significantly different biases and precisions, as seen for
instance, with Huawei and ZTE for BA in the downlink and
for PC in the uplink. Similarly noticeable is that group-based
estimators, GA, achieve reasonable accuracy on the ZTE phone
only and the MotoG uplink measurements are heavily impaired
by the different LTE latency.

To conclude our study on LTE radio link estimation, we can
affirm that the precision and the accuracy achieved by the three
devices are sufficiently high to enable anticipatory networking

optimization up to a time granularity of about 50-100 ms and
after having compensated the device bias. This is true for both
uplink and downlink estimates either obtained by the kernel
or the application. Conversely, to increase the measurement
granularity and, in turn, the optimization potential, direct
readings of the actual physical rate are needed.

VIIL.

In this paper we presented the first experimental evaluation
of the accuracy and the precision of LTE data rate measure-
ments performed by mobile phones. To summarize the main
finding of the study:

Mobile phones can achieve accurate and precise data
rate measurements: we showed that downlink application
measurements are both accurate and precise (R1), downlink
kernel-level measurements improve the precision, but only
slightly (R4), and uplink kernel estimates are accurate and
precise, but less than those obtained on the downlink (R6).

Mobile phones have different biases: R2 and R6 show
that mobile phone estimates vary depending on many factors.
R8 highlights chipset latency as the main cause for downlink
differences, while R11 identifies the LTE uplink delay as the
main source of variability. As a consequence, when combining
the results obtained using different phones, it is good practice
to evaluate the bias of each of them in order to compensate
systematic errors. Moreover, R9 shows that measurements
performed on different communication technologies with the
same mobile phones show similar, but not identical results.

Small data bursts are sufficient for 95% accuracy at
80% precision: we studied how the estimator quality varies
with burst size (R7) and we found that 20 KB (or 50 ms) are
sufficient to obtain accurate and precise estimators. Moreover,
in our tests the burst estimator quality showed very little
dependence of the measured data rate (R3). Instead, we found
that estimating the data rate from groups of packets arriving
back-to-back at the measurement point leads to low quality
(high bias, low precision) estimates (R5). This shows that an-
ticipatory networking solutions can rely on precise information
computed over 50 ms windows, but the actual radio link data
rate has to be obtained to increase this resolution.

CONCLUSIONS



Burst measurements are protocol independent: by com-
paring TCP and UDP tests, R8 shows that precision and
accuracy depend on the capability of detecting burst precisely.

Finally, we believe that this study offered a new perspective
about crowd-sourced measurement campaigns and that will
help improving the reliability of future campaigns.
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