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Thermodynamics

 From Greek θέρμη (therme), meaning “heat”, 

and δύναμις (dynamis), meaning “power”.

 Branch of physics that deals with heat, work and temperature, 

and their relation to energy, radiation and physical properties 

of matter.

(https://en.wikipedia.org/wiki/Thermodynamics)
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Why bother?
Two mechanisms contribute to ice flow

Internal deformation
(ice = viscous fluid)

Basal sliding 
(on hard rock or
soft sediment)
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Why bother?
Both internal deformation and basal sliding depend strongly on temperature 
(and water content)

Viscosity of polycrystalline ice

(Greve and Blatter 2009)

Basal sliding

→ Flow of ice sheets and glaciers: Thermo-mechanically coupled problem!
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Why me?

(https://doi.org/10.5281/zenodo.3815324)
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(https://doi.org/10.5281/zenodo.3815324)

Why me?
Based on…
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Temperature computation
Temperature equation:

Material time derivative
(local derivative + 3D advection)

Heat conduction
(diffusion)

Strain heating
(dissipation)

Boundary conditions: Surface temperature Ts

Geothermal heat flux qgeo →
𝜕𝜕𝑇𝑇
𝜕𝜕𝐧𝐧

d𝑇𝑇
d𝑡𝑡 =

1
𝜌𝜌𝜌𝜌 div 𝜅𝜅 grad 𝑇𝑇 +

𝛷𝛷
𝜌𝜌𝜌𝜌
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Some MATLAB tests for an ice column…
H = 100 m, α = 10°, Ts = –10°C, qgeo = 50 mW m−2, Tinit = –10°C, t = 0…1000 a

Good!

Ts

qgeo

z
H

α
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Some MATLAB tests for an ice column…
Let’s make it a bit thicker: H = 120 m

Not good!
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Correction of the boundary conditions required

Surface temperature Ts

Geothermal heat flux qgeo →
𝜕𝜕𝑇𝑇
𝜕𝜕𝐧𝐧

Basal temperature Tpmp

(cold base)

(temperate [warm] base)
or



Ralf Greve: Of cold ice, warm ice and water 11/29

Some MATLAB tests for an ice column…
Second try with H = 120 m

Good!
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Some MATLAB tests for an ice column…
Let’s make it even thicker: H = 150 m

Not good!
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Correction of the temperature required

with the secondary condition

𝑇𝑇 ≤ 𝑇𝑇pmp (reset to T = Tpmp if violated)

d𝑇𝑇
d𝑡𝑡 =

1
𝜌𝜌𝜌𝜌 div 𝜅𝜅 grad 𝑇𝑇 +

𝛷𝛷
𝜌𝜌𝜌𝜌

→ distinguish between cold ice (T < Tpmp) 
and temperate [warm] ice (T = Tpmp)
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Some MATLAB tests for an ice column…
Second try with H = 150 m

Good!
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Cold-ice method
As described on the previous slides:
 Solve temperature equation. 
 Basal boundary condition for either cold or temperate base.
 Reset temperatures to Tpmp if needed.

Really good?

No!

 Resetting does not conserve energy.
 Energy jump condition at the CTS 

not necessarily fulfilled.

Cold ice

Temperate ice

CTS
(cold-temperate 
transition surface)

Polythermal conditions:
Both cold and temperate ice present.
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Polythermal method
Temperature equation as before, but only solved in cold ice.

Water-content equation in temperate ice:

Melting conditions:

d𝑊𝑊
d𝑡𝑡 =

1
𝜌𝜌 div 𝜈𝜈 grad 𝑊𝑊 +

𝛷𝛷
𝜌𝜌𝜌𝜌

𝑎𝑎m⟂ > 0 𝑎𝑎m⟂ < 0

Freezing conditions:

Ice flow from cold to temperate
→ ∂T/∂n and W continuous across the CTS.

Ice flow from temperate to cold
→ ∂T/∂n and W jump across the CTS.

Energy jump condition at the CTS:

(Gusmeroli et al., 2010)
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Steady-state solution for an ice column

Melting conditions, am
┴ = +0.2 m a−1 Freezing conditions, am

┴ = –0.2 m a−1

H = 200 m, α = 4°, Ts = –3°C / –10°C, am
┴ = +0.2 m a−1 / –0.2 m a−1

𝑊𝑊+ = 𝑊𝑊− = 0

𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+

=
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

−

= 0

𝑊𝑊+ = 0
𝑊𝑊− > 0

𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+

< 0

𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

−

= 0
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Steady-state solution for the Greenland ice sheet

(Greve, 1995, 1997)

Ice-sheet model𝑇𝑇b′

Areas with 
 cold base 
 temperate base 
 temperate layer 

occur.

At 40 km resolution, 
freezing conditions only detected 
for a single grid point (    )

→ not that important.
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with 𝑘𝑘 =

𝜅𝜅
𝜌𝜌𝜌𝜌 for cold ice

𝜈𝜈
𝜌𝜌 for temperate ice

Enthalpy method

One common thermodynamic field

for cold and temperate ice: (Aschwanden et al., 2012)

Enthalpy equation for cold and temperate ice:

dℎ
d𝑡𝑡 = div 𝑘𝑘 grad ℎ +

𝛷𝛷
𝜌𝜌

ℎ 𝑇𝑇,𝑊𝑊 = �
𝑇𝑇0

𝑇𝑇

𝜌𝜌 𝑇𝑇′ d𝑇𝑇𝑇 + 𝜌𝜌𝑊𝑊

Enthalpy ℎ = fct(Temperature 𝑇𝑇, water content 𝑊𝑊)
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Thermodynamics solvers in SICOPOLIS

Cold-ice method (COLD)

Polythermal method

 Terrain-following coordinates (sigma transformation),
one common domain ζc = 0…1 
for cold and temperate ice.

 Two separate domains ζc = 0…1, ζt = 0…1.
 Enforcement of the energy jump condition 

at the CTS: 
Melting and freezing conditions → POLY1.
Only melting conditions → POLY2.

𝜕𝜕 𝜁𝜁c

1

0
Base
CTS

Surface

𝜕𝜕 𝜁𝜁c

1

0

Base
CTS

Surface

𝜁𝜁t
1

0
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Thermodynamics solvers in SICOPOLIS

Enthalpy method

 One common domain ζc = 0…1 
for cold and temperate ice.

 Enforcement of the continuity of the 
temperature gradient at the CTS:

No → conventional enthalpy scheme 
(ENTC).

Yes → melting-CTS enthalpy scheme 
(ENTM).

𝜕𝜕 𝜁𝜁c

1

0
Base
CTS

Surface
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EISMINT Phase 2 SGE experiment A1 produces a Greenland-like 
ice sheet (Payne et al., 2000; Greve and Blatter, 2016)

POLY2, Δx = 10 km, Δt = 2 a

Vtot = 2.1 × 106 km3
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Exp. A1: Evolution of the temperate ice volume

COLD
ENTC
ENTM
POLY2

Δx = 10 km
Δt = 20 a

Δx = 10 km
Δt = 2 a

Δx = 10 km
Δt = 2 a

HVR

(Greve and Blatter, 2016)

COLD: 
Much too thick.

ENTC: 
Somewhat too thick.

ENTM: 
Converges to POLY2.

HVR: high vertical resolution 
(5 × standard)
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Exp. A1: Thickness of temperate ice layer

Δx = 10 km
Δt = 20 a

(Greve and Blatter, 2016)

POLY2:
A bit wavy (instability).

COLD: 
Much too thick.

ENTC & ENTM: 
Somewhat noisy.
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Exp. A1: Thickness of temperate ice layer

Δx = 10 km
Δt = 2 a POLY2:

Now fine (stable).

COLD: 
Still much too thick.

ENTC & ENTM: 
Still somewhat noisy.

(Greve and Blatter, 2016)
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Exp. A1: Thickness of temperate ice layer

Δx = 10 km
Δt = 2 a

HVR

POLY2:
Fine (stable).

COLD: 
Much too thick.

ENTC & ENTM: 
Still slightly noisy.

ENTM: 
Close to POLY2.

(Greve and Blatter, 2016)



Ralf Greve: Of cold ice, warm ice and water 27/29

Summary

 Ice sheet/glacier thermodynamics relevant for ice flow.

 Polythermal conditions must be considered in a model:
COLD scheme is easiest, but physically inadequate.
POLY1/2 schemes are best, but cumbersome implementation.
ENTC and ENTM schemes are good compromises.

 Not covered in this talk:
Drainage of excess water (> a few %) from temperate ice. 
Macroscopic water system: supraglacial, englacial & subglacial hydrology.
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Next week’s seminar
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Thank you!
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Appendix
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