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Abstract. Digitized scientific documents should be marked up according to 
domain-specific XML schemas, to make maximum use of their content. Such 
markup allows for advanced, semantics-based access to the document 
collection. Many NLP applications have been developed to support automated 
annotation. But NLP results often are not accurate enough; and manual 
corrections are indispensable. We therefore have developed the GoldenGATE 
editor, a tool that integrates NLP applications and assistance features for 
manual XML editing. Plain XML editors do not feature such a tight integration: 
Users have to create the markup manually or move the documents back and 
forth between the editor and (mostly command line) NLP tools. This paper 
features the first empirical evaluation of how users benefit from such a tight 
integration when creating semantically rich digital libraries. We have conducted 
experiments with humans who had to perform markup tasks on a document 
collection from a generic domain. The results show clearly that markup editing 
assistance in tight combination with NLP functionality significantly reduces the 
user effort in annotating documents. 

1   Introduction 

The digitization of printed literature currently makes significant progress. The Google 
Libraries Project, for instance, aims at creating digital representations of the entire 
printed inventory of libraries. Other initiatives specialize on the legacy literature of 
specific domains, such as medicine, engineering, or biology. While some projects 
only aim at creating digital versions of the text documents, domain-specific efforts 
often have more ambitious goals: To make maximum use of the content, text 
documents are annotated according to domain-specific XML schemas. The XML 
markup is necessary to access the document collection with techniques that are more 
sophisticated than keyword search and provide richer semantics. It enables fine-
grained searching via XPath or XQuery, mining the document content, and linking the 
documents. 
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Manually creating markup for digitized documents is a cumbersome task. While 
the advances in NLP (Natural Language Processing) help automate the markup 
process, fully automated markup solely relying on NLP is not feasible, for several 
reasons: First, if markup quality is a hard requirement, the accuracy of 95-98% 
provided by up-to-date NLP applications [1] tends to be insufficient. Second, NLP 
accuracy decreases heavily if the data is noisy [2]. However, noise is common in raw 
OCR output. Third, if the markup process involves more than one NLP application, 
errors add up. When five NLP components arranged in serial order build on the output 
of each other, the overall estimated accuracy is 98%5 ≈ 90% at best. Only 
intermediate manual corrections can mitigate this effect. To date, no existing NLP 
toolkit allows manual editing of the documents. To achieve high markup quality, a 
user has to save the document after each NLP step and correct it in an XML editor, 
then apply the next NLP step, and so on. This back and forth incurs considerable 
effort. In addition, many NLP components do not produce XML, but other formats. 
Such output becomes editable only after expensive conversions. These problems call 
for tools that allow users to deploy NLP components and edit NLP output manually. 
To this end, we have developed the GoldenGATE editor [3]. It provides a slim API 
for the seamless integration of NLP components, such as automated taggers for 
locations or taxonomic names [4]. GoldenGATE offers useful features for editing 
markup that is the output of NLP, e.g., annotating all occurrences of a given phrase in 
one step. It also provides functions for cleaning up OCR artifacts and for restoring the 
structure of the original document. 

To quantify the benefit of editing assistance and NLP integration, we conducted a 
controlled experiment [5, 6] in which participants were asked to annotate generic 
documents using GoldenGATE or XMLSpy, a standard pure XML editor. We 
measured the task completion times and performed a statistical analysis of the time 
differences between the editors. The experiment shows that a tight integration of 
editing assistance and NLP reduces the effort for marking up documents. This finding 
is of interest to a broader audience: In almost any application domain, large document 
collections need to be digitized and enhanced with semantic annotations. 

Paper outline: Section 2 discusses XML editors and relevant NLP tools. Section 3 
describes the features and design of GoldenGATE. Section 4 presents the setup and 
results of our experiment. Section 5 concludes. 

2   Related Work 

General-purpose text editors like UltraEdit [7] or Emacs provide little XML-specific 
support, e.g., for inserting tags. Specialized XML editors, like Oxygen [8] or 
XMLSpy [9], are tailored to handling XML data. They include document validation 
against DTDs and XML schemas, interpreters for the XPath and XQuery query 
languages and XSLT, etc. They also alleviate the creation of markup to some extent, 
but do not give way to any automation. They are not designed to integrate NLP 
applications either, since NLP has not been a usual part of XML data handling so far. 

The OpenNLP [10] project encompasses a multitude of mostly open-source 
projects concerned with the development of NLP tools, which are heterogeneous 
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regarding purpose, programming platform, and quality. LingPipe [11] is a 
professional NLP library. Except for the rule-based tokenization, the analysis 
functions apply statistical models such as Hidden Markov Models [12]. While its 
functionality is powerful, LingPipe lacks a user interface: It has to be integrated in 
other programs to be accessible in ways other than the command line. 

The NLP framework GATE [13] offers functionality comparable to OpenNLP, but 
allows for more complex applications and is capable of producing XML output. It 
includes Apache Lucene [14] for information retrieval and a GUI for visualization. It 
is relatively easy to extend with additional components. GATE is dedicated to NLP 
research and evaluation, rather than document markup and management: It provides 
functions for assessing markup results obtained with test corpora, but lacks any 
facility for manual correction of text or markup. Applications similar to GATE are 
WordFreak [15] and Knowtator [16]. 

3   The GoldenGATE Editor 

In this section, we describe the GoldenGATE editor, which we have designed and 
built to support annotating text documents. This includes assistance for manual 
editing (Section 3.1) as well as the seamless integration of NLP components and 
functionality for correcting NLP output manually (Section 3.2). The development of 
GoldenGATE is part of a research effort which aims at creating a digital library of 
biosystematics literature by scanning and marking up the huge body of legacy articles 
from this domain. 

3.1   The Document Editor 

In GoldenGATE, a document is displayed and edited in its own document editor 
(Figure 1), which is a tab in the main window. The editor provides all the 
functionality required for manually editing both text and markup. 

Controlled XML Syntax Generation: If the user has to handle the XML syntax 
manually – character-wise – this is unnecessarily cumbersome and gives way to 
syntax errors. Thus, the document editor only allows editing the tag content (i.e., the 
XML element name, and the names and values of attributes). It generates the syntax 
(e.g., the angle brackets) automatically and shields it from manual editing. It arranges 
the tags automatically to enforce wellformedness. 

Markup Creation: To mark up a sequence of words with an XML tag, the user 
can simply select the words in the document and use the Annotate function in the 
context menu. The editor then prompts for the element name and does the rest 
automatically. To reduce the editing effort further, the context menu pro-vides the 
most recent element names for instant reuse. Changing the name of an element works 
similarly, the user does not need to modify start and end tag separately. The same is 
true for removing the markup around some text, or removing a marked up document 
fragment, i.e., both the tags and the text enclosed. 
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Global Markup Editing: Creating, modifying, and removing XML tags often 
applies to all elements of a certain type. The editor offers support for this, e.g., 
renaming all XML tags with a certain name, or removing them with or without the 
text enclosed. For instance, this is useful for removing the font tags from HTML-
formatted OCR output. Only when marking up a piece of text with an XML tag, the 
functionality is slightly different: The user can choose to mark up all occurrences of 
the selected phrase throughout the document instead of just one. This facilitates 
marking up, say, all the mentions of a person or location in a document with just a 
single action. 

 

Fig. 1. The annotation editor. 

Advanced Search Functionality: In many situations, a user needs to access just 
certain XML elements, which are spread out over the document. With existing 
editors, this requires a search for each element. In order to simplify this form of 
element-specific access, the document editor allows displaying and editing elements 
with a certain name only. This is useful for, say, checking if the section titles in a 
document are in the correct case. 

Flexible Document Display: If the number of tags becomes too large, the 
document will not be concise any more, and readability is reduced. Thus, the 
presentation of the document in the editor is flexible to provide the appropriate level 
of detail for the current editing activity. In the display control (see Figure 1, to the 
right of the document), a user may choose to highlight text enclosed by certain tags 
instead of displaying the tags, or not to show the markup at all. 

OCR Cleanup: OCR output documents often contain artifacts that were recog-
nized correctly, but do not belong to the text itself. They rather originate from the 
print layout, like page numbers and titles. Another problem are line breaks that do not 
mark the end of a paragraph, but also originate from the print layout. Related to the 
latter are hyphenated words. These artifacts may compromise NLP result quality se-
verely, and removing them manually is cumbersome. Therefore, the document editor 
provides a function for resolving hyphenation and removing erroneous line breaks. In 
particular, resolving hyphenation automatically is far from trivial, since one has to 
pay attention not to destroy enumerations that use pre- or postfixes as abbreviations. 
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3.2   Integration of NLP Tools and NLP Correction 

As mentioned in Section 2, powerful NLP tools exist. A major difficulty when 
implementing such a tool is that XML editors work on characters, while NLP 
components usually work at the word level: NLP regards text as a sequence of tokens, 
which are atomic units. This results in data models of different granularities, and the 
mapping between these models is complex. GoldenGATE hardly includes any hard 
coded NLP functionality, but lets users add arbitrary NLP functionality without 
difficulty. We have paid much attention to ensuring that the interface to the NLP 
components is slim. 

To facilitate correction of NLP errors, the editor provides specific views on the 
NLP results. In particular, it can display a list of all XML elements of a certain name. 
The user can then review all these annotations without having to search them. He can 
choose which ones to keep, and which ones to remove. This facilitates finding parts of 
a text that have erroneously been marked as locations by a Named Entity Recognition 
component, for instance. On the other hand, if the component failed to recognize 
some location names, one can easily correct this using the function for annotating all 
occurrences of a phrase at once. 

Another type of markup error is that two distinct entities have been marked as one, 
e.g., <loc>Jamaica and Haiti</loc>, or vice versa, e.g., 
<loc>Trinidad</loc> and <loc>Tobago</loc>. For correcting this type 
of error and similar ones at the structure level, e.g., paragraphs, the document editor 
includes functions for both splitting an XML element at a position between its tags 
and for merging XML elements of the same name. Within this step, attributes are 
copied or coalesced, respectively. 

3.3   Further Functionality 

The GoldenGATE editor natively provides basic NLP functionality like gazetteer 
Lists and Regular Expression patterns. Both can be applied for annotating a text 
document automatically. This is to overcome the need for integrating heavyweight 
external components for lightweight markup tasks. 

All facilities for automated markup can be configured to be one-click accessible in 
the editor. This saves time when accessing the functions most important for the 
current task. Besides the ones named here, GoldenGATE pro-vides various further 
features, which we cannot describe here due to space limitations. New features 
integrate easily through a resource manager interface. 

4   Controlled Experiment 

To find out empirically whether GoldenGATE supports document mark-up tasks 
better than existing XML editors, we conducted a controlled experiment. In the 
experiment, participants were asked to annotate documents according to some XML 
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schema (see 4.5). The independent variable ("experimental condition") was the editor 
in use, either GoldenGATE configured with certain custom functions (see 4.5), or 
XMLSpy. The measured, dependent variable was the completion time for the mark-up 
task. All other variables which might affect the mark-up performance had to be 
controlled by experimental techniques. 

4.1   Experimental Design 

To achieve sufficient statistical power (see 4.6), we needed about 10 data points for 
each editor. We expected to attract no more than 15 volunteers for the experiment; 
experience shows, though, that not all volunteers actually show up. Hence, it was 
necessary to choose an experimental design in which every participant would 
contribute two data points, one for each editor. 

In our experiment, every participant worked on two different tasks, using XMLSpy 
for one task and GoldenGATE for the other. We made sure that the tasks were 
equivalent (see 4.5). When exposing each participant to both experimental conditions 
(i.e., usage of both editors), there is a general risk that an observed effect is not caused 
by the variation of the independent variable alone, but also by the order in which the 
conditions were applied (sequencing effect). Two important sequencing effects might 
affect our experiment: An increased familiarity with the mark-up task, the structure of 
the documents, and the experimental environment after completing the first task 
might have a positive impact on the performance in the second task (learning effect). 
Being asked to use the "old" XMLSpy editor in the second task after using the "more 
comfortable" GoldenGATE editor in the first task might have a negative impact on 
motivation and performance (motivation effect). 

 

Fig. 2. Counterbalanced experimental design. 

To make sure that conclusions about performance advantages of the GoldenGATE 
editor are valid, selecting a proper design which controls for sequencing effects is 
mandatory. We applied a counterbalanced design [18]: half of the participants used 
XMLSpy for the first task and GoldenGATE for the second one (Group A); the other 
participants used the editors in the opposite order (Group B), see Figure 2. To even 
out differences in individual abilities of participants we randomized the assignment of 
participants to groups. 
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4.2   Pilot Study 

A pilot study serves the purpose of validating the experimental material and 
environment. A pilot study also helps to estimate the size of the effect to be observed 
in the experiment, a number which is needed to determine the number of data points 
required for the experiment (see 4.6). In February, we conducted a pilot study with 
about half a dozen student volunteers as participants. We used excerpts from 
biosystematics documents (3, 4) in the tasks for the pilot study. A half-day tutorial 
was offered the day before the pilot study. It covered the features of XMLSpy and 
GoldenGATE, but also the structure of biosystematics documents. The emphasis in 
the tutorial was on hands-on work with the editors. 

In the experimental tasks, some participants used XMLSpy to mark up their 
document, others used GoldenGATE. The pilot study revealed several problems with 
setup and material. Despite the training, the participants showed a lack of proficiency 
using the more advanced features of Golden-GATE. They did not have sufficient 
domain knowledge regarding the structure and contents of the biosystematics articles; 
hence, they needed considerable time to recognize the relevant parts of the 
documents. Finally, the experimental tasks were too long, and participants became 
tired before the tasks were finished. As a consequence, we adjusted the tutorial 
contents and the material for the main experiment. 

4.3   Tutorial 

In March, we offered an extended tutorial on one day and carried out the experiment 
on the next day. Given the insights from the pilot study, we included more and longer 
practical exercises covering the features of the GoldenGATE editor in the tutorial. We 
still covered XMLSpy to make sure that the participants had the same degree of 
familiarity with both editors. 

For the tutorial and experimental tasks, we let go of the biosystematics documents 
and used documents from generic domains which are immediately understood by 
everyone, such as sports news and recipes for Italian dishes. We held a "competition" 
at the end of the tutorial where the participants had to mark up a document as quickly 
as possible using GoldenGATE. The rationale was to see how individuals use the 
tools when working under pressure. The competition showed that the participants 
were sufficiently familiar with GoldenGATE. 

4.4   Participants 

12 graduate students in computer science volunteered for the tutorial and experiment. 
We had 2 no-shows who attended the tutorial, but did not show up for the experiment, 
and 1 dropout who gave up after having worked on the first task for more than 2.5 
hours. Therefore, we had a total of 9 participants in the experiment. The majority of 
these students were in their 7th semester; the others were more senior, up to their 13th 
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semester. All of them had taken a graduate level database class this semester, which 
also covered XML. 

At the beginning of the tutorial, we handed out a pre-test questionnaire that asked 
for the students' knowledge of XML, their practical experience with editing XML 
documents using an XML editor, and their practical experience with correcting errors 
in digitized documents by hand. Except for two students who had used XMLSpy on 
and off in the past, the pre-test did not reveal any capabilities of the participants 
relevant for the experiment. 

4.5   Tasks 

For the experimental tasks, we used sets of recipes as documents, mainly pasta dishes. 
We made sure that the two documents had about the same length (12 pages), number 
of recipes (20), and difficulty. The participants easily understood the structure and 
contents of the recipes. This was important as we wanted to measure the speed 
advantages resulting from the features of GoldenGATE and not the time needed to 
understand the problem domain or document content.  

The descriptions of the two experimental tasks were identical, except for the name 
of the document and editor to use. The participants were asked to add suitable tags to 
structure the document in recipes, preparation sections, and preparation steps. They 
had to mark up recipe titles, ingredient lists, individual ingredients, and cooking tools. 
In addition, the participants had to correct errors which are typical left-overs from a 
previous OCR phase, including extra page titles, incorrect line and page breaks, and 
misspelled words. This last requirement is particularly tedious when using XMLSpy, 
hence it was relaxed during the experiment for the XMLSpy users. 

 
Fig. 3. XML schema for the experiment. 

XMLSpy users were given a schema (Figure 3) to help them with the markup. The 
only NLP functionality that was part of the GoldenGATE configuration used in the 
experiment was an ingredient tagger and a function for normalizing paragraphs. Thus, 
if GoldenGATE is superior in this current setup already, we can expect it to be better 
in ‘real’ settings with more NLP functionality as well. Other GoldenGATE features 
that we expected to be particularly useful for the experimental task are the list of most 
recently used annotations and the function for global annotations. 
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4.6   Sample Size 

When planning the experiment, we performed a power analysis [17] to estimate the 
number of data points required to achieve statistically meaningful results. We first 
chose a significance level of 5 per cent and a desired power [17] of 80 per cent. Then 
we estimated the effect size for a t-test by considering the expected overlap of the 
completion time distributions for XMLSpy and GoldenGATE. Based on the data from 
the pilot study, we expected a large performance advantage of GoldenGATE; hence, 
we assumed a small overlap of the time distributions of just 10 per cent. This 
expected overlap maps to an effect size [17] of 1.3 for the t-test. Given a significance 
level of 5 per cent and an effect size of 1.3, a power of 80 per cent maps to a 
requirement of 8.3 data points in each experimental condition (i.e., for each editor) for 
a one-sided t-test [17]. Similarly, the desired power maps to a requirement of 9.6 data 
points for each editor for a one-sided Wilcoxon test. As a result, we needed to collect 
between 8 and 10 data points for each editor in the experiment. 

4.7   Document Quality 

When measuring task completion times as the dependent variable, it is important to 
make sure that the output of the experimental tasks has a uniform (and minimum) 
quality; otherwise, short completion times might simply correlate with low or even 
unacceptable output quality. We defined thresholds for the correctness of the final 
document: We required 100% correct structural mark-up (recipe, title, ingredientList, 
preparation, step) and 85% correctness of the semantic markup (ingredients, tools). 

We installed a test server in the local intranet which compares the quality of 
uploaded documents against “gold documents.” As testing had very low overhead, we 
encouraged the participants to upload their intermediate documents to the test server 
for acceptance testing at will during the experiment. Participants were finished with 
their task only after having passed the full acceptance test. This required meeting all 
thresholds and implied having worked on all parts of the task successfully. 

4.8   Results 

We have 9 valid data points for each editor. For all but one participant, the task 
completion time when using GoldenGATE was significantly smaller than the task 
completion time when using XMLSpy (Figure 4). The mean of the XMLSpy task 
completion times is 107 minutes; the mean for GoldenGATE is 77 minutes. The 
average relative speed-up was 25 per cent with GoldenGATE. 

The performance advantage of GoldenGATE over XMLSpy is statistically 
significant at the 2 per cent level, with a p-value < 0.013 for the paired t-test and a p-
value < 0.004 for the paired Wilcoxon test. Our experiment provides strong empirical 
evidence that the GoldenGATE editor supports document mark-up tasks better than a 
standard XML editor, such as XMLSpy. 
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On average, the time needed to complete the first task (102 minutes) was longer 
than for the second task (82 minutes). Obviously, there was a learning effect between 
the two tasks. This effect does not invalidate our findings, though, because the 
learning effect applied uniformly to both editors: For XMLSpy, the mean task 
completion time decreased from 117 (Group A) to 97 (Group B) minutes between the 
two tasks; for GoldenGATE, it decreased from 84 (Group B) to 72 (Group A) 
minutes. (These differences were visible, but not statistically significant, with p-
values larger than 0.11 and 0.19, respectively). Note that this analysis would not have 
been possible without a counterbalanced design. 
 

 

Fig. 4. Boxplot of the completion time distributions. 

When comparing XMLSpy with GoldenGATE for the first task only, the 
performance difference is significant at the 6 per cent level; similarly, when 
comparing the editors for the second task only, the difference is significant at the 2 
per cent level. Hence, the performance advantage of GoldenGATE over XMLSpy is 
independent of the order in which the editors were used. 

In one exceptional case, the participant was slightly faster using XMLSpy than 
using GoldenGATE. As a possible explanation, this participant stated in the pre-test 
questionnaire that he had used XMLSpy on and off prior to the tutorial. In addition, 
he used GoldenGATE in the first task; hence, the learning effect between the two 
tasks is likely to have aggravated the observed effect. 

From the means and variances of the completion time distributions, we compute 
[17] an observed effect size of 1.43. Given a significance level of 5 per cent, the 
experiment has a post-hoc power of 89 per cent for the t-test and of 77 per cent for the 
Wilcoxon test. Thus, even with fewer data points than originally planned our 
experiment had a satisfactory power. 

5   Conclusions 

Integrating assisted manual XML editing and automated markup via NLP applications 
is promising to efficiently create semantically rich digital libraries. We have 
implemented this integration in the GoldenGATE editor. In this paper, we have 
reported on a thorough empirical assessment of this approach. Our study provides 
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strong evidence that a user can perform markup tasks much faster when he can 
conveniently use NLP functions and does not have to pay attention to the XML 
syntax, as he would have to in a conventional XML editor. GoldenGATE shows a 
strong performance because of its easy-to-integrate task-specific NLP functions and 
its sophisticated assistance for manual XML editing. Users do not need to worry 
about the wellformedness of the markup because the editor enforces it with each 
editing step. 

In our controlled experiment, the performance advantage of GoldenGATE 
configured with moderate NLP-functionality was 25% over XMLSpy. When fully 
customized for a class of documents, NLP can automate the annotation task to a large 
degree. Thus, we expect a much larger performance advantage of GoldenGATE in 
domains where the documents have a richer semantic structure, for instance, in 
biosystematics legacy literature. 

The current version of GoldenGATE is available for download at 
http://idaho.ipd.uka.de/GoldenGATE/. 
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