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Rolling Element Bearing Fault Detection using 
Statistical Features and Ensemble Classifiers 

Chhaya Grover, Neelam Turk 

Abstract: Rolling element bearing health condition is 
monitored by analysing its vibration signature. Raw vibration 
signal picked up through suitably placed accelerometers is 
difficult to analyse hence many signal processing techniques 
have been proposed and developed by researchers to process the 
data for suitably extracting an effective signal feature set. 
Various machine learning techniques have been used for 
interpretation and accurate fault diagnosis using this extracted 
feature set. In this study “Empirical mode decomposition” is used 

for pre-processing the raw vibration data. Six “Statistical 

features” are extracted from the best Intrinsic mode function 
obtained through EMD and “Ensemble machine learning 

classifiers” are used for bearing fault diagnosis. A stacked 

ensemble of five classifiers is proposed for accurate fault 
diagnosis and results are compared with conventional ensemble 
classifiers to prove its effectiveness. 

Keywords: Empirical mode decomposition, Ensemble 
classifiers, Statistical features, Vibration signature analysis 

I. INTRODUCTION 

     In the ‘inner race’, ‘outer race’ or ‘rolling element’ of a 

rolling element bearing, occurrence of localized faults may 
take place due to the factors such as high temperature, high 
electrical discharge and corrosion. Whenever a damaged 
rolling element strikes the inner or outer race or the healthy 
rolling elements strike a fault on the inner or outer race, high 
frequency vibrations are generated. These characteristic 
vibration signatures can be analysed to get an insight into 
bearing health. Researchers have proposed many schemes 
for vibration signature analysis in the past. Adequate Fault 
sensitive features have been extracted from the vibration 
signals and analysis has been done using intelligent decision 
making techniques. A review of various vibration feature 
extraction techniques in time domain, frequency domain, 
and joint time frequency domain for fault diagnosis in 
rotating machines is presented by Yang et al.[1] and Gulez 
& Badi [2]. Statistical time domain features have been 
effectively used by Delgado et al [3], Nayana B.R. and 
Geethanjali P. [4] and Kankar, Sharma & Harsha [5] in their 
extracted feature set along with various other features. In 
addition to investigating various fault sensitive features for 
vibration signal analysis, researchers have been exploring 
various artificial intelligence methods for accurate fault 
diagnosis. A comprehensive review of “Artificial 

algorithms” used in rotating machinery fault diagnosis has 

been done by Liu et al. [6].  
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They have discussed advantages and limitations of KNN, 
Naïve Bayes, SVM, ANN and Deep learning algorithms. 
Zhang et al. [7] have presented a systematic review of 
“Machine learning and deep Learning algorithms” for 

bearing fault diagnostics. A review on “Meta Classification 

Algorithms” using WEKA has been presented by Bal and 

Sharma [8] in their research paper. 
Literature shows a growing research interest in combining 

a set of learning algorithms to generate ensembles for 
investigating complex problems. These ensemble algorithms 
tend to exploit the strengths of the base classifiers to 
enhance the overall accuracy. Kotsiantis et al. [9] in their 
paper, titled “Machine learning: A review of classification 
and combining techniques”, have described ensembles of 

classifiers for improving classifier accuracy. Dietterich T. 
[10] have reviewed Ensemble Methods in Machine Learning 
and explained why ensemble classifiers often perform better 
than any single individual classifier. 

Ensembles methods have been applied to a wide range of 
industrial problems in the area of condition monitoring. 
There is empirical evidence of the effectiveness of this 
approach in fault diagnosis of rotating machines. An 
ensemble of rule-based classifiers for fault diagnosis of 
rotating machinery was proposed by Dou et al. [11] to 
predict potential faults and subsequent breakdown of 
rotating machinery. A classifier ensemble was constructed 
and validated on the vibration data of two types of bearings: 
SKF6203 and NU205. Zio, Baraldi and Gola [12] proposed 
feature-based classifier ensembles for multiple fault 
diagnosis in rotating machinery. In this work, a multi-
objective genetic algorithm is used for feature selection and 
ensembles of classifiers is developed to achieve higher 
accuracies. They used voting technique to effectively 
combine the predictions of the base classifiers. Sikder et al. 
[13] pre-processed vibration data using FFT and then 
applied an ensemble learning method , Random Forest for 
bearing fault diagnosis. The validation for the proposed 
scheme was done on the Case Western Reserve University 
(CWRU) dataset. Sharma, Amarnath and Kankar[14] used 
15 time domain, frequency domain and wavelet-based 
features in feature vector and applied ensemble techniques 
namely rotation forest and random subspace for fault 
diagnosis. 
Gaowei Xu et al. [15] proposed a bearing fault diagnosis 
method based on deep convolutional neural network (CNN) 
and random forest (RF) ensemble learning. They generated 
two dimensional gray-scale images from one dimensional 
time domain vibration signals, extracted multi-level features 
using convolution neural network and used ensemble of 
multiple Random Forest classifiers for classification of 
faults.  
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Karimi and Jazayeri-Rad applied boosting methods to 
compare the fault diagnosis performances of single neural 
networks with two ensemble neural networks [16]. 

In this paper an Ensemble classification approach for 
rolling element bearing fault diagnosis is proposed using six 
simple and conventional statistical features. First, Empirical 
Mode Decomposition of the vibration signals is performed 
to obtain Intrinsic Mode Functions (IMFs). Second, six 
statistical parameters are extracted from representative 
IMFs. Third, proposed ensemble classifiers and 
conventional Ensemble classifiers are used to diagnose three 
types of conditions in rolling element bearings: normal 
(faultless), fault in inner race and fault in outer race and 
performance evaluation is done using 7 evaluation metrics.  

The rest of the paper is arranged as follows: Section II 
provides a theoretical framework of EMD, six statistical 
Parameters used in this study and Ensemble classifiers. 
Section III deals with the methodology, section IV reports 
the obtained results and section V deals with conclusion and 
scope for future work. 

II. THEORITICAL FRAMEWORK 

A. Overview of Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) was proposed by 
Huang et al. as a mathematical tool to analyse a non-
stationary and non-linear signal by decomposing it into 
different Intrinsic Mode Functions (IMF)[17]. 
Steps of EMD Algorithm are listed below: 
Step1: All of the local maxima and local minima points for 
the input vibration x(n) signal are calculated. 
Step2: Upper envelope is derived by connecting all local 
maxima points using cubic spline function. 
Step3: Lower envelope is derived by connecting all local 
minima points using cubic spline function. 
Step4: Mean value of upper and lower envelopes is 
calculated. 
Step5: Updated signal is derived by subtracting the mean 
calculated in above step i.e. x(n)new = x(n) - mean , 
and steps 1 to 5 are repeated on the updated signal until it 
fulfils the conditions to be considered as an IMF i.e. the 
maximum difference between the number of extrema and 
the number of zero crossings is 1 and the mean value of the 
both of the envelopes is zero. 
Step6: Residue (rm) is calculated by subtracting first IMF 
from x(n) i.e. rm = x(n)-IMF1 
Step7: Steps 1-6 are iterated on the residue to find all the 
IMFs of the vibration signal 

The algorithm will terminate when the residue becomes a 
monotonic function. Thus, after Empirical mode 
decomposition, the vibration signal x(n) can be represented 
as a sum of “m” IMFs (IMFi , where  i=1 to m) and residue 
(rm)  
   

𝑥(𝑛) = ∑𝑚
𝑖=1 𝐼𝑀𝐹𝑖 + 𝑟𝑚    (1) 

 

B. Overview of Statistical Features 

Statistical techniques have been used for alarm purposes 
in industrial plants in case of failures. K. Tom prepared a 
detailed “Primer on Vibrational Ball Bearing Feature 

Generation for Prognostics and Diagnostics 
Algorithms”.[18] The report gives an overview of various 
techniques for feature generation for prognosis and 
diagnosis of bearing faults.  

In this work following Histogram features (Histogram 
Upper Bound and Histogram Lower Bound) and Moments 
(1st, 2nd, 3rd and 4th) have been used as features for bearing 
fault diagnosis: 

 
Histogram: A Histogram or a Discrete Probability 

Density Function provides a visualization profile for 
vibration data and can be used as a tool to characterize it. 
Vibration data from healthy bearing has Normal Gaussian 
distribution whereas there is proportional increase in the 
number of high levels of acceleration in the vibration data 
collected from a damaged or faulty bearing, This results in 
non-Gaussian PDF[18]. 
Histogram upper bound (HL) is defined as 

𝐻𝑈 = (𝑥(𝑛))  +
∆

2
              (2) 

Histogram lower bound (HL) is defined as 

                                 𝐻𝐿 = (𝑥(𝑛))  −
∆

2
               

     (3) 

where ∆= (𝑥(𝑛))  − 𝑀𝑖𝑛 (
𝑥(𝑛)

𝑁−1
) 

 
Moments: Four central statistical moments (i.e. moments 
calculated about the mean) have been used in the feature 
vector[18]. 
 
1st Statistical Moment (Mean): The first statistical moment 
is the average or mean value of a signal. This is the DC 
value of the signal. Mean of sampled vibration signal   
𝑥(𝑛) = [𝑥(1), 𝑥(2), 𝑥(3) … … … 𝑥(𝑁)]  having N Samples 
is given as: 

                                  µ =
1

𝑁
∑𝑁

𝑛=1 𝑥(𝑛)     (4) 

 
2nd Statistical Moment (Variance): Second statistical 
moment is the variance of the vibration signal i.e. 
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 where 𝜎 is the standard deviation of the 
discrete vibration signal   𝑥(𝑛) given as: 

                                𝜎 = √
1

𝑁−1
∑𝑁

𝑛=1 [𝑥(𝑛) − 𝜇]2  (5) 

 
3rd Statistical Moment (Skewness): Third statistical 
moment is called skewness. It captures asymmetry in data 
distribution. It can be positive or negative i.e. data can be 
skewed left or right. Skewness of vibration data can change 
significantly in the presence of a fault in the bearing. 

                              𝑆𝐾 =
∑𝑁

𝑛=1 [𝑥(𝑛)−𝜇]3

(𝑁−1)𝜎3   (6) 

4th Statistical Moment (Kurtosis): Fourth statistical 
moment is called Kurtosis. It is a measure of the steepness 
of the data distribution, a negative kurtosis value indicates a 
flat distribution relative to a normal distribution. Changes in 
kurtosis due to faulty bearings can be used to identify types 
of faults. 

                               𝐾𝑈 =
∑𝑁

𝑛=1 [𝑥(𝑛)−𝜇]4

(𝑁−1)𝜎4      (7) 
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C. Overview of Ensemble Classifiers 

As enormous amounts of vibration data are collected for 
bearing health monitoring, it becomes important to integrate 
different concepts for intelligent decision making for 
accurate fault diagnosis. There have been numerous studies 
in the past decade for combining machine learning 
classifiers into an ensemble. There are many ways by which 
base classifiers can be combined together to generate 
Ensemble Classifiers, which are proven to outperform any 
single classifier within the ensemble. Ensemble methods 
combine the predictions from multiple models and have 
emerged as a powerful machine learning technique for 
improving the accuracy and robustness of classification. 

A detailed description of ensemble classifiers is given in 
the book titled “Combining Pattern Classifiers: Methods and 

Algorithms” by L.Kuncheva  [19] 
In this work, five ensemble machine learning algorithms 

are applied on the MFPT dataset which is described in detail 
in the next section. The five algorithms are: 
1. Bagging: Bagging (Bootstrap Aggregation) is based on 

estimation of a statistical parameter like mean from 
numerous random samples of data. According to L. 
Breiman [20], from training data set, numerous random 
samples are drawn (and later replaced) to train multiple 
machine learning models. Prediction is made by each 
model and the results are averaged to reduce the 
variance of predictions.  

2. Random Forest: It is an extension of bagging 
ensemble classifier given by L. Breiman [21]. Bagged 
decision trees have a shortcoming that greedy algorithm 
is used to select the best split point for building trees. 
Because of this, generated trees look quite similar and 
the variance of the predictions from different bags gets 
reduced, which ultimately effects the robustness of the 
predictions. Random Forest decreases the similarity 
between the bagged trees by disrupting the greedy 
algorithm during tree generation. This leads to the use 
of random subset of the input attributes to generate split 
points.  

3. Boosting: Boosting ensemble method uses machine 
learning models in succession to boost the prediction 
outcomes by removing the errors in predicted outcomes 
by previous models.  
a. AdaBoost: Y. Freund and Robert E. Schapire [22] 

discusses the use of decision tree models having a 
single decision point. The construction of first 
model is done by weighing each instance in the 
training dataset and continuously updating the 
weights based on the overall accuracy of the model. 
Next models are trained and added in succession. 
The process continues until no further 
improvements are possible.  

b. LogiBoost: It performs classification using additive 
logistic regression scheme and can handle multi-
class problems. 

c. MultiBoost: It is a combination of AdaBoost and 
an improved version of bagging called wagging. 
MultiBoost uses base learning algorithm C4.5 to 
generate decision tree. It combines the high bias 
and variance reduction properties of AdaBoost with 
excellent variance reduction property of wagging.  

4. Voting: Voting works by taking two or more sub-
models for making predictions. Finally, the predictions 
are combined based on some criteria e.g. by taking the 
average of the predictions. J. Kittler [23] and L. 
Kuncheva [19] have discussed Voting algorithm in 
detail. 

5. Stacking: An extension to voting ensembles is 
stacking. In this ensemble method, multiple sub-models 
are selected and instead of taking the average of 
predictions, another supervisor model is trained to 
combine the predictions from the sub-models to give 
best outcome. 

III. PROPOSED METHODOLOGY 

For validation of the proposed scheme and comparative 
evaluation of various ensemble classifiers, the dataset 
provided by the Machinery Failure Prevention Technology 
(MFPT) Society [24] has been used in this study. The MFPT 
data was acquired from a NICE bearing [25] having roller 
diameter of 5.97 mm, pitch diameter of 31.62 mm, contact 
angle of 00 and an input shaft rate of 25 Hz. A single radial 
accelerometer has been used to obtain the data. The acquired 
data is stored in a MATLAB® double-precision, binary 
format .mat file. In addition to acceleration data, the data 
files also include sampling rate, shaft rate and load. The 
dataset consists of data files collected from a bearing test rig 
and also from real machines. Data collected from test rig 
includes 3 files of healthy bearing under fixed load, 3 files 
with vibration signals from bearing having outer race faults 
under fixed load, 7 files with vibration signals from bearing 
having outer race faults under seven types of loads and 7 
files with vibration signals from bearing having inner race 
faults under seven types of loads. Data related to following 
three conditions has been used for this study: 
1. Baseline (No Fault): 3 baseline or healthy conditions 

with a sample rate of 97,656 Hz and 270 lbs of load 
recorded for 6 sec. 

2. Fault in Outer Race: 7 outer race fault conditions with a 
sample rate of 48,828 Hz and various loads of 25, 50, 
100, 150, 200, 250, 300 lbs recorded for 3 sec. 

3. Fault in Inner Race: 7 inner race fault conditions with 
sample rate of 48,828 Hz. and various loads of 0, 50, 
100, 150, 200, 250, 300 lbs recorded for 3 sec. 

In order to match the sample rate of other fault sets, we 
down sampled the baseline data set to 48,828 Hz. The 
original vibration signals were split into pieces each having 
2048 points. 
 

Table-I: Classes for the MFPT dataset. 
Class Bearing Condition No. of samples 
Normal No fault 430 
IR Inner Race 498 
OR Outer Race 498 

 
A novel approach for rolling element bearing fault 

diagnosis is presented in this study utilizing- Empirical 
Mode decomposition, Statistical features and Stacked 
ensemble classifier.  
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The methodology of this approach can be explained in 
following steps: 
1. Collecting the raw bearing vibration signals from 

MFPT repository. 
2. Performing EMD on the vibration signals to generate 

Intrinsic mode functions. 
3. Finding best IMF for each of the vibration signal based 

on correlation coefficient. 
4. Calculating six statistical parameters (HL, HU, µ, VAR, 

SK, KU) from best IMFs of vibration signal to generate 
feature vectors. 

5. Divide the dataset into training and test data in 
80%:20% ratio. Input feature vector from training data 
set to the ensemble classifier and train the model. 

6. Input test dataset features to obtain rolling element fault 
classification results as normal (faultless), outer race 
fault and inner race fault. 

The process steps of the proposed fault diagnosis scheme 
are shown in the form of a flow chart in Fig. 1. 

Empirical Mode Decomposition, best IMF selection and 
Statistical parameter extraction are performed using 
MATLAB R2018a. The Ensemble classifiers used are: 
Bagging, Random Forest AdaBoost, Logiboost, Stacking 
and Voting. For experimentation, these classifiers have been 
trained and tested in Weka, a software containing java 
packages for machine learning algorithms. The MATLAB 
scripts and Weka models have been run on a system with 
Intel Core i5-7200U CPU @ 2.50 GHz and 8 GB RAM. 

A. Data Pre-processing 

    Data samples of size 2048 points are extracted from the 
vibration signals obtained from MFPT data set, giving a 
total of 1423 samples consisting of 429 normal (healthy) and 
994 (faulty). Out of 994 samples obtained through faulty 
bearing, 497 samples are with fault in inner race of bearing 
and 497 samples are with fault in outer race of bearing. The 
1423 vibration signals are first individually decomposed into 
a set of IMFs (Intrinsic mode functions) by applying EMD 
algorithm. The best IMF i.e. the IMF having the highest 
correlation with the parent signal is referred as the 
representative signal. Only representative signals are 
considered for the remaining steps.  
To increase the number of instances in our dataset in a well-
balanced manner, Synthetic Minority Oversampling 
Technique (SMOTE) developed by N. Chawla, Bowyer 
K.W. et al.[26] is used. This statistical technique increased 
the number of instances in our dataset in a balanced way by 
generating new instances from originally existing minority 
cases in the training dataset. The amount of SMOTE 
percentage taken is 25% and number of nearest neighbours 
is taken as 5. The algorithm took samples and its 5 nearest 
neighbours for each fault class, and combined features of the 
target case with features of its neighbours to generate new 
cases. After applying SMOTE a total of 1205 instances (407 
IR, 392 OR and 406 Normal) are obtained from the original 
1138 instances of training dataset.   

 
 

 
Fig. 1. Proposed Fault Diagnosis Scheme 

B. Feature Extraction 

         The six parameters are extracted from the 
representative signals using equations (2), (3), (4), (5), (6) 
and (7). These parameters are then used to create the feature 
vector. The obtained data matrix has 1424 rows and 7 
columns. This data is then normalized by rescaling each 
attribute to a range of 0 to 1 using the equation (8) for every 
numeric attribute ‘x’.   

 

                         𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
    (8) 

    The data is split into two parts in 80:20 ratio; training 
data- 80% and test data-20%. 

C. Fault Classification and Performance Evaluation 

     The training data is fed to Weka’s package for Meta 

classifiers. In bagging, REPTree - a standard decision tree, 
is configured as the model being bagged. REPTree builds a 
decision tree using either information gain or variance and 
prunes it by reduced-error pruning. The size of each bag is 
taken the same as that of the training dataset, to generate a 
new sample of different composition. A total of 100 
iterations are performed on the dataset. Keeping all these 
parameters same for Random Forest classifier, the model is 
trained on the training data set. In all of three boosting 
models (AdaBoost, Logiboost and Multiboost) weak learner 
is chosen as REPTree algorithm and 10 numbers of 
iterations are performed. 
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     In Voting ensemble, four classification sub-models that 
can make uncorrelated predictions are selected. The selected 
sub-models are KNN, PART, Logistic Regression and 
Random Forest. For combining the predictions of the sub 
models the parameter chosen is average of probabilities. In 
the proposed stacked ensemble classifier, four sub models 
are chosen; one lazy classifier-KNN, one rule based 
classifier-PART, one function classifier -Logistic 
Regression and Random Forest which is a tree based 
classifier. The supervisor model taken is Multilayer 
Perceptron which is trained to combine the predictions from 
the sub model in the best possible way. It uses 
backpropagation to classify instances.  
     The classification accuracy on Training dataset is 
estimated by stratified 10-fold cross validation. In every 
trial, a classifier is trained on any 9 folds and validated on 
the remaining fold. For each classifier, Training and Testing 
accuracy & time required to build classifier model are 
recorded in Table-II. Five additional evaluation metrics 
(MAE, MCC, F1-Score, Entropy, AUROC) are calculated 
on Test dataset and are recorded in Table-III. The 
mathematical expressions of these metrics are listed as 
below: 
 
Accuracy: It is defined as the ratio of correctly classified 
instances (i.e. sum of True positive and True negative 
instances) to the total number of instances. 
 

                       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (9) 

 
where, TP-True positive, FP-False positive, FN-False 
negative and TN-True negative  
 
Mean Absolute Error (MAE): Sum of absolute errors for 
all instances divided by the number of instances is called 
mean absolute error. 
 

                       𝑀𝐴𝐸 =
1

𝑁
∑𝑖 |𝑥̂𝑖 − 𝑥𝑖| (10)  

where 𝑥̂𝑖 : predicted label, 𝑥𝑖: true label, N: number of 
instances. 

 
Matthews Correlation Coefficient (MCC): It is a 
correlation coefficient that indicates the correlation between 
predicted class and actual class. It can be calculated 
mathematically using TP, FP, TN and FN values as: 
 

                𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑃+𝐹𝑁)
 (11) 

 
F1 Score: It is calculated by taking the harmonic mean of 
the precision and recall. Given a threshold value the F1 
score provides a measure for goodness of classifier. 
 

                     𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (12) 

 
Mean Scheme Entropy: This is the entropy per instance for 
the classification scheme. The cross-entropy for the 
classification model across the entire training dataset is 
required to be minimized. So this is calculated by 
calculating the average cross-entropy across all training 

examples. Cross-entropy for classification of multi class 
problem can be calculated as: 
                              − ∑𝐶

𝑙=1 𝑦𝑜,𝑙𝑙𝑜𝑔(𝑝𝑜,𝑙)  (13) 
Where C: number of classes, l: class label, o: observation 
and p: predicted probability for observation o of class l and 
y: binary indicator 
 
Area under the ROC curve (AUROC): This metric 
calculates the area under the ROC curve, which is a graph 
plotted between sensitivity and (1-specificity) of a classifier.  

 
Time taken to build Model: This is the time elapsed to 
train the classifier model. 
     A bar plot showing the accuracy values for the training 
and test data is shown in Fig. 3. Bar charts for all other 
metrics are shown in Fig. 4. 

IV. RESULT AND DISCUSSION 

The statistical significance of ensemble classifiers is 
validated by training and test data. Seven metrics are used to 
compare the efficacy of the models. These metric values are 
recorded in Table-II and Table-III. 
From Table-II and Fig.2., it is observed that the performance 
of proposed stacked ensemble classifier is the best with 
respect to accuracy although the time taken for building this 
ensemble classifier model is highest. The 10-fold cross 
validation accuracy obtained with training dataset is 95.1867 
% while accuracy obtained with test dataset is 92.6316 %. 
Although with reference to MAE, Multiboost gives better 
performance but its accuracy is very low as compared to 
proposed classifier. 

It is also inferred that proposed ensemble classifier 
performs decently well in this metric too. It outperforms 
other ensembles in MCC with the highest value of 0.927. As 
MCC value of 1 indicates a perfect classifier, it can be said 
that proposed classifier is performing very well. 
    Moreover, as F1-score value of 1 indicates perfect 
precision and recall and our proposed model gives an F1-
score of 0.923, it is verified that our model is a good model 
that correctly distinguishes between three bearing fault 
classes. 

Another metric that has been used for evaluation of the 
performance of proposed classifier is the area under the 
Receiver Operating Characteristics(ROC) curve, or 
AUROC. AUROC is a good indicator of model’s 

performance and captures both sensitivity and specificity. In 
addition to that AUROC score considers the rank of each 
prediction instead of its absolute value, hence it is 
independent of the threshold set for classification. This 
metric value for the proposed classifier is 0.978, highest 
amongst all classifiers. The proposed classifier also shows 
remarkable improvement in mean entropy. 

The pictorial representation of performance evaluation of 
all classifiers is shown in the form of bar charts in Fig. 3 and 
4. The good performance of proposed stack ensemble on the 
test set can also be seen from the confusion matrix plotted in 
Fig.5. and metric values by individual class reported in    
Table -IV. 
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Table-II: Accuracy and Time taken for model building for the different classifiers. 

Classifier Accuracy Time taken 
for model building Training Testing 

Random Forest 94.9378 % 91.5789 % 0.15 seconds 

Bagging 94.9378 % 91.9298 % 0.13 seconds 

AdaBoost 93.7759 % 90.8772 % 0.06 seconds 

Logiboost 94.1909 % 90.5263 % 0.57 seconds 

Multiboost 94.2739 % 91.5789 %      0.05 seconds 

Voting 94.8548 % 92.2807 % 0.26 seconds 

Proposed Stacked Ensemble 95.1867 % 92.6316 % 4.20 seconds 

 

 
 

Fig.2. Comparison of Training and Testing Accuracies of classifiers 

 
Fig.3. Comparison of Five Metric Values of classifiers 

 
Table –III: Metric values obtained for the different classifiers on Test dataset. 

 
Classifier MAE MCC F1 Score Mean Entropy AUROC 
Random Forest 0.0704 0.874 0.916 1.53 0.974 
Bagging 0.0738 0.879 0.920 0.23 0.968 

AdaBoost 0.0645 0.862 0.909 0.42 0.955 
Logiboost 0.0817 0.858 0.906 0.27 0.965 
Multiboost 0.0557 0.874 0.916 0.84 0.963 

Voting  0.0737 0.884 0.916 0.22 0.978 
Proposed Stacked 
Ensemble 

0.0656 0.927 0.923 0.25 0.978 
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(f) 

 
Fig.4. Bar Charts for (a) MAE (b) Accuracy (c) AUROC (d) MCC (e) Mean entropy and (f) F1-Score for different 

classifiers 
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Table-IV: Metric values by class for proposed ensemble 
classifier 

Class 
/ 
Metri
cs 

F1-
Sco
re 

MC
C 

AUR
OC 

Precisi
on 

Rec
all 

True 
Positi
ve 
Rate 

False 
Positi
ve 
Rate 

Nor
mal 

0.97
1 0.96 0.995 1 

0.94
4 0.944 0 

Inner 
Race 

0.91
3 

0.87
2 0.965 0.894 

0.93
3 0.933 0.051 

Oute
r 
Race 0.9 

0.84
2 0.962 0.896 

0.90
5 0.905 0.061 

 

 

Fig. 5. Confusion Matrix for the proposed Stacked 
Ensemble Classifier 

V. CONCLUSION AND FUTURE SCOPE  

   Statistical parameters extracted from time domain 
vibration signals can serve as adequate fault sensitive 
features for vibration signature analysis. These features can 
be used with machine learning classifiers for efficient 
diagnosis of bearing faults. The aim of this paper is to 
explore the application of stacked ensemble classifiers in 
vibration signature analysis of rolling element bearings. A 
stacked ensemble of five classifiers is proposed for accurate 
fault diagnosis and results are compared with conventional 
ensemble classifiers to prove its effectiveness and 
robustness.  

In this study two histogram parameters and four statistical 
moments are used in the feature vector. The features 
extracted from training dataset are used to train a stacked 
ensemble of K-nearest neighbour, Logistic regression, 
PART and Random Forest classifiers along with Multilayer 
Perceptron as learning classifier. The performance of 
proposed ensemble classifier using stacking is compared 
with regular ensemble classifiers on the basis of seven 
evaluation metrics. It is observed that proposed ensemble 
classifier outweighs the other classifiers, producing an MCC 
value of 0.927 and an F1-score of 0.923 which are much 
better than those of other classifiers. 

This work can be extended in future in two areas. First, 
new fault sensitive features can be added to these six 
features and their comparative effectiveness can be studied 
to obtain a more optimal subset of features by 
dimensionality reduction. Second, other state-of-the-art 
stacked ensemble classifiers can be developed to increase 

the classification accuracy for bearing faults. The 
optimization of results in these two areas  
will help in developing a more reliable and accurate bearing 
fault diagnosis scheme. 
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