
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

2370

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8017049420/2020©BEIESP
DOI: 10.35940/ijeat.D8017.049420
Journal Website: www.ijeat.org

Abstract: The big data is one of the fastest growing

technologies, which can to handle huge amounts of data from
various sources, such as social media, web logs, banking and
business sectors etc. In order to pace with the changes in the data
patterns and to accommodate the requirements of big data
analytics, the platform for storage and processing such as
Hadoop, also requires great advancements. Hadoop, an open
source project executes the big data processing job in map and
reduce phases and follows master-slave architecture. A Hadoop
MapReduce job can be delayed if one of its many tasks is being
assigned to an unreliable or congested machine. To solve this
straggler problem, a novel algorithm design of speculative
execution schemes for parallel processing clusters, from an
optimization perspective, under different loading conditions is
proposed. For the lightly loaded case, a task cloning scheme,
namely, the combined file task cloning algorithm, which is based
on maximizing the overall system utility, a straggler detection
algorithm is proposed based on a workload threshold. The
detection and cloning of tasks assigned with the stragglers only
will not be enough to enhance the performance unless cloning of
tasks is allocated in a resource aware method. So, a method is
proposed which identifies and optimizes the resource allocation by
considering all possible aspects of cluster performance balancing.
One main issue arises due to the pre configuration of distinct map
and reduce slots based on the number of files in the input folder.
This can cause severe under-utilization of slot as map slots might
not be fully utilized with respect to the input splits. To solve this
issue, an alternative technique of Hadoop Slot Allocation is
introduced in this paper by keeping the efficient management of
slots model. The combine file task cloning algorithm combines the
files which are less than the size of a single data block and
executes them in the highly performing data node. On
implementing these efficient cloning and combining techniques
on a heavily loaded cluster after detecting the straggler, machine
is found to reduce the elapsed time of execution to an average of
40%. The detection algorithm improves the overall performance
of the heavily loaded cluster by 20% of the total elapsed time in
comparison with the native Hadoop algorithm.

Revised Manuscript Received on April 25, 2020.
* Correspondence Author

Dr.Juby Mathew*, Department of Computer Applications, Amal Jyothi
College of Engineering, Kanjirapally, Kottayam, Kerala, India

Dr.Terry Jacob Mathew, Department of Computer Applications,
MACFAST Thiruvalla, Kottayam, Kerala, India

Lt.Dr.Thomas Scaria, Department of Computer Science, St.Pius X
College, Kerala, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Big data, Clustering, Hadoop, Node detection

I. INTRODUCTION

Today, the world is guided by data. People as well as
machines are generating huge amounts of data every moment
by sending messages, uploading videos and photos,
generating sensor data from different type of sensing
mechanisms etc. The handling of the phenomenal data
explosion posed a challenge to technolgical firms such as
Google, Yahoo, Amazon, and Microsoft. The companies had
to sift and sieve through massive amounts of data to find the
customer orientations and preferences related to books,
adverts and trending websites. Traditional tools for data
handling also failed in this regard. Hence, Google introduced
the revolutionary MapReduce system that can handle big data
processing. Subsequently, Doug Cutting initiated an open
source version of this MapReduce system namely Hadoop.
Apart from the traditional distributed systems, Hadoop differs
in the core execution strategy of Data Locality. This indicates
that the mode of existence and execution of Hadoop differs
from the existing data warehouses and relational databases
used for data analytics in the past.

A. MapReduce and speculative execution

In short Hadoop allows the distributed execution of various
analytics works in large amount data in a simple and yet
powerful manner. The storage and processing is handled by 2
different engines known as HDFS and MapReduce. Hadoop
have the data locality feature where the data will reside in the
storage platform itself and the program will go down to the
data location and executes within. Thus the importance of
Hadoop like platform in the rapid growing world is priceless.
As the name suggests, MapReduce is implemented as an
independent map and reduce phase. MapReduce envisages a
model for executing big volumes of data simultaneously by
dividing the tasks into standalone groups. The normal
speculative execution strategy doesn't have the concept of
resource aware scheduling and dynamic and fast detection of
stragglers. Thus, in order to mitigate the lagging of job due to
straggler node problem and also incorporate the concepts and
requirements of the distributed system an effective parallel
processing architecture should be developed as part of open
source project Hadoop. So, the development of a
configuration patch that could rectify these limitations of
default speculative execution is
relevant.

Improved Hadoop Cluster Performance by
Dynamic Load and Resource Aware

Speculative Execution and Straggler Node
Detection

Juby Mathew, Terry Jacob Mathew, Thomas Scaria

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D8017.049420&domain=www.ijeat.org

Improved Hadoop Cluster Performance By Dynamic Load And Resource Aware Speculative
Execution And Straggler Node Detection

2371

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8017049420/2020©BEIESP
DOI: 10.35940/ijeat.D8017.049420
Journal Website: www.ijeat.org

B. Objective

The objective of this research work is to develop a novel
algorithm which is expected to provide enhancements in
performance of heavy loaded cluster.
The optimized speculative execution strategy can make great
changes in the performance rates of multinode cluster. The
detection and mitigation of stragglers in the system has to
effectively equipped for obtaining higher throughput.

C. Problem definition

This work focuses on the development of a configuration
patch that can provide more performance and throughput for
the job running on the Hadoop multinode cluster irrespective
of the load of input data and file formats in a resource aware
manner. The load balancing is done dynamically by
identifying whether the system is lightly or heavily loaded and
execute the combine file task cloning algorithm for the lightly
loaded condition and for heavily loaded condition detection
of straggler node algorithm is performed. These two
algorithms are evaluated in the heterogeneous and
homogeneous multinode cluster and combine file task cloning
is evaluated in the single node cluster for performance
evaluation.

D. Scope of the Work

The main challenges in the system development is the
possible overhead that can cause due to the number of
execution stages. The system has also threats on dependencies
of the Hadoop framework as it is tightly coupled system.
These dependencies and overheads are to be handled
efficiently to achieve a better performance increase on
comparing with existing systems. The successful
implementation of this system in the heterogeneous cluster
which handles instantaneously varying load in the fields like
business environments like banking and other machine to
human interaction platforms can perform better. High
efficiency in the CPU time and execution time can be
achieved.

E. Expected Outcome

The core expectation of this work is thorough study of the
fundamental concepts and apply them to develop the
proposed system. An analysis of the proposed system will be
done and duly tabulated, thus allowing us to compare the
proposed system with existing techniques. The novel
algorithm for the speculative execution is developed and
which is expected to show improvements in the performance
than the older existing versions.

II. LITERATURE SURVEY

In [1], the main focus is on speculative execution, which
handles the straggling problem. Unlike the existing
heuristics-related work, this paper presents a hypothetical
structure for optimization of solo job queues. The simulation
results show the ESE algorithm can reduce the job flow time
by 50% while consume fewer resources comparing to the
strategy without backup. The results on ESE algorithm are
compared with the traditional method without backup and
they show that the resources and time for job execution can be
reduced by 50%.

[2] This paper proposes a new dynamic method of
implementation known as Maximum Cost Performance
(MCP). In this novel strategy the total computing expense are
divided between tasks, resulting in reduced task completion
time and elevated cluster throughput. This synergism in MCP
leads to better performance. This method focuses on
selectively adding straggler tasks with precision and performs
proper follow up on the worker nodes. The tasks are assigned
in first come first serve preference.
[3] Combination Re-Execution Scheduling Technology
(CREST) is the name of a new strategy to conclude on the best
re calculation methodology in a typical MapReduce job. The
motive is to reduce the response time which is usually derived
as the sum of the longest duration of execution for all map and
reduce tasks in a generic MapReduce job.
[4] This paper is a result of a diversified dynamic
supposition-oriented job scheduler namely, Hopper. The job
is generally triggered with the launch of speculative spawns of
jobs in a generic way being a common approach for reducing
the impact of stragglers. Due to this the job schedulers are
often twixed between choosing dynamic jobs versus original
job tasks.
[5] Mantri is the name of a new model for mitigating the
outliers in a typical MapReduce networks. This work
introduces the first approach to study a large production
Map-Reduce in a cluster form. The core of Mantri's benefit is
the amalgamation of stable definite knowledge of job
structure with the dynamically available job progress cards.
This mechanism is sure to pick the outliers at an early stage
and exerts cause-specific alleviation of jobs based on the cost
benefit analysis.
A new method of scheduling dynamically generated job
clusters for better job approximation is tested in [6]. The
authors have put forward a simple and analytical
implementation, specifically derived from the dynamic
algorithm known as GRASS. GRASS explores the total
opportunity cost in deciding the time of speculation of a job.
The decision revolves around the early time to determine the
execution of the job and moves to more aggressive dynamic
methods of speculation as the job enters the final phase of its
approximation bound. The proposal was tested in Hadoop and
Spark implementations, deployed on a large cluster node and
resulted in approximately 47% improvement in finishing the
job deadlines. The total time to complete the error some jobs
showed around 38% improvements in data provided from
Facebook and Bing.

Literature Summary

From the study of literature review the existing systems failed
to enhance the performance of tasks in a speculative strategy
by a greater performance which can be achieved by
calculating the job service matrices and additional parameters
like job flow time and computational cost. The dynamic
resource allocation capabilities of MapReduce structure are
also not established to the level where task cloning and its
effective allocation is maintained simultaneously. In contrast,
the obtained results do not support the general rules, when the

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

2372

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8017049420/2020©BEIESP
DOI: 10.35940/ijeat.D8017.049420
Journal Website: www.ijeat.org

job servicing time is in accordance with the heavy-tailed
distributions such as the Pareto Distribution. Thus, they are
out of scope of this work. Thus, the foundation for the
proposed system lies in these aspects of considering these
crucial parameters. The optimization of speculative
execution procedures combined with dynamic slot allocation
refines the speculative strategy of Hadoop in all aspects. So it
is evident that the proposal for such a system is relevant in the
big data era.

III. SYSTEM MODEL

In our implementation, we take a colossal data processing job
cluster with M servers (machines). The set of jobs J ={J1,
J2,… JN } approach the job cluster at a rate of n jobs per unit

time and the time at which job Ji arrives is denoted by ai. As
the job arrives, the job Ji is added to a public queue managed
by the speculative scheduler, ready to carry out the job
execution. The set of Jobs, Ji is a deterministic number
composition of mi tasks. We assume that δji depicts the jth

task of job Ji. We also assume that each server can only
execute only one job task at any given time. A random
variable, Xji, denotes the service time (i.e., duration) of task
δji without any dynamic projection of job completion time.
For all jɛ{1,2,…mi},Xj

i follows the same distribution, which
is characterized by the cumulative distribution function
(CDF),Fi (x), i.e., Pr(Xj

i < x) = Fi(x).

A. Job service process under speculative execution

For the sake of assumption, we take the time is divided and
job task preemption is not asserted in order to reduce the
system overhead. The job of the scheduler is to make optimal
speculative decisions, so that the unused time is
approximately nil on job task execution machines. The
number of copies on idle machines is also decided by the
scheduler in a similar manner at the start of the time slot. Let
cj

i denote the total number of copies made for task δ
j
i where

the kth copy is launched at time wi
j,k . Thus, we have the

following constraint for wi
j,k

All the scheduling variables are summarized in Table 1.
Table 1: The notations for the job service parameters

Notation Corresponding meaning

λ Job arrival rate

ai Arrival time of job Ji

mi Number of tasks consisted in job Ji

Ci Time when job Ji completes its work

Xi
j Service time of task δ

j
i without speculative

execution.
wi

j,k Time when the kth copy of task δ
j
i is

scheduled.
Fi(x) The CDF function of Xi

j

B. Problem formulation

In this area of problem formulation, the stress is put on
basically two performance measures --the job flow time, i,
and the computation cost, both of which are computed by the
total time spent on the job servers.
As a general situation, the two performance metrics are often
rigid to be rearranged at the same time (except for the
detection approach). Hence to solve this crisis, a utility
function is defined for each job task as a trade-off between

these two metrics. This function does the job of maximizing
the total utility scale of all jobs in the data cluster by means of
finding z. The resulting optimization problem can be
represented as:

C. Deriving the cut-off threshold for different
Operating regimes

In determining the threshold, a generic approach is to find the
approximation solutions, which is from finding the dynamic
speculative execution methodology along with the scheduler.
This is also in view of the strongly NP-hard nature of the
problem. The possible two classes of dynamic strategies for
execution are applied here namely, the Cloning and Detection
approach. The Cloning strategy stimulates all job tasks in
parallel without which the priority among job tasks are lost
leading to futile usage of resources. This is the only applicable
scheme for a lightly loaded cluster. In contrast, the
Straggler-detection methodology produces new spawns of
jobs in an intelligent manner so as to handle any load
balancing situations.
For further exploring the the details of the proposed
methodology, it is necessary to define the cutoff workload
threshold, λU , whose job is to segregate the remaining

analytical stage into an easy handled job; in comparison with
the heavily loaded server data clusters.
1. A First upper bound for λ

U
To keep the system not overloaded, the job arrival rate must
be bounded by the job processing rate, which then yields the
first upper bound, λ1, for λ

U, i.e.,

2.A second upper bound for λ

U
The efficiency of cloning is not guaranteed by the single
upper bound. An efficient cloning strategy should have a
smaller task delay than a strategy which does not make
speculative execution. The second upper bound and it can be
shown as:

D. Optimal cloning in lightly loaded Regime

In a lightly loaded cluster, i.e., λ < λ
U, we maximize the

overall system utility in P1 by coordinating job scheduling
with task cloning. The lightly loaded conditions always suites
with a smart cloning of outlier tasks rather than detection
based approach.
So we introduced a combine file task cloning algorithm for
the cloning the tasks in straggler machine and reallocates to
other machines.
1. The design of the Smart Cloning Algorithm (SCA) in a
lightly-loaded cluster

Improved Hadoop Cluster Performance By Dynamic Load And Resource Aware Speculative
Execution And Straggler Node Detection

2373

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8017049420/2020©BEIESP
DOI: 10.35940/ijeat.D8017.049420
Journal Website: www.ijeat.org

After successfully executing the cloning algorithm, the next
focus is on the tracking of the job progress as well as job
completion cost. This is done with the help of an algorithm,
which calculates the solid integer part of the task progress
rate, such that the task job counts are also equally integer
parts. But, we detect a case in analysis, where the provision of
job cloning is limited by space for some specific time slots.
i.e, . This rare situation demands a careful
study in a lightly loaded data cluster. At this point it is not
wise to solve P2. Instead, the new proposal suggests a design
alternative dynamic scheduling scheme to allocate job
clusters, based on a smallest remaining workload scheme,
which is extended from SRPT scheduler.
2. Design of a straggler-detection-based Algorithm for the
heavily loaded regime
For a heavily loaded cluster, i.e. ,λ ≥ λ

U, the cloning-strategy
is not viable as there is no scope to make a copy for all tasks.
To avoid this drawback, we devise a detection methodology
for obtaining approximate results. The primary dynamic
execution strategy is laden with numerous flaws in principle.
The first drawback is that, it creates extra copies for the tasks
that are in conservative mode, characterized by lower
amounts of resource consumption. The second drawback is
the lower precision in the estimation, which falls heavily on
the job completion duration and scale.

IV. IMPLEMENTATION

A. Implementation Tools
The usage of software and hardware tools are most important
elements of setting up of a heterogeneous multimode cluster.
The system is aimed to implement with the Ubuntu OS
support. The software and hardware requirements can be
pointed out as:
B. Software Requirements
1. Hadoop framework - Hadoop 2.7.2:

Apache Hadoop is a popular open-source framework used
Figure 1: Hadoop Architecture

extensively for distributive storage and processing of massive
data. It is a mix of server clusters where the motivation behind
its construction lies in the fact that the hardware failures are
quite common and should be handled dynamically by the

server mass in the framework. The Fig 1 depicts a typical
Hadoop framework..
The multinode cluster is formed in a master-slave architecture
where each machine in the cluster is installed with Hadoop
properly and set one among them as Master, thus Name node
and provides a Resource manager. The slave nodes act as data
nodes and they start a Node manager.
2. Java - 1.8.0.91:

JDK is downloaded from the official site and the java coding
is done and compiled in Eclipse 4.4. Java is the core language
of Hadoop framework. java is used for the whole
implementation of the algorithms in this work.
3. Eclipse:
The popular platform - Eclipse provides IDEs and platforms
for any amicable framework, irrespective of the language and
scheme. The Java IDE, C/C++, JavaScript and PHP IDE's are
built on these platforms for creating typical desktop, Web and
cloud IDEs.
4. Cloudera:
Cloudera's is another popular open-source Apache Hadoop
distribution. Also known as Cloudera Distribution Including
Apache Hadoop (CDH), this framework is meant for
corporate deployments of applications in a massive scale.
According to Cloudera, the major share of its engineering
output is designated upstream to various Apache-licensed
open source projects that work on the common Hadoop
platform. Cloudera quick start virtual machine is used for the
compilation purpose, which comes with inbuilt packages of
Hadoop and its daemons. Thus it is used for the survey of
elapsed time of execution of various matrices considered in
the project.
5. Oracle VM VirtualBox:
Oracle VM VirtualBox (formerly owned and managed by Sun
VirtualBox, Sun xVM VirtualBox and Innotek VirtualBox) is
a free and open-source hypervisor for x86 computers
currently under the flagship of Oracle Corporation. It was
developed initially by Innotek GmbH and was later on
acquired by Sun Microsystems in 2008 which in taken over by
Oracle in 2010.
C.Hardware Requirements
The hardware requirement is a heterogeneous multimode
cluster where the big data analytics and processing is being
done. For simulation and testing, a multimode Hadoop
Cluster consisting of 3 machines are used. The configurations
of the machines are:

 Processors: Any Intel or AMD x86 processor.
 RAM: 3GB.
 System Type: 64-bit OS, x64-based processor.
 Disk Space: 20GB in C drive for reserved for cluster

job execution
 Virtual Machine Specifications
 Quick Start VM 5.5 : Red Hat (64 Bit), 6 GB RAM,

64 GB virtual hard disk space.
 Hadoop Cluster nodes with CentOS Minimal version.

2.Module Description
The first stage of project development the multinode cluster
of Hadoop with 3 nodes with 91.5Gb of shared HDFS in each
machine, then uploads the 155Mb data as a sample for
simulation and it can be extended to great ranges in gigabytes,
which will be evenly split and replicated automatically.
Then executedWordCount program which includes map and
reduce functions and submits the job. Once the job completes,
it will be notified of the results. The log details are analysed
and sorted for the node failure and decommissioned reports.
The data transfer details are analysed to find the network
accessibility between the machines, within the cluster.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

2374

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8017049420/2020©BEIESP
DOI: 10.35940/ijeat.D8017.049420
Journal Website: www.ijeat.org

3. Implement and Evaluate performance of WordCount
with optimized SCA & ESE algorithm
Formulate the code for Smart Cloning Algorithm and
Enhanced Speculative Execution Algorithm. Generate the
patch of optimized speculative execution. Generate its patch
file and add with the Hadoop Framework. Check its
performance with word count running in 3 node cluster. The
algorithm pseudo code of SCA and ESE can be explained as:
Algorithm 1: Smart Cloning Algorithm
..
Input: The jobs in the cluster associated with their running
status at time slot l
Output: Scheduling decisions for time slot l.
1. schedule the unassigned tasks of the running jobs in the
cluster with the fewest remaining first;
2. update N(l) and χ (l);
3. if N(l) == 0 then
4. return;
5. if then
6. for Job Jli in χ (l) do
7. assign only one copy for each task of Jli and update N(l);
8. if N(l) == 0 then
9. return;
Algorithm 2: Enhanced Speculative Execution Algorithm
..
..
Input: The jobs in the cluster associated with their running
status at time slot l;
Output: Scheduling decisions for time slot l.
1. Count N(l), the number of idle machines at time slot l and
update D(l), R(l), χ (l).
2. for task δi

j in D(l) do
3. Assign a duplicate of δi

j on a random idle machine;
4. N(l) == 1;
5. if N(l) == 0 then
6. return;
7. for job Ji in R(l) do
8. Assign the unscheduled tasks of Ji on idle machines;
9. update N(l);
10. if N(l) == 0 then
11. return;
12. for job Jli in χ(l) do
13. Assign one copy for each task in Jli ;
14. update N(l);
15. if N(l) == 0 then
16. return;
17. return;
4. Detailed Analysis in loading conditions, different
programs and performance optimization
Evaluate and analyse the heavily and lightly loaded
conditions of the cluster. Overall performance Tuning and
employing manual network contention in data nodes. Detailed
performance analysis using several classical MapReduce
Program along with word count. Performance analysis by
using Spark by parallelism tuning. Performance Evaluation is
to be sketched in detail to analyse the enhancements. Overall
validation test should be performed with the system. The
performance enhancement can be done after the validation
testing apart from the module wise testing.

V. TESTING AND EVALUATIONS

A. Key Tuning Parameters

1 Mappers
mapreduce.input.fileinputformat.split.minsize : The
minimum size chunk that map input should be split into. By
increasing this value beyond dfs.blocksize, it can reduce the
number of mappers in the job. This is because if the value of
mapreduce.input.fileinputformat.split.minsize to 4x
dfs.blocksize, then 4 times the size of blocks will be sent to a
single mapper, thus, reducing the number of mappers needed
to process the input. The value for this property is the number
of bytes for input split. Thus to set the value to 256MB,
should specify 268435456 as the value for this property.
mapreduce.input._leinputformat.split.maxsize : The
maximum size chunk that map input should be split into when
using CombineFileInputFormat or MultiFileInput- Format.
By decreasing this value below dfs.blocksize, and increase the
number of mappers in the job. This is because if the value of
mapreduce.input fileinputformat.split.maxsize to 1/4
dfs.blocksize, then 1/4 the size of a block will be sent to a
single mapper, thus, increasing the number of mappers
needed to process the input. The value for this property is the
number of bytes for input split. Thus to set the value to
256MB, specify 268435456 as the value for this property. If it
is set with a max split size when using
CombineFileInputFormat, the job will only use 1 mapper.
2 Reducers
mapreduce.job.reduces : One of the biggest killers for
workflow performance is the total number of reducers in use.
Use too few reducers and the task time is longer than 15
minutes. But too many also causes problems! Determining the
number of reducers of individual jobs is a bit of art. But here
are some guidelines to think about when picking the number:
More reducers = more files on the name node. Too many
small files bogs down the namenode and may ultimately make
it crash. So in order to reduce output is small (less than
512MB), it needs only fewer reducers
More reducers = less time spent processing data If there is too
few reducers, the reduce tasks may take significantly longer
than they should. The faster the jobs, reducers run more jobs
we can push through the grid.
Shuffling is expensive for large tasks for the FileSystem
Counters of the job, it can be observed how much data may
potentially need to be pushed around from node to node. Let's
take a job with 20 reducers. Here are the FileSystem
Counters:
mapreduce.job.reduce.slowstart.completedmaps : This
setting controls what percentage of maps should be complete
before a reducer is started. By default, we set this to .80 (or
80%). For some jobs, it may be better to set this higher or
lower. The two factors to consider are: If the map output is
significant,
it is generally recommended that reducers start earlier so that
they have a head start processing. If the maps tasks do not
produce a lot of data, then it is generally recommended that
reducers start later. A good rough number is to look at the
shuffle time for the first reduce to fire off after all the maps are
finished. That will represent the time that the reducer takes to
get map output. So ideally, reducers will fire off (last map) -
(shuffle time).
3.Compression

Improved Hadoop Cluster Performance By Dynamic Load And Resource Aware Speculative
Execution And Straggler Node Detection

2375

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8017049420/2020©BEIESP
DOI: 10.35940/ijeat.D8017.049420
Journal Website: www.ijeat.org

mapreduce.map.output.compress : Setting this to true
(default) will shrink map output by compressing it. This will
reduce internode transfers, however care must be taken that
the time to compress and uncompress is faster than the time to
transfer. For large or highly compress-able intermediate/map
output, it is usually beneficial to turn on compression.
This can reduce the shuffle time and make disk spills faster.
For small intermediate/map output datasets, turning
intermediate output compression off will save the CPU time
needed to do the (ultimately useless for this data)
compression. Note that this is different than
apreduce.output.fileoutputformat.compress; that setting
controls whether the final job output should be compressed
when writing it back to HDFS
4.Memory
mapreduce.(map-reduce).memory.mb : One of the features in
newer releases of Hadoop is memory limits. This allows for
the system to better manage resources on a busy system. By
default, the systems are configured to expect that Java tasks
will use 1GB of heap and anywhere from 0.5-1GB of
non-heap memory space. Therefore, the default size of
mapreduce.(map-reduce).memory.mb is set to 2GB. In some
situations, this is not enough memory. Setting just Xmx will
result in more than 2GB and the tasks will get killed.
Therefore, in order to request more memory for the task slot it
needs to adjust both the Xmx value and the
mapreduce.(map-reduce).memory.mb value.
5. Advanced
Controlling the number of spills / io.sort.record.percent :
io.sort.record.percent controls how much of the circular
buffer is used for record vs. record metadata. In general,it and
a family of tunables are ones to look at when spills are out of
control. Changing this results in maps running faster and
fewer disk spills because io.sort.mb is used more efficiently;
we do not hit the 80% mark in the metadata buffer as quickly.
The end result of changing io.sort.record.percent was that
many maps did not spill to disk at all and of those that did,
many dropped spilled to 55% fewer files. End result: system
thrash was reduced-we saved 30% of the CPU and dropped 30
minutes off the runtime.
mapreduce.(map-reduce).speculative : Set these properties
to false in order to prevent parallel execution of multiple
instances of the same map or reduce task. The data skew of the
mappers or reducers will take significantly longer. In this
case, should disable speculative execution to prevent
spawning lots of unnecessary map and reduce instances.
6. Running of Algorithm
As a detailed survey of different performance factors in
Hadoop Yarn. A test input for wordcount problem is selected
as a 3.6GB CSV file.
It is analysed in various conditions

 Normal wordcount without Combiners
 Wordcount with Combiners
 Multiple Reducers
 Input Splits
 Speculative execution property disabled

VI. EXPERIMENTAL RESULTS

As part of the straggler machine detection and task cloning
strategy the setting up of multinode cluster is the preliminary
stage of the project. The evaluation is based on the
heterogeneous cluster performance. The project

implementation is planned such that the first module of the
project is setting up of homogeneous and heterogeneous
multimode cluster and evaluating a MapReduce program to
check the performance variation due to the system resource
utilization and availability constraints.
The experimental results are achieved from the execution of
the classical MapReduce program WordCount in the 3 - node
cluster and an input of 155Mb of text data. The step-by-step
evaluation can be described as :
 Multinode cluster with 3 nodes are setup in the lab with

one server and 2 slave machines.
 All the 3 nodes where properly installed with Hadoop and

relevant set up procedures where followed to establish
the master - slave architecture with 3 machines in the lab
with LAN and ssh connectivity.

 Secret ssh keys where generated and shared with all the 3
systems for the communication.

 Master node in the cluster where set up with a shared
HDFS memory capacity of 95 GB in the drive and slaves
with 65 GB of space for the distributed access.

 After the setting up of the 3 node cluster the namenode is
formatted and started the utilities and datanode.

 The slave machines are checked for the datanode
working and found it working by the 'jps' command
which showed the activated components as Datanode and
Node-manager at slave machine and all the other
components of Hadoop like Namenode,Secondary
Namenode, Resource Manager, Job Tracker are all active
the master ma-chine or node.

 Created a folder in HDFS and loaded input file of size
155Mb.

 Run the classical problem WordCount in the master
which internally utilized the other 2 datanodes and the
output folder (figure 2) is generated at the HDFS and the
folder contained the text file with counts of all the words
in the text input.

 The report is analyzed from the web. The failed and
decommissioned datanodes are checked.

Figure 2: Details of the output folder
Thus obtained a fair result of the first module and the works of
next module is going on but it is facing some unexpected
errors. It is being tried out to solve them and expecting a good
results. For a simulated development environment, further
proceeding is done by Oracle Virtual Box and created a
cluster with a namenode and 3 datanodes and a client
machine, all with static IP address. Developed programs for
obtaining the different cluster performance impacts of key
tuning parameters. Observed the difference in the time of
completion of jobs in cluster for each parameter. The detailed
tabular results can be reviewed from Table 2 and 3.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

2376

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8017049420/2020©BEIESP
DOI: 10.35940/ijeat.D8017.049420
Journal Website: www.ijeat.org

The survey of elapsed time is done in the classical Word
Count (WC) program and the input file is given as the 3.65 Gb
CSV file.

TABLE 2: CLUSTER REPORT
Node ID Memory Core

Processor
OS Ram Size

Namenode- nn 20 Gb i3 CentOS(Minimal
version) 2 Gb

Datanode1- dn1 20 Gb i3 CentOS(Minimal
version) 2 Gb

Datanode - dn2 20 Gb i3 CentOS(Minimal
version) 2 Gb

Datanode3- dn3 20 Gb i3 CentOS(Minimal
version) 2 Gb

Client -vclient 20 Gb i3 CentOS(Minimal
version) 2 Gb

TABLE 3: EXPERIMENTAL REPORT OF JOB

COMPLETION TIME WITH VARIOUS FACTORS OF

PERFORMANCE
Application Details Platform Time of

Completion
WC without
Combiners

Cloudera(4 Gb
RAM)

156803 ms

 Multinode
Cluster

162970 ms

WC with
Combiners

Cloudera(4 Gb
RAM)

155542 ms

 Multinode
Cluster

158746 ms

WC with
multireducers and
Combiners

Cloudera(4 Gb
RAM)

103368 ms

 Multinode
Cluster

143659 ms

WC with
Inputsplits - 1 Gb

Cloudera(4 Gb
RAM)

135888 ms

 Multinode
Cluster

150035 ms

VII. CONCLUSION

Hadoop, the open source framework for distributed data
processing acquired much production importance as it
provides data locality features and efficient processing
platform for huge file processing than by using traditional
distributed systems. Thus it should be much accurate and
dynamic according to the applications so that it will be a
tunable processing approach. An approach for the speculative
execution procedure enhancement is proposed by the work
where this approach is proved to enhance overall cluster
performance and thus the overall execution time of the bulk of
jobs. In the execution proces of the work is done in two
phases.
In Phase-1 the parallel execution of MapReduce with example
program Wordcount is observed in a multinode cluster of
homogeneous as well as heterogeneous nodes in virtual
machines and real machines with quad core processor. The
dynamic slot allocation procedures are executed within the
fair schedule module of the speculative execution and yarn
common files.

The data locality is one of the main concerns the dynamic slot
allocation is based on the data aware allocation and
reallocation of map and reduce slots. The combining
algorithm offers about 60% of average performance
enhancement in the cluster for the word count program. The
detection of straggler node module will offer a dynamic
notification of outlier nodes in the cluster and decommission
of them at the time of detection itself.
It is found to create some overload on cluster while executing
detection algorithm but in the case of heavily loaded criteria it
is negligible comparing to the estimated time of execution
without eliminating the straggler nodes. The modified
algorithms are expected to give an optimized result in the
overall performance of the MapReduce system. Thus the
speculative execution can be implemented in a very efficient
manner. Then it is can be applied to get added along with the
Hadoop package. Then with a single command speculative
execution procedure can be enabled or disabled by the
common users.
The speculative execution as well as scheduling strategies in
Hadoop needs more efficiency in the big data platforms as a
small degradation of resources may lead to heavy production
lose. The commodity hardware is very prone to damages,
bandwidth scarcity, bad machine faults in the overall cluster.
The extensions to the project focusing on the energy
impact-oriented enhancement in smart speculation can reduce
overhead due to task cloning and thus can achieve much more
reliable distributed platform.

REFERENCES

1 Huanle Xu, Wing Cheong Lau, “Optimization for Speculative

Execution in Big Data Processing Clusters," in Transactions on
Parallel and Distributed Systems.

2 Shanjiang Tang, Bu-Sung Lee, and Bingsheng He, “DynamicMR: A

Dynamic Slot Allocation Optimization Framework for MapReduce
Clusters," in Ieee Transactions On Cloud Computing, Vol. 2, No. 3,
July-September 2014.

3 Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoic, Y. Lu, B. Saha,
and E.Harris, “ Reining in the outliers in MapReduce clusters using

mantri,"In USENIX OSDI, Vancouver, Canada, October 2010.
4 Chen, M. Kodialam, and T. Lakshman,”Joint scheduling of processing

and shu_e phases in MapReduce systems," In Proceedings of IEEE
Infocom, March 2012.

5 Q. Chen, C. Liu, and Z. Xiao,”Improving MapReduce performance

using smart speculative execution strategy," IEEE Transactions on
Computers, 63(4), April 2014.

6 M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,` Dryad:
distributed data-parallel programs from sequential building blocks," In
EuroSys, March 2007.

7 X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu,”Hopper:

Decentralized speculation-aware cluster scheduling at scale," In
Sigcomm, August 2015.

8 Lei LEI, Tianyu WO, Chunming HU,”CREST: Towards Fast

Speculation of Straggler Tasks in MapReduce,2011 Eighth IEEE
International Conference on e-Business Engineering"

9 Faraz Ahmad, Srimat Chakradhar, Anand Raghunathan, T. N.
Vijaykumar, Tarazu: Optimizing MapReduce On Heterogeneous
Clusters,"ASPLOS12 March 3-7, 2012, London, England, UK.

10 Qi Liu, Weidong Cai, Jian Shen, Zhangjie Fu, Nigel Linge,”A Smart

Speculative Execution Strategy based on Node Classi_cation for
Heterogeneous Hadoop Systems,"Jan. 31 , Feb. 3, 2016 ICACT2016.

11 Huanle XU, Wing Cheong LAU,”Task-Cloning Algorithms in a
MapReduce luster with Competitive Performance Bounds,"Ieee
Transactions On Computers, Vol. 63, No. 4, April 2014.

Improved Hadoop Cluster Performance By Dynamic Load And Resource Aware Speculative
Execution And Straggler Node Detection

2377

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D8017049420/2020©BEIESP
DOI: 10.35940/ijeat.D8017.049420
Journal Website: www.ijeat.org

12 Juby Mathew, R Vijaya kumar,Multilinear Principal Component
Analysis with SVM for Disease Diagnosis on Big Data,IETE Journal of
Research,1-15,Taylor & Francis[2019]

13 Ananthanarayanan, M. C.-C. Hung, X. Ren, and I. Stoica, Grass:
Trimming stragglers in approximation analytics, In NSDI, April 2014.

14 Ganesh Ananthanarayanan, Ali Ghodsil, Scott Shenker, Ion Stoica,
E_ective Straggler Mitigation: Attack of the Clones, In 10th USENIX
Symposium on Networked Systems Design and Implementation, 2013.

15 Tien-Dat Phan, Shadi Ibrahim, Gabriel Antoniu, Luc Bouge, On
Understanding the Energy Impact of Speculative Execution in
Hadoop,, IEEE International Conference on Data Science and Data
Intensive Systems, 2015.

16 Ganesh Ananthanarayanan, Ali Ghodsi1, Scott Shenker, Ion Stoica.
E_ective Straggler Mitigation: Attack of the Clones, In 10th USENIX
Symposium on Networked Systems Design and Implementation, 2013.

17 Masatoshi Kawarasaki, Hyuma Watanabe, System Status Aware
Hadoop Scheduling Methods for Job Performance Improvement, In
10th USENIX Symposium on Networked Systems Design and
Implementation, 2013.

18 S. Khalil, S. A. Salem, S. Nassar and E. M. Saad, Mapreduce
Performance in Heterogeneous Environments: A Review, International
Journal of Computer Applications, December 2016.

AUTHORS PROFILE

Dr Juby Mathew is a Dynamic, Resourceful Teaching
Professional. He received his PhD and PostDoc in
Computer Science from Mahatma Gandhi University,
Kottayam. He pursued his MCA from Periyar University,
Salem, and M.Tech from MS University, Tirunelveli. So
far he has published his articles in 12 international

Journals and presented papers in more than twenty National and
International Conferences. At present, he is working as an Associate
Professor in the Department of Computer Applications at Amal Jyothi
College of Engineering, Kanjirapally and Research guide at Kerala
Technological University,Trivandrum.He won Best Faculty award as a result
of his proven ability to enhance students performance, promising to shape a
better world for the students and empower them with knowledge. He has
reviewed many paper publications and journals and PhD thesis within an
incredibly short period.

Dr. Terry Jacob Mathew is an Associate Professor at
MACFAST, affiliated to Mahatma Gandhi University,
Kottayam, India. He received his Ph.D. degree from
school of computer sciences, Mahatma Gandhi
University, Kottayam and has worked with the industry
and academia since 2005. His research interests include

decision making systems, data mining, soft sets, fuzzy topology and
predictive medical analytics.

Lt. Dr Thomas Scaria working as assistant professor
and Head in the department of Computer Science at
St.Pius X College, Rajapuram and at the same time he is
the chairman of Computer science board of studies of
Kannur University. He published so many papers in

Scopus and SCI indexed Journals.

