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ABSTRACT 
The paper presents a study of key aspects in the design of a 

flexible unified data plane capable of integrating both fronthaul 
and backhaul transport in future 5G systems. In this study, we 
first review candidate access and multiplexing technologies from 
the state of the art and assess their capability to support legacy 
and new fronthaul and backhaul traffic. We then propose a new 
design framework for the targeted flexible unified data plane, 
featuring a primary packet-switching path supported by an 
auxiliary circuit-switching for extreme low latency scenarios. 
This comprises a summary of the first results achieved in the 5G-
Crosshaul EU project since its kick-off in July 2015.  
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I. INTRODUCTION 

Roadmaps for the development of the next 
generation cellular communication system, also 
referred to as 5G, have been established by key 
international stakeholder organizations, such as ITU, 
3GPP, IEEE, and IETF. Massive deployments of 
complete 5G systems are only expected after the 
landmark year 2020, following the ratification by 
ITU-R of the 5G air interface component. Advanced 
research, standardization, trials and pilot 
installations will therefore mark the next five years 
towards the target deadline of 2020. In Europe, this 
activity is being guided by the 5G Infrastructure 
Public Private Partnership created under the Horizon 
2020 Framework Programme.  

Although capabilities and technologies of the 
future 5G system are not firmly set yet, there is a 
global consensus emerging on the key capabilities 
targeted and enabling technology pillars. Taking as 

an example the radio access component, ITU-R 
WP5D 1  has already managed to reflect a global 
consensus on the key performance indicators (KPIs) 
targeted in 5G, such as 20 Gbit/s peak data rate, 1 
ms air interface latency, 3x the spectral efficiency of 
IMT-Advanced, 100x the energy efficiency of IMT-
Advanced, etc. Emerging enabling technologies to 
meet these ambitious KPIs at the access level 
include small cells, spectrum extension to 
millimeter-wave frequencies, massive multiplexing, 
flexible resource sharing, multi-technology support, 
etc.  

However, this work is focused on the other 
fundamental element of the 5G system: the design of 
the future 5G transport network interconnecting 
access and core segments [1,12]. This vision sees 
5G transport network to integrate the backhaul and 
fronthaul segments into a unified network substrate 
driven by software defined networks and network 
function virtualization (SDN and NFV)-based 
framework in order to deliver on the flexibility, 
scalability, efficiency, capacity, latency and cost 
reduction pursued for 5G.  

Much of this work is dedicated to understanding 
the different mechanism that can be used for 
multiplexing fronthaul and backhaul traffic over a 
common transport network. Remark that fronthaul 

                                                 
1 WP 5D is the working party responsible for the overall radio system aspects 
of International Mobile Telecommunications (IMT) systems, comprising the 
IMT-2000, IMT-Advanced and IMT for 2020 and beyond  



 

 

refers to the fixed transport infrastructure 
communicating the Remote Radio Units (RRU) and 
the Base Band Unit (BBU), while backhaul is the 
portion of the network comprising the intermediate 
links in the core network, originating from BBUs. 
Several BBUs serving multiple RRUs sites might be 
pooled and, possibly, virtualized to implement the 
Cloud-Radio Access Network (C-RAN) concept.  

Multiplexing backhaul and fronthaul traffic is 
highly advantageous since it enables the use of 
common infrastructure and control for multiple 
purposes, with a consequent decrease of the total 
cost of ownership due to the reutilization of 
hardware and management techniques. This holds 
even more in 5G, where new functional split 
schemes of the radio interface add a plethora of 
possible intermediate cases in between the pure 
fronthaul and backhaul scenarios, impossible to 
manage with dedicated infrastructures.  

The applicability of three multiplexing strategies 
(at physical layer, time division multiplex (TDM) 
and packet based) is discussed in this article. For 
example, the high and constant bit rate (CBR) nature 
of Common Public Radio Interface (CPRI) traffic 
makes it difficult to justify a multiplexing method 
other than circuit-based (either time division or 
wavelength division multiplexing). However the 
advent of newer variable bit rate (e.g. due to 
compression)  fronthaul streams defined in the Next-
Generation Fronthaul Interface (NGFI) drives the 
interest in integrating fronthaul and backhaul traffic 
as much as possible in more cost-efficient packet 
switching schemes. 

Towards this vision, the project consortium, 
composed of twenty-one partners among leading 
industry and academic organizations, is developing 
a solution called 5G-Crosshaul. Its key building 
blocks are: (1) a packetized common transport layer 
for multiplexing and switching legacy (e.g. CPRI 
[11]) or new fronthaul and backhaul traffic over the 
same medium, and (2) an SDN/NFV-based control 
infrastructure (i.e. XCI, Crosshaul Control 
Infrastructure) that opens up the transport network 
as a service for network applications such as multi-
tenancy, mobile edge computing, energy optimizers, 
smart traffic engineering, etc. 

The rest of the paper is organized as follows. In 
section II we present the technology map for the 5G-

Crosshaul unified transport network. Section III 
discusses existing multiplexing strategies, and next 
section IV describes in detail our proposed design 
framework for the 5G-Crosshaul data plane. Finally 
we draw conclusions and present prospective future 
work in Section V. 

II. 5G-CROSSHAUL TECHNOLOGY MAP  

Figure 1 illustrates the two transport aggregation 
stages considered in the 5G-Crosshaul network. The 
high aggregation stage considers the metro and core 
transport network, while the low aggregation one 
refers mostly to the transport network that is closer 
to the edge, and so, to the RAN  equipment (e.g., 
small cells, RRUs).  

The high capacity targets set for 5G will require 
high transport capacity when aggregated. Optical 
transport technologies present the appropriate 
characteristics (notably in terms of capacity) to 
fulfill this demanding requirement. Therefore, 
optical transmission technologies based on 
Wavelength Division multiplexing (WDM) perfectly 
fit at the high aggregation region of the 5G-
Crosshaul network. 

As for the low aggregation stage, a variety of 
operator setups will be present due to both technical 
and economic reasons. In turn, such deployment 
constraints are eventually mapped to 5G KPIs (e.g., 
network density or cost-efficiency requirements). 
For these reasons, three different scenarios are 
considered (see Figure 1). 

In Scenario no. 1, wireless links (microwave, 
mmWave, or optical wireless) are used when wired 
options are not feasible, or in cases where 
deployment flexibility or extra capillarity is needed. 
Some examples are rural deployments in which 
laying fiber is not economically feasible or dense 
urban scenarios for which deployment flexibility 
and capillarity are required to offer a high areal 
capacity density.  

When a fixed access network (copper or optical) 
is already in place (Scenario no. 2), operators may 
want to reuse it also for carrying mobile fronthaul 
and backhaul. This will provide the transmission 
medium, but fulfilling the 5G requirements like low 
latency and symmetric downstream/upstream delay 
planned for future 5G real-time services, let alone 
synchronization requirements to support handovers, 
may require some effort. 
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Gbit/s over a few tens of meters. These rates could 
support 5G-Crosshaul needs. 

Ethernet cabling is abundant in enterprise and 
commercial buildings. With over a hundred meter 
reach there are consolidated standards for 1 Gbit/s 
(1000BASE-T) and 10 Gbit/s (10GBASE-T). 
Higher rates of 25 and 40 Gbit/s are being 
standardized but mainly for data center applications 
with a maximum reach of 30 meters.  The prospect 
of a massive deployment of 5G indoor small cells 
makes Ethernet a suitable technology for 5G-
Crosshaul, both for fronthaul and backhaul. 

C. Optical fiber access and transport technologies 
The deployment of fiber to the premises  based 

on Passive Optical Network (PON) technology has 
experienced a rapid growth in the last decade. 
However the reuse of installed fiber access 
infrastructure for 5G is challenging. While standards 
like GPON (ITU-T G.984, Gigabit-capable PON) 
may be sufficient for residential users (bandwidth is 
2.5/1.25 Gbit/s shared by up to 128 subscribers), it is 
clearly insufficient for the transport of fronthaul 
traffic due to its high data rates requirements [11]. 
Upcoming XGS-PON (symmetrical 10 Gbit/s) and 
TWDM PON (ITU-T G.989, Time and Wavelength 
Division Multiplexing PON 40 Gbit/s and 80 Gbit/s 
capable based on 10 Gbit/s carriers) should meet the 
bandwidth and latency requirements of NGFI traffic. 
However the latency induced by TDM access makes 
the transport of legacy CPRI complex and 
dependent on an appropriate QoS mechanism. An 
alternative option is point-to-point (PtP) WDM PON 
(ITU-T G.698.3), which easily provides virtual 10 
Gbit/s PtP links making it suitable for legacy 
fronthaul, NGFI and backhaul traffic.   

In the long term, the advent of elastic optical 
networks featuring flexible channel allocations 
(ITU-T G.694.1), together with a flexible 
modulation format and programmable transceivers 
open the door to a fine-grained and truly dynamic 
capacity allocation,  both, in the access and in the 
transport segment of 5G-Crosshaul network. 
Programmable sliceable bandwidth-variable 
transceivers can be used at the optical line terminal  
to concurrently serve different Optical Network 
Units (ONUs) for delivering different services [7]. 
At the ONUs, bandwidth-variable transceivers can 
be remotely configured by the control and 

management plane for flexible spectrum assignment 
purposes.  

For the transport segment, optical technologies 
based on WDM provide the required capacity at the 
high aggregation stage considered in Figure 1. 
Coarse WDM (CWDM) can provide a total capacity 
of about 219 Gbit/s using two fibers for uplink and 
downlink, enough to transport up to 18 channels of 
the most demanding CPRI configuration (Option-9). 
Moreover, CWDM technology allows cost effective 
deployments achieving link distances around 20 km  
and transceivers support outdoor operation 
conditions (-40/+70°C). Recent bidirectional 
solutions exploit sub-wavelength multiplexing over 
the CWDM grid, doubling the bit rate to 438 Gbit/s.  

Dense WDM (DWDM) supports a higher number 
of channels (e.g. 48 channels, 100 GHz spaced) with 
a channel bit rate up to 100 Gbit/s. 1 Tbit/s super-
channels in a single line card will soon be 
commercially available due to advanced 
transmission techniques used in future elastic optical 
networks, as explained previously. The transmission 
distance ranges from tens to thousands of kilometers 
(with optical amplification). Furthermore, DWDM 
allows to realize energy efficient network designs 
thanks to the use of reconfigurable optical add drop 
multiplexers (ROADMs), which consume much less 
power compared to capacity-equivalent electrical 
switches. The ability to support multiple physical 
topologies (bus, ring, point-to-multipoint) while 
keeping a PtP logical connectivity is another big 
advantage of DWDM, allowing it to fit a variety of 
5G-Crosshaul deployment scenarios. The main 
drawback of DWDM is the current cost of the 
optical devices. Nevertheless, research and industry 
are both active in studying new cost-effective 
solutions based on silicon integrated photonics.  

Finally, it must be noted that analog radio over 
fiber (RoF) is an interesting alternative to digital 
radio transmission to reduce bandwidth and latency 
in short fronthaul links, while increasing their 
energy efficiency. RoF just requires electrical-to-
optical conversion and radio frequency circuits, 
which may also lead to cost savings compared to 
digital systems [8]. RoF can be used in combination 
with WDM to achieve high aggregate capacity. In 
5G-Crosshaul, RoF is considered to be deployed 
inside tunnels along high speed train rails to extend 
the coverage of base stations. 
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Packet switching is particularly suitable for NGFI 
protocol split options where media access control 
(MAC) and, partly, radio link control (RLC) are 
moved back to the remote radio head, so that hybrid 
automatic repeat request (HARQ) re-transmission, 
which is a major source of latency, is performed 
locally.  

In the XPFE a common switching layer is 
implemented through the XCF for enabling a unified 
traffic management across various types of traffic 
and link technologies. The XCF does not impose 
any constraint on the payload protocol carried within 
it, for example using MAC-in-MAC Ethernet 
encapsulation [13], which presents good scalability 
properties and the possibility to isolate traffic from 
different tenants of the network.  

The XPFE is based on a common switching layer 
that works on XCF frames. An Ethernet-based XCF 
allows the XPFE switching mechanisms to inherit 
all the work that has been done in the IEEE 802.1 
Working Group regarding the optimized 
transmission of fronthaul traffic (802.1TSN and 
802.1CM). Adaptation functions transform the 
media dependent frames into the XCF and provide 
an abstraction level for mapping technology-specific 
capabilities to data-plane and device agent 
interfaces, hiding the low-level details of interfaces 
and peripherals. For example, a mapper layer may 
abstract the status of the physical channel in more 
generic terms like available bandwidth, bit error 
rate, jitter, etc.  The XCI will use a view, detailed as 
defined by the abstraction level, of the traffic 
resources that will be exposed to the orchestration to 
enable intelligent management of resources and 
network functions across the fronthaul and backhaul 
domains.  

2) The circuit switching element, XCSE 

In the most generic implementation, the XCSE 
can be split into two sub-switches, acting at different 
traffic granularity. In optical networks, the coarsest 
sub-switch could be a ROADM while the finest one 
could be an OTN switch.  

Figure 5 suggests an alternative XCSE 
implementation based on the TDM frame presented 
in Section III.B.  

 
Figure 5: XCSE implementation 

Wavelength channels, generated and received by 
multi-wavelengths integrated transceivers, are first 
optical-to-electrical converted and then cross-
connected by a protocol agnostic cross-point switch. 
Wavelengths that carry only CPRI or Ethernet 
signals undergo no further processing. Wavelengths 
where CPRI and Ethernet are multiplexed together 
are instead sent to de-framers. The de-framers use 
pointers in the frame header to separate CPRI and 
Ethernet CBR client signals. Using the pointers, 
slots size and position of the client signals can be 
programmable, depending on network configuration 
and planned traffic load. This implementation relies 
on cost effective devices, as integrated multi-
wavelength  transceivers and high capacity cross-
point switches (e.g. 160x160 ports), to achieve 
modularity and enhanced flexibility, offering the 
possibility of wavelength reuse over multiple ports. 

V. CONCLUSIONS  

The 5G-Crosshaul network vision [12] provides a 
holistic approach to address the formidable 
challenges that the advent of the new 5G mobile 
generation systems poses to the transport network. 
This work focused on the data plane, which provides 
the first fundamental level of flexibility and 
programmability in the network. This is achieved by 
multi-layer switches, combining packet and circuit 
switching features. Packet switching enables 
statistical multiplexing suitable for the high 5G peak 
to average access traffic load. Circuit switching 
allows the best latency performance. For the packet 
switching, a unified framing format based on MAC-
in-MAC Ethernet is proposed for the transport of 
various types of fronthaul and backhaul traffic over 
various data link technologies (optical, wireless, 
copper). Such a new data plane paradigm poses new 
challenges to the control plane, whose level of 
dynamicity and flexibility, and then complexity, 
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increases according to the enhanced level of 
configurability that the data plane is capable to 
provide. 
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