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Abstract—The rapid evolution of the Internet of Medical
Things (IoMT) introduces the healthcare ecosystem into a new
reality consisting of smart medical devices and applications that
provide multiple benefits, such as remote medical assistance,
timely administration of medication and real-time monitoring.
However, despite the valuable advantages, this new reality in-
creases the cybersecurity and privacy concerns since vulnerable
IoMT devices can access and handle autonomously patients’ data.
Furthermore, the continuous evolution of cyberattacks, malware
and zero-day vulnerabilities require the development of the
appropriate countermeasures. In the light of the aforementioned
remarks, in this paper, we present an Intrusion Detection and
Prevention System (IDPS), which can protect the healthcare
communications that rely on the Hypertext Transfer Protocol
(HTTP) and the Modbus/Transmission Control Protocol (TCP).
HTTP is commonly adopted by conventional healthcare-related
services, such as web-based Electronic Health Record (EHR)
applications, while Modbus/TCP is an industrial protocol adopted
by IoMT. Although the Machine Learning (ML) and Deep
Learning (DL) methods have already demonstrated their efficacy
in detecting intrusions, the rarely available intrusion detection
datasets (especially in the healthcare sector) complicate their
global application. The main contribution of this work lies
in the fact that an active learning approach is modelled and
adopted in order to re-train dynamically the supervised classifiers
behind the proposed IDPS. The evaluation analysis demonstrates
the efficiency of this work against HTTP and Modbus/TCP
cyberattacks, showing also how the entire accuracy is increased
in the various re-training phases.

Index Terms—Active Learning, Cybersecurity, Intrusion De-
tection, Healthcare

I. INTRODUCTION

The progression of the Internet of Medical Things (IoMT)
has led the healthcare organisations to digitise the care services
by adopting medical telemetry and interconnected medical
devices, such as wearables [1] and medical implants that han-
dle and store patient data autonomously in Electronic Health
Records (EHRs). Although this new reality offers multiple
benefits, such as remote medical assistance, preventive care
and health education, it also increases the existing security
and privacy concerns [2]. Moreover, among the other Critical

∗This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 787011
(SPEAR).
†P. Radoglou-Grammatikis, P. Sarigiannidis and G. Fragulis are
with the Department of Electrical and Computer Engineering,
University of Western Macedonia, Kozani 50100, Greece - E-Mail:
{pradoglou,psarigiannidis,gfragulis}@uowm.gr
‡ G. Efstathopoulos is with the 0infinity Limited, Imperial Offices, London,

UK, E6 2JG - E-Mail: george@0infinity.net
‡ T. Lagkas is with the Department of Computer Science, Interna-

tional Hellenic University, Kavala Campus, 65404, Greece - E-Mail:
tlagkas@cs.ihu.gr
¶ A. Sarigiannidis is with Sidroco Holdings Ltd, 3113, Limassol, Cyprus

- E-Mail: asarigia@sidroco.com

Infrastructures (CIs), the healthcare domain is considered as
the most vulnerable due to the vast amount of personal
and administrative data stored and managed by the smart
medical devices and EHRs [3]. Based on the European Union
Agency for Network and Information Security (ENISA), the
healthcare sector continues to lead in the number of cyber-
security incidents (27%). In particular, compared to other
critical sectors, such as government and finance, the healthcare
domain lags largely regarding the cybersecurity preparedness.
A characteristic cybersecurity incident related to the health
sector was the WannaCry ransomware, which paralysed the
United Kingdom’s National Health Service in May 2017.
Furthermore, in the light of many reports, such as that of
Online Trust Alliance’s, 2017 was the ”worst year ever” for
cybersecurity incidents, while healthcare seems to be one of
the most targeted industries by cyberattackers. Therefore, the
challenge of ensuring a smart, safe, sustainable and efficient
healthcare ecosystem becomes critical. This fact is validated
by the European Union (EU) NIS Directive, enforcing all CIs
to report any critical security incident to the Computer Security
Incident Response Team (CSIRT).

It is estimated that the investments for a digitised healthcare
ecosystem with the appropriate methods, tools and practices
will exceed C65B over the next five years. However, this con-
version is not straightforward. Based on the aforementioned
remarks, it is evident that the timely and reliable intrusion
detection and prevention is an essential need. Although the
Machine Learning (ML) and Deep Learning (DL) solutions
have already proved their capacity in detecting cyberthreats,
the peculiarities of the healthcare sector render their adoption
a challenging issue. In particular, the healthcare sector con-
stitutes a sensitive CI, where the necessary datasets for the
ML and DL solutions cannot be provided publicly. This fact
complicates the cybersecurity analysts to construct appropriate
intrusion detection datasets and train their models. Moreover,
the heterogeneous nature of the healthcare ecosystem makes
the adoption of such models more difficult since each health-
care environment is characterised by different attributes, such
as medical devices and communication protocols.

In this paper, we provide an Intrusion Detection and Pre-
vention (IDPS) system for the healthcare environments that
use the Hypertext Transfer Protocol (HTTP) and the Modbus
protocols. On the one hand, HTTP is a common Informa-
tion and Communication technology (ICT) protocol, which
is used by several computing systems, including multiple e-
healthcare applications, such as EHR. On the other hand, Mod-
bus/Transmission Control Protocol (TCP) [4] is an industrial
protocol, which is widely adopted by both legacy and smart
medical devices. The proposed IDPS applies an active learning
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approach, where first, the IDPS is trained with an initial dataset
and then is re-trained continuously by its detection results
in order to optimise the detection performance. The main
contributions of this work are summarised in the following
key-points.

• Providing and IDPS for the healthcare ecosystem.
The proposed IDPS can recognise a plethora of HTTP
and Modbus/TCP cyberattacks. In particular, regarding
the HTTP protocol, four cyberattacks are detected and
mitigated by the proposed IDPS, including (a) DoS, (b)
Structured Query Language (SQL) injection, (c) Brute-
force and (d) Cross-Site Scripting (XSS). On the other
side, regarding Modbus/TCP, the proposed IDPS recog-
nises 14 Modbus/TCP-related cyberattacks, thus solving
a challenging ML classification problem.

• Introducing an active learning approach for detecting
intrusions in a healthcare ecosystem. The proposed
IDPS is re-trained continuously, thus optimising the de-
tection efficacy by itself. Thus, the applicability of the
proposed IDPS is demonstrated since it can be adapted
in any healthcare ecosystem, which uses the Modbus/TCP
and HTTP protocols.

The rest of this paper is organised as follows. Section II
presents relevant works. Section III provides the architecture
of the proposed IDPS. Section IV is focused on the active
learning approach. Section V is devoted to the evaluation
analysis. Finally, Section VI concludes this paper.

II. RELATED WORK

Several papers have already studied the cybersecurity and
privacy issues of the healthcare ecosystem. Some of them are
listed in [5]–[8]. In particular, T. Yaqoob et al. in [5] provide
a comprehensive study about the vulnerabilities of the smart
medical devices and discuss relevant countermeasures. In [6].
M. Hassan et al. present a detailed analysis of the differential
privacy techniques for Cyber-Physical Systems (CPS). U. Sun
et al. in [7] introduce a survey regarding the cybersecurity
challenges, requirements and threats related to IoMT, thus
identifying directions for future research works. Finally, in [8],
A. Hady et al. present a thorough review about the Intrusion
Detection Systems (IDS) in the healthcare area. Below, we
analyse further some notable cases. Each case is analysed in
a dedicated paragraph.

In [9], R. Mitchel and I. Chen provide a specification-
based IDS for Medical CPS (MCPS). The proposed IDS is
focused on operational data related to the core functionality of
MCPS. In particular, they examine three cases: (a) vital sign
monitor, (b) cardiac device (CD) and (c) patient-controlled
analgesia. Based on the core functionality of these actuators,
the authors construct behaviour-based specification rules that
define the normal status and operation. Next, these rules are
transformed into state machines in order to facilitate the com-
parison between benign and malicious states. Finally, based on
an extensive threat modelling for each case, the appropriate
thresholds are identified. The simulation results verify the

detection performance of the proposed IDS, exceeding two
similar approaches.

In [10], G. Thamilarasu et al. introduce a mobile agent-
based IDS for the IoMT. Their implementation is focused on
Wireless Body Area Networks (WBANs) [11], [12] and is
capable of recognising cyberattacks at the device or network
level. After introducing the necessary background about (a)
IoMT, (b) WBANs, (c) security attacks and solutions and
(d) mobile agent-based IDS, the authors discuss the mobile
agent-based IDS requirements as well as the main threats
against WBANs. In particular, the authors discriminate three
threats: (a) DoS, (b) data fabrication and falsification and
(c) privacy data breach. However, it is worth noting that the
proposed IDS cannot distinguish the aforementioned threats,
but rather it identifies three classes: (a) normal, (b) malicious
and (c) suspicious. Next, the architectural schema is presented,
which consists of three main agents (a) sensor agents, (b)
cluster agents and (c) detective agents. The sensor agents
operate at the device level, while the cluster agents work at
the network level. The detective agents are additional nodes
that support the other agents when their detection outcome
is not accurate. The agents adopt regression and typical
classification ML techniques, such as Support Vector Machine
(SVM), Naive Bayes, Random Forest, Decision Tree and K-
Nearest Neighbour (KNN). The authors evaluate the proposed
IDS in a simulation environment constructed by Omnet. The
simulation results demonstrate the efficiency of the proposed
implementation in terms of detection accuracy and resource
overhead.

M. Mohamed et al. in [13] introduce a specification-based
IDS for WBANs. In particular, the authors focus on (a)
jamming, (b) sinkhole and (c) flooding cyberattacks against
Electrocardiogram (ECG) and Electromyogram (EMG) sen-
sors. These cyberattacks are emulated by introducing the
appropriate noise to medical signals. The operation of the
proposed IDS relies on six steps, namely (a) Data Acquisition,
(b) Filtering, (c) Intrusion Detection, (d) Cancellation, (e)
Anomaly Detection and (f) Diagnostic. The intrusion and
anomaly detection processes rely on particular specification
thresholds defined for the aforementioned medical sensors.
More specifically, first, the proposed IDS adopts filters with the
aim to reduce medical-based interference. Next, the intrusion
detection procedure takes place based on the signal frequency
and amplitude. Then, the recognised intrusions are cancelled
in order to follow the medical anomaly detection that will
lead to the disease diagnosis. Based on the simulation results
made in Matlab, the detection performance of the proposed
implementation is validated.

In [14], A. Newaz et al. present HEKA. HEKA is an
IDS especially designed to protect Personal Medical Devices
(PMDs). After providing an overview of the various vul-
nerabilities related to PMDs, the authors first demonstrate a
plethora of cyberattacks against commercial PMDs, utilising
existing attacking tools. In particular, they focus on five
cyberattacks: (a) Eavesdropping, (b) DoS, (c) Man-In-The-
Middle (MITM), (d) replay attacks and (e) False Data Injection



(FDI). Then, they analyse HEKA, which is focused on
four cyberattacks: (a) MiTM, (b) Replay, (c) FDI and (d)
DoS. HEKA consists of four modules: (a) sniffer, (b) data
preprocessing, (c) n-gram generator, (d) anomaly detector and
(f) notification module. The anomaly detector module applies
and evaluates four typical ML methods: (a) SVM, (b) Decision
Tree, (c) Random Forest and (d) KNN. To evaluate HEKA,
the authors constructed a testbed, which is composed of eight
PMDs. Based on the evaluation analysis, the Accuracy of
HEKA reaches 0.984.

Undoubtedly, the works mentioned previously give sig-
nificant insights and methodologies. Some of them utilise
specification-based techniques, while others adopt anomaly-
based techniques, such as ML solutions. On the one side,
the specification-based techniques are more accurate since
they define the normal state and recognise potential devi-
ations. However, they cannot easily discriminate particular
cyberattack types. Moreover, they are not scalable since each
healthcare device is characterised by different specifications.
Therefore, the security experts need to identify and form the
necessary specification rules for each of them. Also, the con-
figuration of these devices can be changed or re-programmed,
thus making it necessary to adjust the corresponding rules. On
the other side, ML and DL methods can distinguish particular
cyberattacks, but they rely on intrusion detection datasets that
rarely are available publicly, especially for CIs. For this reason,
the researchers use existing intrusion detection datasets, such
as AWID [15] and KDD-Cup 1999. However, such datasets do
not reflect the unique peculiarities of a healthcare environment.
Moreover, it is worth mentioning that none of the previous
papers investigate intrusions against healthcare communication
protocols, such as HTTP and Modbus/TCP. As mentioned,
HTTP is widely adopted by many healthcare computing sys-
tems, such as EHR, while Modbus/TCP is an application-layer
protocol, which is adopted in IoMT. Hence, in this paper, we
introduce an IDPS, which recognises efficiently HTTP and
Modbus/TCP cyberattacks and adopts active learning in order
to re-train itself based on the detection outcome.

III. PROPOSED ARCHITECTURE

Fig. 1 illustrates the architecture of the proposed IDPS,
which consists of three main modules, namely (a) Network
Flow Monitoring and Extraction Module, (b) Intrusion Detec-
tion Engine and (c) Notification and Response Module. The
first module undertakes to capture the monitoring network
traffic and extract the corresponding Transmission Control
Protocol/Internet Protocol (TCP/IP) network flows. The sec-
ond module is responsible for detecting the corresponding
attacks against the HTTP and Modbus/TCP protocols. Finally,
the Notification and Response Module informs the security
expert about potential intrusions and can apply some automate
countermeasures that are detailed subsequently. In particular,
the following subsections detail each module individually,
including the respective technologies.

Moreover, Fig. 1 depicts the steps of the Active Learning
methodology, which is composed of four main steps. In the

first step, the unlabelled data is assessed by the query strategy
named Uncertainty Data Sampling. Then, the data approved
by the Uncertainty Data Sampling is fed to the supervised
classifiers depending on the corresponding network flows
(i.e., HTTP network flows or Modbus/TCP network flows).
Next, the supervised classifiers predict the labels that also are
verified by a security expert. It is worth mentioning that the
security expert has the ability to intervene and change the
labels predicted by the supervised classifiers. Finally, the new
labelled data is introduced to the new training dataset, which
is used to update and re-train the supervised classifiers. The
Active Learning methodology is detailed in section IV.

Fig. 1: Architecture of the proposed IDPS

A. Network Flow Monitoring and Collection Module

The Network Flow Monitoring and Collection Module mon-
itors the examined healthcare infrastructure through a Switch
Port Analyzer (SPAN), thus receiving the overall network
traffic generated by the connected healthcare devices. In partic-
ular, it applies Tcpdump in order to capture the network traffic
and then CICFlowMeter to generate bidirectional network flow
statistics. Two kinds of network flow statistics are generated
related to (a) HTTP and (b) Modbus/TCP. The differentiation
between these statistics is achieved through the source and
destination TCP/IP ports. HTTP utilises the 80 TCP port or
the 443 TCP port whether the Secure Sockets Layer/Transport
Layer Security (SSL/TLS) protocol is applied. On the other
side, Modbus/TCP listen to the 502 TCP port.

B. Intrusion Detection Engine

The Intrusion Detection Engine is the core module
of the proposed IDPS. It consists of two supervised
classifiers for the HTTP and Modbus/TCP, respectively. The
HTPP classifier can recognise four relevant cyberattacks,
namely (a) DoS, (b) SQL injection, (c) bruteforce and (d)
XSS. The first HTTP-related cyberattack floods the target
healthcare system with HTTP packets. The SQL injection
intends to accomplish unauthorised access cyberattacks.
The bruteforce attack aims to discover the passwords of



web applications by using all possible choices. Finally,
XSS injects malicious scripts into the web applications.
On the other side, our previous work in [4] describes
the possible Modbus/TCP cyberattacks. In particular, the
Modbus classifier is capable of discriminating the following
cyberattacks: (a) modbus/function/readHoldingRegister, (b)
modbus/scanner/uid, (c) modbus/function/readDiscreteInput,
(d) modbus/dos/writeSingleCoils, (e) mod-
bus/function/writeSingleRegister, (f) mod-
bus/function/readInputRegister, (g) modbus/function/readCoils
(DoS), (h) modbus/function/readHoldingRegister (DoS),
(i) (modbus/function/readDiscreteInputs (DoS)), (j)
modbus/dos/writeSingleRegister, (k) modbus/scanner/getfunc,
(l) modbus/function/writeSingleCoils and (m)
modbus/function/readInputRegister (DoS). Regarding the
ML and DL techniques, for the HTTP protocol, a Decision
Tree classifier is utilised, while the Random Forest classifier
is used for Modbus/TCP. The evaluation of these classifiers
is analysed in V.

C. Notification and Response Module

The Notification and Response Module notifies the secu-
rity expert about the possible security events via a web-
based interface. The security events follow the format of the
AlienVault OSSIM security events [16]. Moreover, through the
aforementioned web interface, the operator has the ability to
check and change the labels of the potential security events.
Furthermore, the Notification and Response Module generates
and applies some automate firewall rules that can mitigate
or even prevent the various cyberattacks. For this purpose,
the Linux firewall, namely iptables, is adopted, utilising data
from the TCP/IP network flows extracted by the Network Flow
Monitoring and Collection Module.

IV. ACTIVE LEARNING: PROBLEM FORMULATION AND
METHODOLOGY

Active Learning is commonly adopted when there are no
available labelled training datasets as in our case (i.e., intrusion
detection in a healthcare ecosystem) since CIs cannot label
and disclose their sensitive data. It provides an operational
framework, which selects the most useful and informative data
samples from a set of unlabelled data in order to optimize
and construct a training dataset, which in turn will lead to
producing more accurate supervised ML and DL classifiers
(hypothesis). Unlike Passive Learning, which collects and
feeds data samples randomly, Active Learning assesses the
data samples based on particular criteria, thereby provid-
ing a training dataset with fewer data samples that include
the most informative observations. These samples should be
characterized by three main properties: (a) they should be
represented, (b) they should be representative and (c) they
should output accurate detection results. Usually, there is
an external factor that annotates the samples investigated,
such as a human annotator. Three main methods are utilized
by an Active Learner in order to query for data samples:
(a) query synthesis, (b) stream-based selective sampling and

(c) pool-based sampling. The first case synthesizes the data
samples de novo, thus producing never observed data samples.
However, it does not consider the data distribution, which can
be informative by the hypothesis. The other methods solve this
problem. The stream-based selective sampling method receives
data samples as streams continuously and decides based on
a query strategy which data samples should be labelled or
not. After the labelling process by the external factor (e.g.,
a human operator), they are moved into the training set. On
the other side, the pooling method creates first a pool with
unlabelled data samples and sequentially decides based on
a query strategy which of them will be labelled. After the
labelling process by the external factor, they are moved into
the training set.

Supposing that the TCP/IP network flows from the health-
care environment flow continually and utilizing the pooling-
based sampling method, let x be an unlabelled network flow
from the input space X and y the respective label defined
by the HTTP and Modbus/TCP threats discussed in subsec-
tion III-B, including also the normal state. Moreover, let U be a
set of unlabelled TCP/IP network flows within a pool. The later
is collected by the Network Flow Monitoring and Collection
Module. Moreover, let L be the training dataset consisting of
the labelled TCP/IP network flows. We define the function
f(x) = y as the target function, which absolutely classifies
the unlabelled TCP/IP network flows in the correct classes.
On the other side, we define h(x) = y′ as the respective,
supervised classifier, which predicts the label of an unlabelled
TCP/IP network flow after the training process. Thus, the
generalization error E can be expressed by equation 1.

E[l(h)]

∫ ∞
−∞

l(h(x), f(x)) dx (1)

where l is the squared error function defined by equation 2.

l(h(x), f(x)) = (h(x)− f(x))2 (2)

where l is the squared error function defined by equation 2.
Therefore, the Active Learning problem lies in the fact that
the generalisation error should be minimised based on the
new optimum training dataset L. In other words, we need to
identify and label those unlabelled TCP/IP network flows in
the pool that next will be used in order to re-train the super-
vised classifiers (hypothesis) for the HTTP and Modbus/TCP
protocols with the most efficient accuracy. To this end, there
are various query strategies, namely (a) Uncertainty Sampling,
(b) Query-by-Committee, (c) Expected Model Change, (d)
Expected Error Reduction, (e) Variance Reduction and (f)
Information Density. In this paper, we adopt the Uncertainty
Sampling strategy, which takes advantage of the classifier’s
(hypothesis) detection uncertainty. In particular, the rationale
behind the Uncertainty Sampling in the proposed IDPS is to
ask the external factor about those unlabelled TCP/IP network
flows for which the hypothesis is less confident. In our case,
the external factor is the same hypothesis since the IDPS
should be re-trained by itself. Moreover, a security expert



can verify or change the labels of the selected unlabelled
TCP/IP network flows from the web-based interface of the
Notification and Response Module. The key point of the
Uncertainty Sampling lies in the criterion used for calculating
the uncertainty. For this purpose, various measures have been
specified in the literature, such as (a) entropy, (b) least margin
and (c) the least confident of prediction. In this work, we adopt
the entropy criterion, which is defined by equation 3.

H = −
m∑
i=1

pθ(yi|x) log2(pθ(yi|x)) (3)

where pθ denotes the probability of class i for the observation
x, while θ denotes the parameters of the supervised classifier
(hypothesis). Therefore, the entropy criterion selects those
TCP/IP network flows x∗ from the pool U that satisfy the
equation 4. In this paper, δ is defined experimentally.

x∗ = argmax(x) +H > δ (4)

Based on the aforementioned remarks, Algorithm 1 defines
the active learning procedure of the proposed IDPS. First, L is
an initial training dataset with a few data samples that are used
to train h(x) for the HTTP protocol and the Modbus/TCP pro-
tocol, respectively. In particular, for the HTTP protocol, L was
formed, utilising the CIC-IDS2017 dataset, while regarding the
Modbus/TCP protocol, L was constructed, by emulating the
cyberattacks analysed in our previous work [4]. On the other
side, the Network Flow Monitoring and Collection Module
fills U . While the size of U is greater than zero and if the
entropy criterion is satisfied for each record in U , h(x) predicts
the label of the corresponding record and the security expert
verifies or changes the outcome of this prediction via the web-
based interface of the Notification and Response Module. Next,
the specific record of U is added in L, which then is used to
re-train h(x).

Algorithm 1: Active Learner: Pooling-based Sampling
and Uncertainty Sampling Strategy

Data: U, L, h
Result: Re-train h
initialization;
while size(U) > 0 do

if classifier uncertainty(U(i)) > δ then
Predict y(i) using h;
Verify or change the prediction of h through

the security expert ;
Add U(i) and y(i) in L;
Re-train h

end
Remove U(i) from U;

end

V. EVALUATION ANALYSIS

This section is devoted to the evaluation analysis of the
proposed IDPS. Before analysing the evaluation results, we

TABLE I: Evaluation Results related to the cyberattacks against HTTP
ML Method Accuracy TPR FPR F1
Decision Tree
Classifier 0.9644 0.9111 0.0222 0.9111

Naive Bayes 0.7288 0.72888 0.27111 0.66744
SVM 0.89075 0.89075 0.10924 0.88027
Random Forest 0.92296 0.80740 0.04814 0.80740
MLP 0.90478 0.61915 0.05440 0.61915
Dense DNN Relu 0.90908 0.63633 0.05195 0.63633
Dense DNN Tanh 0.94074 0.85185 0.03703 0.85185

TABLE II: Evaluation Results related to the cyberattacks against Modbus/TCP
ML Method Accuracy TPR FPR F1
Decision Tree
Classifier 0.83333 0.94827 0.28160 0.85051

Naive Bayes 0.71982 0.54597 0.10632 0.66086
SVM 0.841 0.523 0.095 0.523
Random Forest 0.94454 1 0.10166 0.94250
MLP 0.81797 0.96663 0.21924 0.68018
Dense DNN Relu 0.88357 0.87158 0.11341 0.74989
Dense DNN Tanh 0.84078 0.96122 0.18952 0.70827

need to define first the necessary terms. First, True Positives
(TP) denote the number of the correct classifications that detect
the cyberattacks as intrusions. True Negatives (TN) imply
the number of the correct classifications that recognise the
normal network packets as normal. On the other side, False
Negatives (FN) denote the number of incorrect classifications
that detect the cyberattacks as normal. Finally, False Positives
(FP) indicate the number of mistaken classifications where the
normal behaviours are recognised as intrusions. Based on these
terms, the following metrics are defined equations 5-8.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

FPR =
FP

FP + TN
(6)

TPR =
TP

TP + FN
(7)

F1 =
2× TP

2× TP + FP + FN
(8)

Moreover, a plethora of ML supervised classifiers were
tested, including (a) Decision Tree, (b) Random Forest, (c)
KNN, (d) SVM, (e) Naive Bayes, (f) Multi-Layer Perceptron
(ML) as well as two DL supervised classifiers, namely Dense
Deep Neural network (DNN) Relu and Dense DNN Tanh
originating from our previous work in [17]. After the last re-
training procedure implemented by the Active Learner, Ta-
ble I shows the evaluation results for the cyberattacks against
the HTTP protocol. The Decision Tree achieves the best
performance, where Accuracy = 0.9644, TPR = 0.9111,
FPR = 0.0222 and F1 = 0.9111. In a similar manner,
Table II depicts the evaluation results related to the detection
of the cyberattacks against the Modbus/TCP protocol. In this
case, the best performance is carried out by Random Forest,
where Accuracy = 0.94454, TPR = 1, FPR = 0.10166



and F1 = 0.94250. Finally, Figs.3-2 show how the accuracy
is increased in each case during the re-training phases.

Fig. 2: Decision Tree - Accuracy Increment during the re-training phases

Fig. 3: Random Forest - Accuracy Increment during the re-training phases

VI. CONCLUSIONS

The new reality in the healthcare ecosystem introduces
significant cybersecurity issues that can lead to devastating
consequences or even fatal accidents. In this paper, we pre-
sented an IDPS, which is capable of detecting and mitigating
cyberattacks efficiently against the HTTP and Modbus/TCP
protocols that are widely adopted in the e-healthcare services.
On the one hand, HTTP is utilised by typical, ICT healthcare
services, such as EHR, while Modbus/TCP is used by IoMT.
Given the rarely available intrusion detection datasets related
to CIs and especially to the healthcare domain, the main
novelty behind the proposed IDPS is its ability to re-train itself,
utilising an Active Learning approach. The evaluation analysis
demonstrates the efficiency of the proposed IDPS against
HTTP and Modbus/TCP cyberattacks, showing additionally
how the overall accuracy is increased during the re-training
phases.
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