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Abstract—The interconnected and heterogeneous nature of the
next-generation Electrical Grid (EG), widely known as Smart
Grid (SG), bring severe cybersecurity and privacy risks that can
also raise domino effects against other Critical Infrastructures
(CIs). In this paper, we present an Intrusion Detection System
(IDS) specially designed for the SG environments that use
Modbus/Transmission Control Protocol (TCP) and Distributed
Network Protocol 3 (DNP3) protocols. The proposed IDS called
MENSA (anoMaly dEtection aNd claSsificAtion) adopts a novel
Autoencoder-Generative Adversarial Network (GAN) architec-
ture for (a) detecting operational anomalies and (b) classifying
Modbus/TCP and DNP3 cyberattacks. In particular, MENSA
combines the aforementioned Deep Neural Networks (DNNs) in
a common architecture, taking into account the adversarial loss
and the reconstruction difference. The proposed IDS is validated
in four real SG evaluation environments, namely (a) SG lab,
(b) substation, (c) hydropower plant and (d) power plant, solving
successfully an outlier detection (i.e., anomaly detection) problem
as well as a challenging multiclass classification problem con-
sisting of 14 classes (13 Modbus/TCP cyberattacks and normal
instances). Furthermore, MENSA can discriminate five cyber-
attacks against DNP3. The evaluation results demonstrate the
efficiency of MENSA compared to other Machine Learning (ML)
and Deep Learning (DL) methods in terms of Accuracy, False
Positive Rate (FPR), True Positive Rate (TPR) and the F1 score.

Index Terms—Anomaly detection, auto-encoder, cybersecurity,
generative adversarial network, deep learning, machine learning,
modbus, smart grid.

I. INTRODUCTION

THE RAPID advance of the Industrial Internet of Things
(IIoT) leads the conventional Electrical Grid (EG) into
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a new digital paradigm called Smart Grid (SG), providing
significant benefits, such as better utilisation of the existing
resources, pervasive control and self-healing. According to [1],
the SG will compose the biggest Internet of Things (IoT)
application. However, the evolution of the smart technologies
introduces severe cybersecurity issues due to (a) the neces-
sary presence of insecure, legacy systems, such as Industrial
Control Systems (ICS) and Supervisory Control and Data
Acquisition (SCADA) [2], (b) the vulnerability nature of
Transmission Control Protocol/Internet Protocol (TCP/IP) [3]
and (c) the new attack surface introduced by the smart
technologies [4].

Denial of Service (DoS), unauthorised access and False Data
Injection (FDI) compose expected attack vectors targeting the
SG with disastrous consequences. The first one target the avail-
ability of the involved systems, while the other ones exploit
the vulnerabilities of the industrial protocols in order to com-
promise the confidentiality, integrity and authenticity of the
exchanged information. A characteristic Advanced Persistent
Threat (APT) [5] was the BlackEnergy3 [6] in 2015 against a
Ukrainian substation, resulting in the power outage for more
than 225,000 people. Moreover, the Crashoverride APT in
2016 caused another blackout in Ukraine [6]. Other devas-
tating APTs against Critical Infrastructures (CIs) are Stuxnet,
Flame, Duqu [7] and TRITON [8]. Also, in 2014 and 2017, the
Dragonfly and Dragonfly 2.0 APTs targeted multiple energy
companies [2].

Both industry and academia have provided valuable coun-
termeasures [9]–[13]. In particular, IEC 62351 [14], [15]
specifies a set of guidelines in order to enhance the security
of ICS/SCADA. Furthermore, based on the aforementioned
remarks, the timely, accurate and consistent intrusion detection
is necessary. In particular, signature-based Intrusion Detection
Systems (IDS), such as Snort and Suricata can recog-
nise a plethora of known intrusions. Moreover, anomaly-based
IDS adopting statistical analysis, Machine Learning (ML) and
Deep Learning (DL) methods can detect zero-day attacks
and unknown anomalies. However, despite the benefits of the
aforementioned solutions, they are characterised by essen-
tial limitations [16]. First, in many CIs, such as the SG,
the adoption of the IEC 62351 is challenging, especially for
the adjustments that need to be taken place in real-time.
On the other side, the signature-based IDS can detect only
known cyberattack patterns and include only a limited set of
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signature rules related to industrial communication protocols
like Modbus, Distributed Network Protocol 3 (DNP3) and IEC
61850 [2]. Finally, the anomaly-based IDS suffer from a high
number of False Positives (FP).

In this paper, we provide an anomaly detection model capa-
ble of: (a) detecting anomalies and (b) classifying anomalies
into particular cyberattack types. The anomaly detection refers
to the process of identifying whether an action is malicious
or not. On the other side, the anomaly classification cat-
egorises the malicious activities into particular cyberattack
types. The proposed model called MENSA (anoMaly dEtec-
tion aNd claSsificAtion) combines simultaneously two Deep
Neural Networks (DNNs): (a) autoencoder and (b) Generative
Adversarial Network (GAN). We validated the efficiency
of MENSA with three types of datasets: (a) Modbus/TCP
network flows, (b) DNP3 network flows and (c) opera-
tional data (i.e., time-series electricity measurements). The
datasets related to Modbus/TCP and the operational data are
originating from four SG environments: (a) SG lab, (b) sub-
station, (c) hydropower plant and (d) power plant. The DNP3
cyberattacks are related only to the substation environment.
Consequently, the contributions of this paper are summarised
in the following sentences.

• Providing a DL-based anomaly detection and classi-
fication model called MENSA. MENSA can detect in
parallel both anomalies and particular cyberattacks with
high performance in terms of Accuracy, True Positive
Rate (TPR), False Positive Rate (FPR) and the F1 score.
In particular, the average Accuracy, TPR, FPR and F1
are calculated at 0.947, 0.812, 0.036 and 0.7942, respec-
tively. Compared to the existing anomaly-based IDS [16],
MENSA addresses efficiently the FP.

• Detecting a plethora of Modbus/TCP and DNP3
cyberattacks: MENSA is able to solve a difficult classifi-
cation problem by detecting and discriminating efficiently
14 Modbus/TCP-related cyberattacks. Moreover, it can
recognise five DNP3 cyberattacks. The MENSA detec-
tion capability relies on TCP/IP network flow statistics.
Therefore, the MENSA detection efficiency demonstrates
also its scalability since similar statistics can be used
for detecting cyberattacks against any protocol at the
application layer.

• Detecting anomalies upon operational data: MENSA
can detect anomalies upon various operational data (i.e.,
electricity measurements) coming from different SG envi-
ronments.

• Validating MENSA with real data originating from
four use cases: The efficiency of MENSA was validated
using network traffic data and operational data originat-
ing from four SG evaluation environments: (a) SG lab,
(b) substation, (c) hydropower plant and (d) power plant.

• Evaluating a plethora of ML/DL methods: Various
ML/DL models were evaluated and compared with each
other in terms of Accuracy, TPR, FPR and the F1 score.
MENSA DL models provide the best performance.

The rest of this paper is organised as follows. Section II dis-
cusses previous relevant works. Section III provides the nec-
essary background. Finally, Section IV analyses the MENSA

architecture, while Section V describes how MENSA is imple-
mented in a SG environment. Finally, Section VII concludes
this paper.

II. RELATED WORK

Several papers have investigated the IoT and SG secu-
rity issues. Some remarkable cases are listed in [16]–[34].
In particular, in our previous work in [16], we present a
comprehensive study related to the SG intrusion detection
solutions. After introducing the necessary background related
to the architectural ingredients of the SG, 37 cases are anal-
ysed, taking into account the architecture schema, the detection
method and their efficiency. Accordingly, in [18] Mitchel
and Chen provide a survey related to the intrusion detection
techniques for Cyber-Physical Systems (CPS). Similarly, after
giving the necessary information regarding the CPS and intru-
sion detection methods, Mitchel and Chen study a plethora
of specially designed IDS for the CPS. In [17], Rakas et al.
examine 26 IDS cases related to SCADA systems. The authors
define first an evaluation methodology, which considers the
IDS performance, test environment, implementation tools,
detection techniques and protocols. Next, after explaining the
factors affecting the design and development of the SCADA
IDS, they briefly discuss 26 SCADA IDS cases, thereby iden-
tifying research gaps and directions for future research work.
In parallel, multiple survey papers have studied DL techniques
for detecting and classifying anomalies. Characteristic exam-
ples are provided in [35]–[37]. Therefore, taking into account
the aforementioned points, subsequently, we discuss some spe-
cific IDS cases that use DL techniques for detecting intrusions
against the SG and SCADA systems. Each paragraph focuses
on a dedicated case. Finally, we highlight how our work is
differentiated.

In [38], Shire et al. provide a malware intrusion detection
system for IoT environments, utilising a Convolutional Neural
Network (CNN). The proposed IDS consists of three main
steps. Fist, a network sniffer undertakes to capture the overall
network traffic. For this purpose, a socket Python library is
adopted. Next, the Binvis tool [39] is used to convert the
stored network traffic (i.e., pcap file) into an image. In partic-
ular, the Hilbert space-filling curve clustering algorithm [40]
is used to extract the images. The specific algorithm over-
comes other solutions in maintaining the locality among the
objects in multi-dimensional spaces, thus generating a more
suitable image imprint. Finally, the image is inserted into a
CNN, which undertakes to identify the corresponding mal-
ware. The CNN is constructed, utilising Tensorflow and
more precisely the MobileNet module. The performance
analysis demonstrates the effectiveness of the proposed IDS.

In [41], He et al. present a DL-based detection method,
which is capable of recognising FDI attacks against SCADA
systems for stealing energy. In particular, the proposed method
is composed of two main detection schemes: (a) State Vector
Estimator (SVE) and (b) Deep-Learning Based Identification
(DLBI). SVE assesses the real-time measurements by com-
puting the l2 − norm and comparing it with a particu-
lar threshold value t, which is defined experimentally. If
the calculation result is higher than t, then an alarm is
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reported. Otherwise, the DLBI is activated for evaluating fur-
ther the real-time measurements. DLBI constitutes a Deep
Belief Network (DBN) called Conditional DBN (CDBN),
which utilises a Conditional Gaussian Bernoulli Restrictive
Boltzmann Machine (CGBRBM) in order to identify the
appropriate features. The resiliency of the proposed method
is demonstrated based on four simulated cases, utilising an
IEEE 118-bus power test system and an IEEE 300-bus system.
Moreover, the efficiency of the proposed method is vali-
dated by comparing its detection results with the outcomes
of two ML solutions: (a) Artificial Neural Network (ANN)
and (b) Support Vector Machine (SVM).

In [42], Saharkhizan et al. provide an intrusion detec-
tion mechanism for the Modbus IoT environments, which
aggregates an ensemble of multiple Long-Short-Term-Memory
(LSTM) networks. LSTM is a fundamental type of Recurrent
Neural networks (RNNs) that can learn the log-term pattern of
the training data. The proposed mechanism utilises the dataset
of Simoes [43] that consists of four cyberattacks-categories,
namely (a) Man In The Middle (MITM) attacks, (b) Ping
Distributed DoS (DDoS) attacks, (c) TCP SYN DoS attacks
and (d) Modbus query flood attacks. Moreover, the authors use
the CICFlowMeter to generate the corresponding bidirec-
tional network flows. Finally, the output of six LSTM networks
is aggregated with the help of a decision tree in order to clas-
sify the exported network flows into the categories mentioned
above. Based on the evaluation results, the accuracy of the
proposed mechanism reaches 99%.

In [44], Yang et al. present a network IDS for the DNP3
SCADA systems. The proposed IDS relies on a CNN, which
consists of five convolutional layers that are followed by the
Rectified Linear Unit (ReLu) to increase the non-linearity of
the feature maps. Next, the max-pooling function is applied
in order to increase the spatial invariance. The input of CNN
is a two-dimensional matrix with an rxD size where r denotes
a time window and D the total size of the DNP3 packets’
attributes. The time window r is equal to the number of the
DNP3 packets transmitted within a second. On the other side,
D is equal to 25, i.e., there are 25 DNP3 network packets’
attributes originating from the (a) link layer, (b) network layer,
(c) transport layer and (d) the application layer. The proposed
IDS solves a difficult classification problem consisting of
multiple attacks-categories, namely (a) Address Resolution
Protocol (ARP) poisoning attacks, (b) TCP SYN Flood attacks,
(c) TCP RST attacks, (d) User Datagram Protocol (UDP) flood
attacks, (e) DNP3 application transmission attacks, (f) outsta-
tion DFC flag attacks, (g) function reset attacks, (h) pseudo-
transport layer sequence modification attacks, (i) fragmented
message interruption attacks, (j) data-link layer length over-
flow attacks, (k) configuration capture attacks, (l) outstation
data reset attacks, (m) clear object attacks, (n) outstation write
without reading, (o) address alteration attacks, (p) unavailable
function attacks, (q) dual single-packet attacks and (r) dual
multiple-packet attacks. Based on the evaluation results, the
overall accuracy of the proposed CNN reaches 99.38%.

In [45], the authors present an Intrusion Prevention System
(IPS) focused on the DNP3 cyberattacks. The architec-
ture of the proposed IPS is composed of three modules

(a) Data Monitoring Module, (b) DIDEROT Analysis Engine
and (c) Response Module. The Data Monitoring Module
undertakes to monitor and capture the DNP3 network traf-
fic, extracting the respective network. Then, the DIDEROT
Analysis Engine applies a decision tree and an autoencoder in
order to recognise potential DNP3 cyberattacks and anoma-
lies, respectively. The decision tree focuses on a classification
problem, which is composed of five cyberattacks, namely
(a) injection, (b) flooding, (c) DNP3 reconnaissance, (d) replay
and (e) masquerading. On the other side, the autoencoder
solves an anomaly detection problem, which tries to iden-
tify DNP3 anomalies. Finally, the Response Module informs
the Software-Defined-Networking (SDN) controller to dis-
rupt the malicious DNP3 flows by transmitting the necessary
OpenFlow commands to the SDN Switches. Based on the
evaluation results, the F1 score of the proposed decision
tree and the DIDEROT autoencoder reach 0.991 and 0.953,
respectively.

In our previous work in [46], we provide an anomaly-
based IDS called ARIES (smArt gRid Intrusion dEtection
System), which secures the SG communications. The archi-
tecture of the proposed IDS consists of three modules, namely
(a) Data Collection Module, (b) ARIES Analysis Engine and
(c) Response Module. The Data Collection module sniffs
the overall network traffic, producing the analogous bidirec-
tional network flow statistics. These statistics are analysed
by the ARIES Analysis Engine, thus detecting successfully
relevant cyberattacks and anomalies. Finally, the Response
Module informs the system operator about potential cyber-
attacks. The ARIES Analysis Engine is composed of three
detection layers, namely (a) Network-flow Based detection,
(b) Packet-based detection and (c) Operational Data based
detection. The first layer is responsible for recognising spe-
cific cyberattacks and anomalies by processing network flow
statistics. In particular, it can detect (a) DoS cyberattacks,
(b) Secure Shell (SSH) brute-force attacks, (c) File Transfer
Protocol (FTP) brute-force attacks, (d) port-scanning cyberat-
tacks and (e) bots. To this end, a decision tree classifier is
applied. The second layer focuses on Modbus/TCP anomalies
by processing Modbus/TCP packets’ attributes via the Isolated
Forest algorithm. Finally, the third layer analyses operational
data (i.e., time-series electricity measurements) via a GAN
called ARIESGAN. The evaluation analysis demonstrates the
efficiency of all ARIES detection layers. In particular, the F1
score of the first detection layer reaches 0.982, while the F1
score of the second and third layer reaches 0.751 and 0.853,
respectively.

Undoubtedly, the works analysed earlier provide valuable
insights and methodologies concerning the intrusion detection
in CIs. DL is an emerging technology, which can contribute
significantly to the defence against the rapid evolution of the
cyberthreats and malware. In particular, the lack of labelled
data renders DL techniques an ideal solution for construct-
ing effective security applications since they can identify
the appropriate features autonomously. Nevertheless, it is
noteworthy that most of the previous works have not been
validated with real SG environments and data. Furthermore,
apart from [44], [45], most of them either do not consider
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the SCADA protocols that constitute the root of the most
anomalies/intrusions in CIs or cover them partially (i.e., they
recognise only a few relevant attacks). Therefore, based on
the aforementioned remarks, this paper extends our previous
work in [46] by enhancing ARIESGAN and introducing an
Autoencoder-GAN architecture with novel minimisation func-
tions, taking into account both the adversarial error and
the reconstruction difference. In particular, the proposed
Autoencoder-GAN architecture was validated in four real
SG evaluation environments that use the Modbus/TCP and
DNP3 protocols. Our previous work in [46] could detect only
Modbus/TCP anomalies. In contrast, this paper examines and
detects a plethora of Modbus/TCP cyberattacks that can be
performed by Smod [47], a widely known penetration-testing
tool related to Modbus.

III. BACKGROUND

This section provides the necessary background regarding
(a) Modbus, (b) DNP3, (c) Autoencoders and (d) GANs. In
particular, after describing the core architecture of the Modbus
and DNP3 protocols, we specify which Modbus/TCP and
DNP3 attacks can be successfully recognised by MENSA.
Next, the functionality of the Autoencoder and GAN DNNs is
provided so that the reader can normally proceed to the uni-
fied Autoencoder-GAN architecture described in the following
sections. More detailed information about Autoencoders and
GAN is provided in [35]–[37].

A. Modbus/TCP and DNP3 Threat Identification

Modbus is an industrial communication protocol adopted
widely by SCADA systems in the energy sector due to its
simplicity, easy deployment and open specifications. In par-
ticular, the general Modbus frame is called Application Data
Unit (ADU), which in turn consists of (a) the Protocol Data
Unit (PDU), (b) Addressing and (c) Error Checking. PDU
encloses the primary information of the Modbus packets,
including the function code and the respective data [2]. Each
function code defines a different functionality. The address-
ing and error checking functionalities rely on the Modbus
version (i.e., (a) Modbus/Remote Terminal Unit (RTU) or
(b) Modbus/TCP). In the Modbus/RTU version, the master
and each slave are characterised by unique IDs, while the
error checking is achieved through Cyclic Redundancy Check
(CRC). On the other hand, in the Modbus/TCP version, the
Slave ID field is replaced by the Modbus Application Protocol
(MBAP) header, which in turn includes (a) the Transaction
Identifier, (b) the Protocol Identifier, (c) Length and (d) Unit
Identifier. The protocol identifier is always equal to zero for the
current Modbus services, while other values are reserved for
potential extensions. Length indicates the size of the remain-
ing field, including Unit ID, Function Code and Data. The
Unit ID is utilised for serial connecting to a Modbus device,
which does not use the Modbus/TCP version. Finally, the
error checking functionality was replaced by the corresponding
mechanisms of TCP/IP.

DNP3 is a reliable protocol applied largely in the CIs in the
U.S. In the SG, DNP3 is used to transfer messages between

master devices and outstations. It supports several topologies,
comprising (a) point-to-point, where an outstation and one
master communicate with each other, (b) multiple-drop, where
several masters and outstations interact with each other and
(c) hierarchical interface, where an entity can operate with both
roles. DNP3 includes three layers: (a) link layer, (b) transport
layer and (c) application layer. The link-layer offers addressing
services, multiplexing, data fragmentation, error checking and
link control. On the other side, the transport layer is used as
in the case of the Open Systems Interconnection (OSI) model,
and it is represented with one byte utilised for fragmenting
the DNP3 packets. Finally, the application layer defines a
set of functional commands utilised for managing and con-
trolling the SG entities, such as RTUs, Programmable Logic
Controllers (PLCs), Intelligent Electronic Devices (IEDs) and
smart meters. Apart from the DNP3 serial line communication,
DNP3 can be used over TCP/IP, wherein the aforementioned
DNP3 layers are incorporated into the application layer of
TCP/IP.

Both Modbus and DNP3 are characterised by severe security
issues since they were not constructed having cybersecurity
in mind [2]. In our previous work in [47] we have identi-
fied the Modbus/TCP cyberattacks based on Smod. Similarly,
in [48], Rodofile et al. discuss possible cyberattacks against
DNP3. Based on these works, Table I and Table II enumer-
ate the Modbus/TCP and DNP3 cyberattacks that MENSA can
classify, respectively.

B. Autoencoder and GAN

A GAN [49], [50] relies on two sub-neural networks, the
Generator G and the Discriminator D. The Generator G takes
random noise data and generates data similar to the real data.
On the other hand, the Discriminator D inputs a data sample
and tries to classify it as real or fake. The GAN aims to push
and train both sub-networks that rival each other so that the
Generator G can produce data that the Discriminator D cannot
distinguish from the real ones. Equation (1) shows the relation
between G and D.

min
G

max
D

V (G ,D) = min
G

max
D

Ex∼pdata [log(D(x ))]

+ Ez∼pz [log(1 − D(G(z )))] (1)

G accumulates noise z from space Z mapping it to the space
X from which D inputs x. (pdata(x ) and (pz (z )) denote the
probability distribution of spaces X and Z, respectively.

The autoencoders are DNNs that learn to imitate the input
data by compressing and inflating it into a multilayer pipeline.
In particular, an autoencoder consists of two sub-networks,
the Encoder and the Decoder. The Encoder sub-network com-
presses the input data of space X to a manifold F. In contrast,
the decoder sub-network inflates the data of manifold F to a
sample P, where P ∼ X . The goal of the autoencoder archi-
tecture is to help the network through the training process, thus
producing samples p that are similar to the given real data r.
After the training process, the network inputs new data similar
to the training data. Equation (2) shows the data pipeline of
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TABLE I
MODBUS/TCP CYBERATTACKS

the autoencoder architecture.

r , p : argmin
r ,p

∥
∥X − (p ◦ r)X

∥
∥2

r : X → F , p : F → P . (2)

IV. MENSA ARCHITECTURE

MENSA combines the DNNs mentioned above to compose
a unified DNN architecture for (a) anomaly detection and (b)
anomaly classification purposes. This union is accomplished
by encapsulating the autoencoder architecture into the struc-
ture of the GAN network. The Generator takes the form of

the Decoder, while the Discriminator takes the structure of
the Encoder. In this schema, the Generator-Decoder takes
an input of a noise sample N × M , where N is the num-
ber of the noise points in a sample and M is the number
of the input samples. Next, the Generator-Decoder inflates
those samples to produce samples that imitate the desired
data. The Discriminator-Encoder compresses the Generator-
Decoder’s output into a single point, which is the validity label
of the sample. This function is used to discriminate the real
and fake samples. An intermediate model is exported after the
training process from the Discriminator-Encoder sub-network.
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TABLE II
DNP3 CYBERATTACKS

This model is part of the Discriminator-Encoder and it is
utilised for the anomaly detection procedure. It comprises the
input layer up to the latent layer before the output of the
network. In particular, it is used to reduce the input dimen-
sion into a specified latent space. Two samples pass through
the intermediate model: (a) the real data sample and (b) the
generated sample. At this point, the Generator-Decoder has
learned to generate close to real data that imitates the normal
samples. To calculate the anomaly score for the real sample,
the Adversarial Loss function is utilised. The Adversarial Loss
is the difference between the generated and the real sample.
Since the Generator-Decoder has learned to produce normal
samples, the greater the Adversarial Loss, the higher the prob-
ability of the real sample being abnormal. The equation below
describes the Adversarial Loss.

AdvL
(

dr , dp
)

=
∥
∥dr − dp

∥
∥ (3)

where AdvL(x) is the adversarial loss score, dr and dp are the
prediction of the latent model in the real and the generated
sample, respectively. On the other side, regarding the anomaly
classification purpose, a second, lightweight implementation
of the combined Autoencoder-GAN architecture is adopted.
Both Autoencoder-GAN architectures for anomaly detection
and anomaly classification are analysed in the following
subsections.

A. MENSA Autoencoder-GAN for Anomaly Detection

In this case, the combined MENSA Autoencoder-GAN
works as an anomaly detector. It is trained only with a set
of normal samples and can discriminate outliers in a dataset
containing both normal and anomalous samples. The structure
of the entire network can be separated into three compo-
nents, (a) the input layer, (b) the Generator-Decoder and
(c) the Discriminator-Encoder. Fig. 1 depicts the MENSA
Autoencoder-GAN network for anomaly detection.

Input Layer for Anomaly Detection: The input layer repre-
sents the input of the proposed DNN. It takes a noise vector of
size N generated based on the uniform distribution with mean
μ and standard deviation σ.

Generator-Decoder for Anomaly Detection: The Generator-
Decoder is in charge of inflating a random noise input vector of
size z = 10 to a size M, where M is the number of features,
while the generated data imitates the real one. It is trained
to produce normal samples. The Generator-Decoder’s struc-
ture consists of thirteen layers, an input layer, an output Tanh

Fig. 1. MENSA Autoencoder-GAN for anomaly detection.

layer and a sequence of Dense, ReLU, LeakyReLU, Batch,
Normalization and Dropout layers.

tanh(x ) = 2s(2x ) − 1, tanh → [−1, 1] (4)

where equation (4) describes the Tanh function. tanh(x) is the
output of the tanh function, s(x) is the sigmoid function (6)
and x is the input vector.

An explanatory illustration of the Generator-Decoder’s
structure is shown in Fig. 2. This network is compiled
with the Binary Cross-Entropy function (equation (5)) and
the RMSprop optimizer with a learning rate parameter of
lr = 0.0002. The Binary Cross-Entropy function is defined
as follows. N is the number of samples given, while y is the
label. p(yi ) is the probability of the sample being a match
to the label sample when 1 − p(yi ) presents the inverse of
that probability. Finally, H represents the result of the Binary
Cross-Entropy loss in a given point.

Hp(q) = − 1
N

N∑

i=1

yi · log(p(yi )) + (1 − yi ) · log(1 − p(yi ))

(5)

Discriminator-Encoder for Anomaly Detection: The role
of the Discriminator-Encoder is to distinguish the real and
the generated data samples (i.e., the samples generated by
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Fig. 2. Generator-decoder structure for anomaly detection

Fig. 3. Discriminator-encoder structure for anomaly detection.

the Generator-Decoder). It takes a vector of M features rep-
resenting a data instance sample. Next, it compresses the
data through a multi-layer pipeline into a single point rep-
resenting the validity layer (i.e., the binary classification of
the sample being real or fake). The Discriminator-Encoder
is trained alongside the Generator-Decoder, receiving both
real and generated samples, each with a ground truth label.
The ground truth labels given as input to the Discriminator-
Encoder are represented by tl → 1 for the Generator-Decoder’s
output, while fl → 0 represents the real sample. In the train-
ing process, the Discriminator-Encoder’s training ability is
deactivated when the Generator-Decoder is trained. From the
Discriminator-Encoder, the intermediate model is extracted.
This network is also compiled with the Binary Cross-Entropy
function (equation (5)) and the RMSprop optimizer with a
learning rate parameter of 0.0002. Thirteen layers compose
the Discriminator-Encoder: an input layer, an output Sigmoid
layer (equation (6)) and a sequence of Dense, ReLU, Leaky
ReLU, Batch Normalization and Dropout layers. Fig. 3 illus-
trates the Discriminator-Encoder’s structure. It is noteworthy
that the Discriminator-Encoder operates also as an encoder.
This means that it reduces the dimension of the input sample
from its original dimension to a manifold of size 1, indicating
the validity of the sample. The extracted latent model is an
intermediate model, describing the fist n layers of D before
the output sequence. This nth layer outputs a reduced man-
ifold of size k, which makes the detection easier and faster
than comparing the original samples. There is no standard
way to determine the nth latent layer. Usually, nth is defined
experimentally, identifying the best accuracy/information-loss

Fig. 4. MENSA Autoencoder-GAN for anomaly classification.

trade-off.

s(x ) =
1

1 + e−x , s → [0, 1] (6)

Based on the aforementioned remarks, the MENSA anomaly
detection process uses the following steps. Given a real sample
gr , first, the Generator-Decoder generates a sample gp using
random noise data. Subsequently, both gr and gp are given to
the latent model, which in turn outputs the reduced samples
dr and dp of size k. Next, dr and dp are given to formula (3).
In order to detect the anomaly, a threshold t → [0, 1], is
leveraged. Finally, if the AdvL outcome is greater than t, then
an anomaly is detected.

B. MENSA Autoencoder-GAN for Anomaly Classification

The MENSA Autoencoder-GAN for anomaly classification
is derived by the previous MENSA Autoencoder-GAN for
anomaly detection. This implementation combines both the
process of anomaly detection and anomaly classification into a
single DNN. In particular, it produces three ground-truth label
points, (a) one for the validity of the sample, (b) one for the
anomaly approximation and (c) one describing the anomaly
class of the sample. This architecture can also be separated
into three parts, (a) the Input layer, (b) the Generator-Decoder
and (c) the Discriminator-Encoder. The structure of this DNN
is depicted in Fig. 4. The main difference with the previous
MENSA Autoencoder-GAN for anomaly detection is that this
network is designed to handle multiclass data with fewer fea-
tures. In contrast, the MENSA Autoencoder-GAN for anomaly
detection is designed to handle one class and data with a large
number of features.

Input Layer for Anomaly Classification: The input layer
takes a noise vector input of size N and a vector containing
the classes of the sample. The elements of the random noise
vector follow a normal distribution with μ = 0 and σ = 1.
The label vector with a dimension of [1 x C], is a zero vector
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Fig. 5. Generator-Decoder structure for anomaly classification.

with 1 in the position of the class. C denotes the number of
classes that exist in the given dataset. The class of the sam-
ple is represented by cp , which is derived by the following
formula.

cp = argmax (Vlabel ) (7)

where Vlabel is the label vector.
Generator-Decoder for Anomaly Classification: The

Generator-Decoder is a modified version of the Generator-
Decoder used in Autoencoder-GAN for anomaly detection.
In this case, the Generator-Decoder inputs the two vectors
explained in the input layer and concatenates them in order
to pass through the Generator-Decoder’s structure. The
Generator-Decoder’s structure is illustrated in Fig. 5. It
consists of nine layers, an input layer, an output Relu layer
and a sequence of Dense and ReLU layers. This network
is compiled with the Categorical Cross-Entropy function
(equation (8)) and the Adadelta optimizer [51]. During the
training process, the Generator-Decoder learns to reproduce
the data representing each class in the dataset using a label
vector. This means that it produces a sample of a certain
class, which is introduced as a label vector. The output of
this module is a vector of size M, where M is the number of
features of the sample.

Lcc(r , p) = −
M∑

j=0

N∑

i=0

(

rij ∗ log
(

pij
))

(8)

The above equation denotes the Categorical Cross-Entropy
loss function used to compile the Generator-Decoder.
Lcc(y , p) is the Categorical Cross-Entropy output, r is the
real sample, and p is the generated sample.

Discriminator-Encoder for Anomaly Classification: The
Discriminator-Encoder takes an input vector of M features,
representing a data sample. Since the proposed architecture
produces not only the validity approximation but also the
anomaly classification of the introduced sample, the output of
the Discriminator-Encoder includes two parts. The first part
is the validity label of the given sample, distinguishing the
sample as real or fake. The second part is a label vector that
denotes the multiclass classification of the sample based on
the classes given in the dataset. This vector of size C contains
the numbers predicted by the Discriminator-Encoder in the

Fig. 6. Discriminator-Encoder structure for anomaly classification.

range between [0, 1], using the Softmax activation function
(equation (9)),

softmax (z )i =
ezi

∑

j ,n ezj
(9)

where softmax (z )i is the output of the layer, n is the dimen-
sion of the encoded input vector, zi denotes the input score
and zj describes each individual score of the encoded input
vector.

The class of the sample is the position of the highest
value in that vector, as described by equation (7). As in the
case of MENSA Autoencoder-GAN for anomaly detection,
the Discriminator-Encoder is trained alongside the Generator-
Decoder, receiving both real and generated samples, each with
a ground truth label and a label vector. The ground truth
labels given as input to the Discriminator-Encoder are tl → 1
for the Generator-Decoder’s output and fl → 0 for the real
sample. In the case of the label vectors, for the real sam-
ple, the corresponding label vector is given as input to the
Discriminator-Encoder, while for the fake or predicted sam-
ple, a vector with a random label is given. As previously, the
Discriminator-Encoder’s training ability is deactivated when
the Generator-Decoder is trained. The Discriminator-Encoder
is compiled with the Binary Cross-Entropy (equation (5)) for
the validity. For the classification procedure, the Categorical
Cross-Entropy (equation (8)) and the Adadelta optimizer [51]
are used.

Therefore, to solve the anomaly classification problem the
MENSAAutoencoder-GANforAnomalyDetection is extended a
step further. Since classification is a multi-class problem, the
comparison between the input sample with a randomly gen-
erated sample is not adequate. To overcome this issue, a new
conditional architecture is defined. A conditional GAN can
generate samples for each class. By asking the Generator-
Decoder to generate samples from all the available classes
and applying the above methodology used for the anomaly
detection, MENSA produces C outputs. By applying the AdvL
for each combination of samples dc

r and dc
p , where c ∈ C ,

and choosing the c with the lowest loss, we result in the best
approximation of the class of the given sample. Fortifying
the effort to optimize the classification process, an additional
utility has been added to the MENSA Autoencoder-GAN for
anomaly classification. In particular, apart from predicting the
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TABLE III
MENSA EVALUATION: SMART GRID ENVIRONMENT, PROTOCOLS AND OPERATIONAL DATA

Fig. 7. MENSA Implementation.

validity of the input samples, the Discriminator-Encoder is
also designed to predict the classes. Thus, it overtakes the role
of a classifier. During the training, the Discriminator-Encoder
optimises both the validation and classification processes.

V. MENSA IMPLEMENTATION CAPABILITIES

The SG comprises multiple environments and infrastruc-
tures related to the energy generation, transmission and distri-
bution. Therefore, a reliable IDS for the entire SG ecosystem
should be able to be adapted appropriately based on the
corresponding conditions. These conditions can be expressed
sufficiently by the communication protocols and the opera-
tional data (i.e., time series electricity measurements) used
and exchanged respectively by the components of each SG
infrastructure. Furthermore, an essential safety requirement for
an IDS in an SG environment is to consider the computing
resources of the SG components. In general, the cybersecurity
and privacy solutions should not affect and burden the func-
tionality of the SG components [16]. Finally, an IDS solution
should act timely and reliably, detecting the possible anomalies
and intrusions [16].

Based on the aforementioned remarks, Fig. 7 depicts how
MENSA is implemented in an SG environment. MENSA is
running on a dedicated computing system without deploying
software sensors or services in the SG environment. Thus,
it does not affect the computing resources and the normal
operation of the SG equipment. In particular, the implementa-
tion of MENSA follows five steps: (a) network traffic sniffing,

(b) operational data collection, (c) network flow extraction
statistics, (d) MENSA anomaly detection and classification
and (e) notification. The first step is responsible for capturing
the entire network traffic through a Switched Port Analyser
(SPAN). To this end, Tshark is adopted. Tshark can be
configured to monitor and sniff the overall network traf-
fic per a specific time threshold, which is defined based on
the network characteristics of each SG environment. Next,
the appropriate operational data (i.e., time series electric-
ity measurements) is received. This kind of data is received
per a specific threshold time through a REpresentational
State Transfer (REST) Application Programming Interface
(API) with a centralised server called Master Terminal Unit
(MTU). MTU is a common ingredient of the SCADA systems,
collecting measurements and statistics from the SG equipment,
such as PLCs, RTUs and IEDs. Next, the network flow statis-
tics are produced from the network traffic data received from
the first step. For this purpose, CICFlowMeter is utilised.
CICFlowMeter is a TCP/IP network flow generator that
extracts bidirectional network flow statistics on a predefined
flow timeout [52]. Subsequently, the MENSA anomaly detec-
tion and classification is applied, as analysed in Section IV.
The anomaly detection is applied to the operational data, while
the anomaly classification is used to discriminate particular
cyberattacks based on the network flow statistics. Finally, the
last step includes the user notification based on the outcome
of the previous step.

VI. EVALUATION ANALYSIS

This section is devoted to the MENSA evaluation analy-
sis. First, the SG evaluation environments and the operation
of MENSA in the prediction phase are described. Next,
the datasets and the comparative methods follow. Finally,
after introducing the necessary definitions and the evalua-
tion metrics, the MENSA evaluation results are presented in
a comparative study with other ML and DL methods.

A. Evaluation Environments

MENSA was evaluated and validated in four real SG eval-
uation environments coming from the SPEAR project [53],
namely (a) SG lab, (b) distribution substation, (c) hydropower
plant and (d) power plant. Table III summarises them, show-
ing what communication protocols are supported for each case.
Moreover, each of the aforementioned SG environments gener-
ates different operational data. Each SG environment possesses
its own SCADA system, which monitors and controls the
automation procedures. In particular, they are characterised
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by the presence of appropriate RTUs that manage the oper-
ation of industrial elements, such as generators, turbines and
transformers. The RTUs communicate with the MTU, util-
ising the Modbus/TCP protocol. For each SG environment,
the Modbus/TCP protocol is utilised in a different way (i.e.,
different Modbus/TCP function codes). In the substation envi-
ronment, there are also some IEDs that communicate with
the MTU via DNP3. Through a Human Machine Interface
(HMI) installed on MTU, the system operator can transmit
the necessary commands to the RTUs. Moreover, based on
SPAN, MENSA receives the entire Modbus/TCP network traf-
fic and performs the MENSA Autoencoder-GAN for anomaly
classification in order to discriminate the Modbus/TCP and
DNP3 cyberattacks. In addition, each SG environment gen-
erates and stores in MTU respective operational data (i.e.,
time-series electricity measurements) that is inserted in the
MENSA Autoencoder-GAN for anomaly detection. This oper-
ational data is received by MENSA through a REST API.
MENSA is running in a separate computing system with an
Intel Core i7-8550U CPU - 1.80GHz, 16GB Random Access
Memory (RAM) and Ubuntu 20.04.2.0 LTS (Focal Fossa).
This machine is also used to extract the evaluation results.
Consequently, MENSA is evaluated in several different ways.
First, MENSA is evaluated against four SG environments (SG
Lab, Distribution Substation, Hydropower Plant, and Power
Plant) using the Modbus/TCP protocol in a different way (i.e.,
different Modbus/TCP function codes). Second, MESA is eval-
uated in a Distribution Substation under both protocols, i.e.,
Modbus/TCP and DNP3. Finally, MENSA is evaluated with
respect to different operational data per SG environment.

B. Datasets and Comparative Methods

Appropriate datasets were constructed in order to evalu-
ate both MENSA Autoencoder-GAN for anomaly detection
and MENSA Autoencoder-GAN for anomaly classification.
In the first case, statistically created anomalous samples
were injected manually in the database of MTU, thus cre-
ating a dataset composed of normal and anomalous time-
series electricity measurements for each SG environment
mentioned earlier. This data is different for each SG environ-
ment. During the pre-processing step, the data is formatted
utilising a sliding window of 30 instances and is normal-
ized in the range of [0, 1]. On the other side, regarding
the validation of MENSA for anomaly classification, the
Modbus/TCP cyberattacks of Table I were emulated in a safe
manner, utilising Smod [47]. Regarding the DNP3 cyberat-
tacks, the intrusion detection dataset of Rodofile et al. [48]
was combined with normal DNP3 network flows of the
substation environment. Thus, datasets consisting of nor-
mal and malicious Modbus/TCP and DNP3 network flows
were generated. CICFlowMeter was used to extract the
Modbus/TCP and DNP3 network flows from the network
packet capturing files (i.e., pcap files). Both datasets were
labelled since in the first case, the anomalous instance were
known, while in the second, the malicious IPs were known.
Furthermore, multiple ML and DL methods were adopted in
each case in order to compare and evaluate the performance

of MENSA. In particular, for the anomaly detection, the fol-
lowing ML and DL methods were used: (a) Angle-Based
Outlier Detection (ABOD) [54], [55], (b) Isolation Forest
(Iforest) [56], (c) Principal Component Analysis (PCA) [57],
(d) Minimum Covariance Determinant (MCD) [58], (e) Local
Outlier Factor (LOF) [59], (f) DIDEROT Autoencoder [45],
(g) ARIES GAN [46] and BlackBox IDS [60]. Similarly,
for the anomaly classification, the subsequent methods
were utilised: (a) Logistic Regression [61], (b) Linear
Discriminant Analysis (LDA) [62], (c) Decision Tree
Classifier [63], (d) Gaussian Naive Bayes (Gaussian NB) [64],
(e) Support Vector Machine (SVM), (f) Random Forest [65],
(g) Multilayer Perceptron (MLP) [66], (h) Adaptive Boosting
(AdaBoost) [67], (i) Quadratic Discriminant Analysis [68],
(j) Dense DNN ReLU [46] and (k) Dense DNN Tanh [46].
The DIDEROT Autoencoder and the ARIES GAN, Dense
DNN Relu and Dense DNN Tanh originate from our previous
works in [45] and [46], respectively. It is worth mentioning that
the ARIES GAN [46] and the BlackBox IDS [60] constitute
advanced, custom DNNs for anomaly detection and anomaly
classification, respectively. Finally, for the anomaly classifica-
tion, Suricata was also used with the Quickdraw ICS IDS
signatures [69]. Suricata is a widely known network IDS,
which can detect malicious packets [69]. In order to com-
pare the efficacy of Suricata with MENSA, we correlated
the packets-related alerts extracted by Suricata with the
corresponding malicious flows.

C. Evaluation Results

Before explaining the evaluation results of MENSA, we have
to introduce the necessary terms and determine the appropriate
evaluation metrics. TP denotes the number of the classifica-
tions that recognise correctly an anomaly or a cyberattack as an
intrusion. Accordingly, TN implies the amount of the correct
classifications that recognise the normal instances as normal.
On the other side, FP denotes the number of the incorrect clas-
sifications that categorise the normal instances as intrusions.
Finally, FN signifies the wrong classifications that classify the
anomalous or malicious instances as normal. Therefore, based
on these values, the following metrics (equations (10)-(13))
are defined.

Accuracy (ACC) (equation (10)) expresses the proportion
of the correct classifications and the overall instances. It is a
fair evaluation metric when the training dataset consists of an
equal number of instances for all categories.

Accuracy(ACC ) =
TP + TN

TP + TN + FP + FN
(10)

The False Positive Rate (FPR) (equation (11)) represents
the symmetry of the normal instances that were detected as
anomalous/malicious. FPR is determined by dividing FP with
the sum of TN and FP.

FPR =
FP

FP + TN
(11)

The True Positive Rate (TPR) (equation (12)) defines what
ratio of the original anomalous or intrusion instances were
recognised as anomalous/intrusions. TPR is computed by
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TABLE IV
MENSA EVALUATION RESULTS FOR DETECTING OPERATIONAL

ANOMALIES IN THE FIRST SG ENVIRONMENT - SG LAB

TABLE V
MENSA EVALUATION RESULTS FOR DETECTING OPERATIONAL

ANOMALIES IN THE SECOND SG ENVIRONMENT - SUBSTATION

dividing TP with the sum of TP and FN.

TPR =
TP

TP + FN
(12)

Finally, the F1 score (equation (13)) denotes the golden ratio
of Precision and TPR, considering both FP and FN.

F1 =
2 × Precision × TPR

Precision + TPR
where Precision =

TP
TP + FP

(13)

Table IV presents the MENSA evaluation results for detect-
ing operational anomalies in the first evaluation environment
(i.e., the SG lab). MENSA achieves the best performance
where ACC = 0.9647, TPR = 0.9418, FPR = 0.0282 and
F1 = 0.9257. On the other side, MCD presents the worst
evaluation results where ACC = 0.7151, TPR = 0.2994,
FPR = 0.1584 and F1 = 0.329. Accordingly, Table V shows
the evaluation results for detecting anomalies in the substation
environment. In this case, LOF achieves the best performance,
where ACC = 0.8732, TPR = 0.9938, FPR = 0.15716 and
F1 = 0.7591. In contrast, the ACC, TPR, FPR and the F1
Score of MENSA reach 0.8810, 0.7163, 0.0775 and 0.7076,
respectively. Table VI reflects the evaluation results for recog-
nising anomalies in the hydropower plant environment. In
this case, the best performance is carried out by MENSA
where ACC = 0.8835, TPR = 0.8715, FPR = 0.1134 and
F1 = 0.7498. On the contrary, the lowest performance is
accomplished by MCD where ACC = 0.7337, TPR = 0.2103,
FPR = 0.1351 and F1 = 0.2403.

In a similar manner, Table VII reflects the evaluation results
of MENSA for distinguishing the Modbus/TCP cyberattacks
emulated in the SG lab. Based on the comparative results,

TABLE VI
MENSA EVALUATION RESULTS FOR DETECTING OPERATIONAL

ANOMALIES IN THE THIRD SG ENVIRONMENT - HYDROPOWER PLANT

TABLE VII
MENSA EVALUATION RESULTS FOR CLASSIFYING MODBUS/TCP

CYBERATTACKS IN THE FIRST SG ENVIRONMENT - SG LAB

TABLE VIII
MENSA EVALUATION RESULTS FOR CLASSIFYING MODBUS/TCP
CYBERATTACKS IN THE SECOND SG ENVIRONMENT - SUBSTATION

MENSA overcomes the other ML and DL solutions since
its ACC, TPR, FPR and the F1 Score reach 0.964, 0.7307,
0.0192 and 0.7307. On the other side, the lowest performance
is accomplished by AdaBoost, where ACC = 0.9111,
TPR = 0.3333, FPR = 0.0476 and F1 = 0.3333. Accordingly,
Table VIII includes the evaluation results for discriminat-
ing the Modbus/TCP cyberattacks in the substation envi-
ronment. Again, MENSA achieves the best performance,
where ACC = 0.9655, TPR = 0.7591, FPR = 0.0185 and



1148 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

TABLE IX
MENSA EVALUATION RESULTS FOR CLASSIFYING MODBUS/TCP

CYBERATTACKS IN THE THIRD SG ENVIRONMENT

- HYDROPOWER PLANT

TABLE X
MENSA EVALUATION RESULTS FOR CLASSIFYING MODBUS/TCP

CYBERATTACKS IN THE FOURTH SG ENVIRONMENT - POWER PLANT

F1 = 0.7591. Moreover, as previously, AdaBoost shows the
worst performance, where ACC = 0.9183, TPR = 0.4281,
FPR = 0.0439 and F1 = 0.4281. In the same SG environ-
ment, Table XI shows the efficiency of MENSA against the
DNP3 cyberattacks. MENSA exceeds the performance of the
other solutions, while the lowest efficiency is accomplished by
Quadratic Discriminant Analysis. Table IX presents the evalua-
tion results related to classifying the Modbus/TCP cyberattacks
of Table I in the hydropower plant environment. Similarly,
MENSA achieves the best outcome, where ACC = 0.9668,
TPR = 0.7679, FPR = 0.0178 and F1 = 0.7679. In this
case, Adaboost achieves even lower evaluation results com-
pared to the previous environments, where ACC = 0.8877,
TPR = 0.2142, FPR = 0.0604 and F1 = 0.2142. Finally,
Table X illustrates the evaluation results of MENSA for dis-
criminating the Modbus/TCP cyberattacks in the power plant
environment. Also, in this case, MENSA accomplishes the
best outcome where ACC, TPRm, FPR and the F1 Score
reach 0.9646, 0.7349, 0.0189 and 0.7349. On the other hand,
AdaBoost shows again the worst results, where ACC = 0.9111,
TPR = 0.333, FPR = 0.0476 and F1 = 0.3333.

TABLE XI
MENSA EVALUATION RESULTS FOR CLASSIFYING DNP3

CYBERATTACKS IN THE SECOND SG ENVIRONMENT - SUBSTATION

Fig. 8. F1-Score variation through the change of t.

Even though the data samples per case are morphologically
similar, they differ in various ways, such as the features, the
values magnitude and the sparsity. Thus, it is impracticable to
formulate a model using standard hyperparameters per case. In
contrast, each case is optimised experimentally. To evaluate the
MENSA performance in terms of the various hyperparameters,
two evaluation metrics are utilised: (a) the F1 score varia-
tion per threshold t and (b) the F1 score saturation curve per
iteration. Both cases aim to maximise the F1 score. In Fig. 8,
the behaviour of the F1 score is depicted for four different
experiments. As illustrated, the F1 score changes exponentially
after a value of t. In particular, this value describes the optimal
threshold leading to the most efficient discrimination between
the normal and the abnormal instances. After this value, the
F1 score saturates completely. Subsequently, Fig. 9 shows how
the F1 score is improved based on the number of epochs. For
the first iterations, the F1 score increases exponentially. Next,
it saturates slowly for the rest of the training process. When
the curve starts to flatten, the training is stopped to avoid over-
fitting and memorisation. Thus, the best checkpoint is selected.
Finally, regarding the batch size, the larger the number of fea-
tures, the higher the batch scaling in 2a , a ∈ N

∗, while the
learning rate of each optimizer is kept in the scale 1/1000.

Therefore, according to Tables IV–X, almost in all SG
environments MENSA achieves the best performance either
for detecting operational anomalies or discriminating the
Modbus/TCP and DNP3 cyberattacks. In general, a high TPR
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Fig. 9. F1-Score Saturation Curve.

and low FPR can be observed. This is due to MENSA dynamic
deep threshold discovery. Usually, ML and DL classifiers use
a threshold to provide the optimal outcome. Since MENSA is
designed to be adaptable for each SG environment and type of
data, MENSA dynamically calculates the appropriate threshold
during the training process, thus achieving the best detec-
tion results. To this end, a brute force approach is utilised.
It is noteworthy that MENSA overcomes other advanced DL
solutions, such as ARIES GAN [46] and BlackBox IDS [60]
for anomaly detection and anomaly classification, respectively.
Moreover, MENSA exceeds the efficiency of Suricata since
the existing Quickdraw ICS IDS signatures [69] do not cover
all possible intrusions related to the Modbus/TCP and DNP3
payloads. In addition, the TCP/IP network flow statistics gen-
erated by CICFlowMeter render MENSA a scalable solution
for detecting and classifying anomalies for other application-
layer protocols, such as IEC 60870-5-104, Message Queuing
Telemetry Transport (MQTT) and IEC 61850 Manufacturing
Message Specification (MMS). Finally, the successful anomaly
detection against different kinds of operational data demon-
strates the MENSA scalability.

VII. CONCLUSION

The next generation EG, commonly called SG, creates sig-
nificant advantages and challenges in society. On the one side,
valuable services are already provided, such as the two-way
power flow and self-monitoring, but on the other side, new
cybersecurity concerns are generated. It is worth mentioning
that the interconnected nature of the SG ecosystem also affects
the safety status of other CIs. Therefore, the presence of novel
intrusion and anomaly detection mechanisms and eliminating
FP and FN are necessary. The ML and DL solutions compose
valuable mechanisms capable of detecting zero-day attacks.

In this paper, we implemented an anomaly detection and
classification model capable of detecting 13 Modbus/TCP
cyberattacks, 5 DNP3 cyberattacks and potential anomalies
related to operational data (i.e., time-series electricity mea-
surements). The proposed model called MENSA combines two
DNNs: (a) Autoencoder and (b) GAN in a prototype archi-
tecture, which applies a novel minimisation function, taking
into account (a) the adversarial error and (b) the reconstruc-
tion difference. The efficiency of MENSA was validated and
evaluated in four SG evaluation environments: (a) SG lab,

(b) substation, (c) hydropower plant and (d) power plant. To
this end, other ML and DL methods were also adopted.

Our future plans in this field include the implementation
of other DL models in order to detect cyberattacks against
other ICS/SCADA protocols, such as Profinet and EtherCat.
Moreover, sufficient association rules will be examined to cor-
relate the outcome of these DL models with each other. Finally,
optimisation solutions mitigating sufficiently such cyberattacks
in CIs will be investigated.
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