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Abstract

There are several challenges with which data present us
nowadays. For one there is the abundance of data and the
necessity to extract the essential information from it. When
tackling this task a balance has to be struck between putting
aside irrelevant information and keeping the relevant one
without getting lost in detail, known as over-fitting. The
law of parsimony, also known as Occam’s razor should be
a guiding principle, keeping models simple while explain-
ing the data.

The next challenge is the fact that the data samples are not
static. New samples arrive constantly through the pipeline.
Therefore, there is a need for models which update them-
selves as the new sample becomes available. The models
should be flexible enough to become more complex should
this be necessary. In addition the models should inform us
which samples need to be collected so that the collection
process becomes most informative.

Another challenge are the conclusions we draw from the
data. After all, as popularized by Mark Twain: "There are
three kinds of lies: lies, damned lies, and statistics." An ob-
jective measure of confidence is needed to make generalized
statements

The last challenge is the analysis. Can we build systems
which inform us of the underlying structure and processes
which gave rise to the data? Moreover, it is not enough to
discover the structure and processes, we also need to add
meaning to it. Here different disciplines need to work to-
gether.
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1 Data and models

When analyzing data, we make the assumption that the data
are a result of an underlying process which we do not know.

Sometimes we know the principles of the process, but not
the parameters which govern it. For example the physics of
waves are well understood. However, they depend on the
medium the wave travels in, the material and its properties.
The medium or mixture of media are the unknown parame-
ters of the process.

In data analysis we are given samples which are measure-
ments y1, . . . ,yN , where each measurement depends on pa-
rameters we know x1, . . . ,xN . All these can be measured
with more or less effort, but the effort is never prohibitive.
Note that the notation xn indicates xn = (xn1, . . . ,xnp)

T . That
is each sample depends on p parameters. A real world ap-
plication also depends on parameters which cannot be mea-
sured, or these measurements would be disproportionately
difficult and costly.

If we had a solution to the underlying process, we could
predict the measurement from a function f (x) as

yn = f (xn).

Here the argument to the function are the known parameters,
while the unknown parameters are part of the function and
depend on the process.

If we had a set of candidate functions d1(x), . . . ,dM(x),
which all are solutions to the process for different unknown
parameters, we could try which fits the measurements and
thus infer the underlying structure. We say the functions
d1(x), . . . ,dM(x) form a dictionary and assume

f (x) =
M

∑
m=1

cmdm(x),

where c1, . . . ,cM are coefficients and these need to be deter-
mined. These functions are also called basis functions and
are the building blocks which build a model for the data and
the model obeys the underlying process.

All analytic functions can be built from an infinite set of
basis functions. However, computers remain to be finite ma-
chines and thus we need to restrict ourselves to a finite set,



but we want to find the most suitable finite set of basis func-
tions. Or in other words the smallest set which describes the
data adequately.

The relationship to the measurements is

yn = f (xn)+ εn =
M

∑
m=1

cmdm(xn)+ εn,

where εn is noise intrinsic to the measurement process and
assumed to be independent and identically, normally dis-
tributed, N (0,σ2). Let D be the matrix with entries

Dn,m = dm(xn)

and let yT = (y1, . . . ,yN), cT = (c1, . . . ,cM) and εT =

(ε1, . . . ,εN), then
y = Dc+ ε.

D is known as the design matrix. As it is written here
D is an N × M matrix. However, N and M are not
static. N varies with the number of samples, while M
varies with the dictionary of basis functions. The rows
of D, dn = (d1(xn), . . . ,dM(xn))

T , n = 1, . . . ,N, are de-
fined by the data samples, while the columns of D, d̃m =

(dm(x1), . . . ,dm(xN)), m = 1, . . . ,M, are defined by the
model.

Since the noise is i.i.d. normal with mean 0 and variance
σ2, the log likelihood of observing y given the model speci-
fied by D, c and σ2 is

logL (y|D,c,σ2)=−N
2

log2πσ
2− 1

2σ2 (y−Dc)T (y−Dc).

A large log likelihood means that the model explains the data
well.

The challenge is to find the dictionary of basis functions
and the coefficients. Once these are found, predictions for
unseen parameters x∗ can be made by

y∗ =
M

∑
m=1

cmdm(x∗) = dT
∗ c,

where dT
∗ = (d1(x∗), . . . ,dM(x∗)).

2 Sparse Bayesian Learning

In 2000/1 sparse Bayesian learning ([1], [2], [3]) was intro-
duced. The central idea of this is that the coefficients c fol-
low a distribution. We define a prior distribution p(c) using
all information apart from the samples themselves quantify-
ing our belief about the coefficients. For example a simple
assumption is that each coefficient cm is a priori normally
distributed with mean zero and variance α−1

m . αm is a hyper-
parameter and known as the precision of the distribution. If

αm is very large the distribution becomes peaked at its mean
and we have more confidence in the value of cm than if αm

is small and the width of the distribution large. The multi-
variate prior distribution is given by

p(c|α) = (2π)−M/2
√
|A|exp

(
cT Ac

)
,

where A is a diagonal matrix with entries Amm = αm and
where | · | denotes the matrix determinant. The multivariate
posterior distribution is also normal, since it is a convolution
of Gaussians, with mean µ and variance Σ given by

Σ =
(
A+σ

−2DT D
)−1

µ = σ
−2

ΣDT y.

Given the posterior distribution of the coefficients, the
probabilistic interpretation of the measurement yn is that it
is drawn from a univariate normal distribution with

mean mn = dT
n µ,

variance σ2
n = σ2 +dT

n Σdn.

If the variance is small, it indicates that at this point the
model explains the data well. If the variance is large, the
model is not adequate at this point. This can indicate that
the dictionary of basis functions is unsuitable for these data
and needs to be amended.

The most suitable values for A are found by maximizing
the logarithm of the marginal likelihood L (y|α,σ2), which
can be calculated analytically

logL (y|α,σ2) =−1
2
(
N log2π + log |C|+yTC−1y

)
,

where C = σ2I+DA−1DT . In the process of maximization
many of the hyper-parameters tend to infinity and the pos-
terior distribution of those coefficients becomes infinitely
peaked at zero. This means that these basis functions are
not relevant for our model.

Faul and Tipping developed sparse Bayesian learning fur-
ther, [4], [5], [6], by noticing that logL (y|α,σ2) can be
maximized with respect to a single hyper-parameter. Instead
of starting with all candidate basis functions from the dic-
tionary in the model and then deleting those whose hyper-
parameters tend to infinity, this version initializes the model
with a single basis function and sets the hyper-parameters
of the others notionally to infinity. Then the basis function
dm where setting its hyper-parameter αm to its optimal value
(given the current model) gives the largest increase in the
marginal likelihood is found and the model updated accord-
ingly. The algorithm converges if no significant increase in
the marginal log likelihood can be achieved anymore. Note
that the optimal value of αm can be finite or infinite as shown
in [5] and [6]. That means that if dm is not in the model and



the optimal αm is finite, it gets added to the model. If dm is
in the model and the optimal αm is infinite, it gets deleted
from the model. The third option is that dm is in the model
and the optimal αm is finite, in which case αm is updated to
this value. In all three cases, Σ and µ have to be updated,
since A has changed. Fast update formulae are given in the
appendix of [6].

It should be noted here that the dictionary of candidate
basis functions does not need to be static. A new candidate
basis function can be created, evaluated, and possibly added
to the model at any point.

Thus sparse Bayesian learning addresses the first chal-
lenge. A probability distribution is associated with the co-
efficients and the posterior distribution gives probabilistic
meaning to whether a basis function is relevant for the model
to explain the given data or not.

3 New data

In this section we will address the challenge of new data ar-
riving through the pipeline. Following the approach in [5]
we calculate the change in the logarithm of the marginal
likelihood for the current model, when a data sample (y∗,x∗)
is added. This means adding a row to the design matrix D
yielding

D∗ =

 D

dT
∗

 .

We then have

C∗ = σ
2I+

 D

dT
∗

A−1
(

DT d∗
)
=

 C v

vT v


where v = DA−1d∗ and v = dT

∗ A−1d∗+σ2. Note that C∗ is
symmetric.

Using the formulae for block matrices we have

|C∗|= |C||v−vTC−1v|

and

C−1
∗ =

 C−1 +
C−1vvTC−1

v−vTC−1v
−C−1v

1
v−vTC−1v

−vTC−1 1
v−vTC−1v

1
v−vTC−1v

 .

Letting yT
∗ = (y1, . . . ,yN ,y∗), we can calculate

yT
∗C−1
∗ y∗ = yTC−1y+

1
v−vTC−1v

(yTC−1v− y∗)2

Thus the logarithm of the marginal likelihood
logL (y∗|α,σ2) is logL (y|α,σ2)+∆L , where

∆L = −1
2
[
log2π + log |v−vTC−1v|+
1

v−vTC−1v
(vTC−1y− y∗)2

]
.

This change can be interpreted probabilistically. To this
end, note that the matrices Σ and C are related by the Wood-
bury matrix identity,

Σ = A−1−A−1DTC−1DA−1.

The predictive distribution for y∗ has variance and mean

σ2
∗ = σ2 +dT

∗ Σd∗ = v−vTC−1v,
m∗ = dT

∗ µ = σ−2dT
∗ ΣDT y = vTC−1y,

(1)

where we used the fact that DA−1DT = C − σ2I. Thus
(vTC−1y− y∗)2 is the square of the difference of the sample
measurement and its mean predicted by the current model.

Thus the change in the logarithm of the marginal likeli-
hood is

∆L = −1
2

[
log2π + logσ

2
∗ +

(
m∗− y∗

σ∗

)2
]

= log
1√

2πσ∗
exp
(
− (m∗− y∗)2

2σ2
∗

)
.

Hence the change is the logarithm of the likelihood of the
new data value y∗ at x∗ given the predictive probability dis-
tribution N (m∗,σ2

∗ ).
Since σ∗ ≥ σ , the change lies between −∞ and log 1√

2πσ
.

It can be positive. In this case the new sample affirms the
model. If the likelihood of the data is small, the marginal
likelihood is reduced, indicating that the model should be
updated. To do so, all quantities need to be updated. Effi-
cient update formulae are given in the Appendix.

To conclude, in this and the previous section we have de-
veloped an adaptive framework where new candidate basis
functions and new data samples can be added. If this leads
to a reduction in the marginal likelihood, the algorithm con-
tinues the process of updating the model by maximizing the
marginal likelihood, by either adding, updating, and remov-
ing basis functions.

4 Uncertainty

In the previous section we have seen that sparse Bayesian
learning infers a predictive distribution for y∗ which is
N (m∗,σ2

∗ ) with mean and variance as given in (1). This
predictive distribution is heavily dependent on the model,



(a) (b)

Figure 1: Original (a) and decimated image (b)

since it depends on d∗ which are the basis functions included
in the model evaluated at x∗. It is customary to choose basis
functions for the dictionary which decay quickly when mov-
ing away from their centre, or basis functions with finite,
compact support. Therefore the degenerate case is possible
where d∗ is close to, or even equal to zero, and thus the pre-
dictive probability distribution becomes N (0,σ2) which is
meaningless. This was noted in [7]. The solution proposed
there is unsuitable, since it relies on the introduction of a
basis function centred at x∗, but the shape and width of this
function can be varied or needs to be trained. However, the
confidence we place in the predictions should only be in-
formed by the data.

Let S be a subset of the samples. This could be all sam-
ples or a suitable set of neighbours of x∗. We estimate the
probability distribution of y∗ to be normal with mean and
variance

m̄ = mean
xi∈S

{yi},

σ̄ = var
xi∈S
{yi}.

With this estimate the expected change when considering x∗
in the logarithm of the marginal likelihood is

E[∆L ] =
∫

∞

−∞

[
log

1√
2πσ∗

− (y∗−m∗)2

2σ2
∗

]
∗

1√
2πσ̄

exp
(
− (y∗− m̄)2

2σ̄2

)
dy∗

= log
1√

2πσ∗
− σ̄2 +(m̄−m∗)2

2σ2
∗

.

The second term is the important one. If the predictive prob-
ability distribution does not match well the probability dis-
tribution estimated from the data in the neighbourhood the
expected change in the logarithm of the marginal likelihood
is negative. This expected change creates an uncertainty map
with the largest negative values being the most uncertain re-
gions. The uncertainty map can guide the data gathering,
informing us where additional samples are necessary.

(a) FSIM = 0.74 (b) Scaled absolute difference

(c) Scaled E[∆L ] (d) Scaled predictive variance

(e) Predictive variance ≥ 0.35 (f) Predictive variance ≥ 0.4

Figure 2: Reconstruction with Haar wavelets of scale 1.

5 Experiments

To illustrate the algorithm, data in the form of images were
chosen. The reasoning being that images display structure
such as edges, but are also very varied with different tex-
tures. From the image 55% of pixels were removed ran-
domly and the remaining pixels were used to infer the values
at the missing pixels. Figure 1 is an example.

Different basis functions were employed, Haar wavelets
of scale 1 which have a support of 2 × 2 pixels, Haar
wavelets of scale 2 with a support of 4× 4 pixels and the
Gaussian radial basis functions centered at each pixel with a
radius of 8 pixels. These dictionaries were chosen to illus-
trate different aspects of the algorithm.

Figure 2 illustrates the degenerate case where d∗ is zero.
In the reconstructed image 2a this is visible as black areas,
since zero is interpreted as black. The feature similarity in-
dex measure (FSIM) [8] between the original and the recon-
struction is 0.74, where the closer the value to 1, the better
the reconstruction. Figure 2b shows the absolute difference
between the original and the reconstruction scaled to lie be-
tween 0 and 1, while 2c displays the expected change in the
logarithm of the marginal likelihood scaled to lie between
−1 and 1. The predictions for pixels with negative values in



Figure 3: 5% more samples as informed by E[∆L ], FSIM
= 0.93

Figure 4: Improvements with Haar wavelets of scale 2,
FSIM = 0.91

this change are not regarded as trustworthy, while the ones
with positive change are accepted. These correspond well
with pixels of large absolute difference between the original
and the reconstruction. Contrast this with Figure 2d show-
ing the predicted variance scaled to lie between 0 and 1. It
is hard to set a threshold for accepting predictions as 2e and
2f illustrate. They show the pixels with a scaled predicted
variance of 0.35 or more and 0.4 or more respectively. The
former would disregard a lot more predictions than the latter.

The confidence measure is giving a good indication where
predictions are problematic. There are two possibilities to
improve the results. The first one is to obtain more samples
in the problem areas and insert these into the algorithm as
described in Section 3. This results in 5% more data being
gathered and the resulting reconstruction is shown in Figure
3. The FSIM has moved up to 0.93.

The other possibility, arises from the analysis why the re-
construction is poor. In the decimated image there are areas
of 2×2 missing pixels. Since Haar wavelets of scale 1 also
have a support of 2× 2 pixels, no reconstruction is made
in these areas, since no information is available to base the
reconstruction on. Thus we expect improvements with a dif-
ferent choice of basis functions. Before this, however, we
accept all predictions where there is a positive change in the
logarithm of the marginal likelihood, arguing that we have
confidence in our model there. We then reconstruct the re-
maining missing pixels with a different basis function. Fig-

(a) FSIM = 0.88

(b) Scaled absolute difference (c) Scaled E[∆L ]

(d) Scaled predictive variance (e) Scaled augmented variance

Figure 5: Reconstruction with Gaussian radial basis func-
tions.

ure 4 shows the resulting reconstruction with Haar wavelets
of scale 2. The FSIM is now 0.91.

To complete the results, Figure 5 illustrates the recon-
struction with Gaussian radial basis functions. With this re-
construction the FSIM is 0.88. The effect of Gaussians is
that edges are smoothed. This is illustrated in Figure 5b of
the absolute difference between the original and the recon-
struction scaled to lie between 0 and 1. It shows large differ-
ences especially along the edges. Because of the smoothing
effect of Gaussians, S was chosen to be the set of all sam-
ples to calculate the expected change in the logarithm of the
marginal likelihood. This is shown in Figure 5c scaled to lie
between −1 and 1. In fact the change was a reduction for
all predictions. The problem areas highlighted by the con-
fidence map again corresponds well with the areas of large
absolute difference. Figure 5d shows the predicted variance
scaled to lie between 0 and 1. Again this is not informative.
Neither is the augmented variance as proposed by [7] which
is displayed in Figure 5e. Both these variances are domi-
nated by the choice of basis functions while the confidence
measure proposed here removes this dependency.



6 Conclusions

We have presented a mathematical framework based on
Bayesian inference, where the model can be augmented with
more building blocks, while the Bayesian approach keeps
the model sparse. Early runs can shed some light on the
nature of the building blocks necessary for a good model.
A possible line of investigation is whether this can be uti-
lized to learn basis functions. Different dictionaries of ba-
sis functions are suitable for different data. The framework
can also incorporate new data samples arriving. The confi-
dence measure in form of the change in the logarithm of the
marginal likelihood can inform which predictions are trust-
worthy and where more samples are necessary to obtain a
model in which we have more confidence. The framework
gives probabilistic interpretations and thus enables the ex-
pert community to add meaning to the results.
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Appendix

Following the notation of [6], the sparsity factor is updated
by

S̃m = Sm +
1

σ2
∗

[
1

σ2 dT
∗ ΣDT d̂m−dm(x∗)

]2

.

Note that the quantity in square brackets is the error the cur-
rent model makes when inferring the value of dm at x∗. The
quality factor becomes

Q̃m = Qm +
1

σ2
∗

[
1

σ2 dT
∗ ΣDT d̂m−dm(x∗)

]
[m∗− y∗] .

The covariance matrix is updated as follows:

Σ̃ = Σ− 1
σ2
∗

Σd∗dT
∗ Σ,

while the mean becomes

µ̃ = µ− m∗− y∗
σ2
∗

Σd∗.


