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Abstract 

 

Continuous developments in Additive Manufacturing (AM) technologies are opening opportunities in 

novel machining, and improving design alternatives for modern particle accelerator components. One 

of the most critical, complex, and delicate accelerator elements to manufacture and assemble is the 

Radio Frequency Quadrupole (RFQ) linear accelerator, used as an injector for all large modern proton 

and ion accelerator systems. For this reason, the RFQ has been selected by a wide European 

collaboration participating in the AM developments of the I.FAST (Innovation Fostering in Accelerator 

Science and Technology) Horizon 2020 project. RFQ is as an excellent candidate to show how 

sophisticated pure-copper accelerator components can be manufactured by AM and how their 

functionalities can be boosted by this evolving technology.  To show the feasibility of the AM process, 

a prototype RFQ section has been designed, corresponding to one-quarter of a 750 MHz 4-vane RFQ, 

which was optimised for production with state-of-art Laser Powder Bed Fusion (L-PBF) technology, 

and then manufactured in pure copper. To the best knowledge of the authors, this is the first RFQ section 

manufactured in the world by AM. Subsequently, geometrical precision and surface roughness of the 

prototype were measured. The results obtained are encouraging and confirm the feasibility of AM 

manufactured high-tech accelerator components. It has been also confirmed that the RFQ geometry, in 

particular the critical electrode modulation and the complex cooling channels, can be successfully 

realised thanks to the opportunities provided by the AM technology. Further prototypes will aim to 

improve surface roughness and to test vacuum properties. In parallel, laboratory measurements will start 

to test and improve the voltage holding properties of AM manufactured electrode samples.  
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 Additive Manufacturing for the RFQ 

Currently the Radio Frequency Quadrupole (RFQ) is a core element for hundreds of industrial 

and research linear accelerators operating in the world. The RFQ is a compact and sophisticated 

accelerator which simultaneously focuses, bunches, and accelerates a continuous beam of positively 

charged particles like protons or heavier ions as they come out of the ion source [1]. Today RFQ's are 

conventionally manufactured from highly conductive (e.g. oxygen-free high thermal conductivity - 

OFHC copper) materials and alloys. After decades of test-and-trial, current manufacturing technology 

for RFQ’s of the 4-vane type consists of multi-axis high-precision milling of pre-fabricated large-scale-

forged single-piece components (see Fig. 1). The full RFQ consists of four modules with complex and 

high-tolerance manufactured surfaces that are subsequently joined together in the final “4-vane” 

configuration by furnace brazing [2]. This last technological process often releases residual stresses that 

may result in excessive geometrical distortion and disqualifies the end-product from further use. A 

complex procedure requiring several stress release thermal treatments during machining is required to 

ensure that the tight tolerances are respected after brazing. This results in a costly, time consuming and 

inefficient process with an extremely high rate of waste material rate. Furthermore, RFQ’s normally go 

through further machining steps to realise long and complex internal cooling channels and ports for slug 

tuners, monitoring loops, vacuum pumps, and RF couplers. 

 
Fig. 1:  The CERN's LINAC 4 RFQ module design (CERN) [3] 

Virtues of the Additive Manufacturing (AM) and the latest developments of the technology are 

particularly well placed to improve the manufacturing aspects of the RFQ, promising to significantly 

reduce machining time and costs as well as to realise an improved design. Eventually, complete 

segments including all four “vanes” of the RFQ system could be built in one piece, thus avoiding 

brazing, and allowing for the optimal manufacturing of complex elements as internal cooling channels 

and external ports. Advances in AM equipment, design ability (including simulation tools) and the 

manufacturing methodology itself are opening entirely new avenues for the RFQ design optimisation 

and full-scale production, even using pure-copper, which is considered as a challenging material for 

laser-based AM processes. Naturally, this is well suited for the needs of the particle accelerator 

community and RFQ manufacturing in particular.  

This paper outlines, to the best of authors' knowledge, the very first proof-of-concept confirming 

that AM manufactured RFQ is feasible and achievable. At the same time, it acknowledges key 
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technological features, which have to be addressed in order to widen and proliferate AM technology in 

the accelerator community. 

1.1 RFQ specific requirements 

RFQ is a component of particle accelerators featuring strict technical requirements for its 

successful field service. At the first glance, it appears that stringent requirements (see Table 1) are almost 

unreachable by current state-of-art of the AM systems. However, the continuous development of AM 

systems and related post processing technologies are steadily approaching the required level of RFQ 

precision and surface quality as well as manufacturing predictability. The experimental testing activity 

of this proof-of-concept was performed on the commercially available state-of-art laser-based AM 

technology, suitable for the pure copper manufacturing. Table 1 summarises the main parameters of the 

design and manufacturing of pure copper RFQ.  

The manufacturing experiment was carefully designed and planned, keeping in mind the 

requirements of Table 1. To ensure the functionality of the RFQ, geometrical accuracy and shape of the 

manufactured surfaces is of utmost importance, as indicated by the values of 20 µm on vane tip and 100 

µm for all other surfaces. The most relevant target value here is the RFQ vane tip and its modulation 

profile, which is the core element for beam transport – therefore particular attention and measurements 

will be devoted to the vane tip. Clearly, if one cannot provide enough precision on the modulation 

geometry, beam transport and acceleration can-not be ensured.  

Table 1: Requirements for the prototype RFQ  

Requirement  Target values  

Geometrical accuracy  20 µm on vane tip, 100 µm elsewhere  

Surface roughness  Ra=0.4 µm for all inner surfaces  

Porosity, degassing  Vacuum 10-7 mbar  

Electrical conductivity  90% as per International Annealed Copper Standard 

Peak electric field on surface ~ 40 MV/m  

Furthermore, surface arithmetical mean roughness value Ra has to be kept at level of about 0.4 

µm. Surface roughness has to be smaller than the penetration of high-frequency currents in the metal 

(“skin depth”) to avoid considerable reductions in the Q-value of the RFQ resonator and a proportional 

increase in its power consumption and in the cost of the Radio-Frequency system. Moreover, large 

values of Ra might increase the sparking probability of surfaces subject to high electric fields. Although 

surface roughness is critical for the functionality of RFQ, such values are rather difficult to maintain 

with conventional AM technology and might require post processing of the surfaces transporting the 

radio-frequency current.  

The vacuum value of 10-7 mbar is set as a minimum required value for the RFQ – circular 

accelerators often require lower pressures.  

The electrical conductivity is of utmost importance and has a decisive impact on RFQ efficiency. 

The highest electrical conductivity can be reached only with high chemical purity and density of the 

base material – e.g. copper. In the case of AM, the chemical purity of the final product depends not only 

on chemical cleanness of powder, but also on the manufacturing chamber protection against oxidation. 

It is important to note that the oxygen-free pure copper powder grains tend to oxidize already at standard 

room environment and temperatures. Lower electrical conductivity of the RFQ in turn will 

proportionally increase the required operational power of the accelerator, in a similar way to the 

roughness, and will generate extra heat on the vane surfaces. Therefore, target value for the electrical 

conductivity for this proof-of-concept is set to 90% of ideal copper according to the International 

Annealed Copper Standard (IACS). 
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Finally, the voltage holding properties are crucial for the successful operation of the RFQ. 

Naturally, these properties are directly affected by any mechanical and chemical inclusions as well as 

homogeneity of the RFQ material itself. Considering some existing RFQ design, a target value can be 

empirically defined at about 40 MV/m peak surface field.  

However, it was clear that not all RFQ specific requirements could be achieved at this initial 

proof-of-concept stage (e.g. roughness, degassing and voltage holding). In the proposed prototype, 

design emphasis is given to the verification of AM capabilities for the RFQ geometrical accuracy 

(manufacturing tolerances), surface quality (roughness) as well as to the demonstration of improved 

mechanical design advantages. 

1.2 AM technology and challenges 

AM processes for metals can be divided into nozzle based processes and powder bed based 

processes. Nozzle based processes feed the raw material, powder or wire, through a nozzle to the work 

zone into the focus of an energy source which can be a laser, electron beam or an electric arc. Powder 

bed processes either use a laser (Laser Powder Bed Fusion – L-PBF) or electron beam (Electron Beam 

Melting – EBM) as an energy source or a binder (Binder Jetting - BJ) to fuse the powder together. L-

PBF is the most promising AM process for pure copper RFQ, thanks to the fact that a) high relative 

density and high electrical conductivity can be achieved, and b) build-up of complex-shaped parts is 

possible with a minimum wall thickness of 400 microns and a layer thickness of 30 microns. These 

challenging material properties can be attained by deploying a short wavelength laser because the 

absorptivity level of the pure copper is very low within the commonly used infrared L-PBF systems and 

significantly increases in the green wavelength. Thus, the energy coupling into the pure copper powder 

bed increases, and defect-free processing is possible by using the green laser source [4,5]. At the same 

time, the L-PBF technology is well-placed for the required mechanical complexity and offers significant 

design and optimisation freedom to meet the requirements for the RFQ (i.e. integrated cooling channels) 

that cannot be achieved by the mentioned nozzle technologies [4–8]. 

Nonetheless, there are still some remaining issues of the L-PBF process to overcome, such as 

design restraints regarding the minimum wall thickness or maximum overhang angle without support 

and tolerance specifications [9]. The minimum overhang angle is 45° and the minimum wall thickness 

for this material and machine used (see section 3.1) in this proof-of-concept is 0.6 mm. The surface 

roughness, tolerances and geometry of the RFQ are rather demanding and cannot be ensured per-se by 

the L-PBF standard process due to the staircase effect, adhesion of powder particles and material 

distortion during the cooling of the part. Therefore, at the outset of this proof-of-concept it is evident 

that the whole process chain of RFQ manufacturing with L-PBF will require future improvements and 

the fine-tuning of the technological process itself and eventually may require subsequent post-

processing stages.  

The removal of powder can also be critical when using internal cavities. In the case of the proof-

of-concept, to ensure that all residual manufacturing powder is eliminated, the prototype was cleaned 

with pressurized air and in an ultrasonic bath. 

 Optimisation of prototype RFQ 

2.1 Design improvements 

The design of the proof-of-concept RFQ is intended to reproduce one quarter of CERN's high 

frequency (HF) RFQs recently built for applications in the medical and detection fields (see Fig. 2) [10], 

however, only vane tip geometry and main geometrical-shape proportions were kept unchanged. Most 

of the external and internal shapes have been optimized exclusively for AM, considering its advantages 

and opportunities as well as its requirements and restrictions. At the design development stage, a 

multidisciplinary team of accelerator physicists, manufacturing technologists and AM experts was 
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established to find the optimal and balanced technological solution, taking into account potential 

manufacturing time and cost, geometrical precision, surface parameters, structure rigidity and thermal 

stability. 

 
Fig. 2:  The CERN's 750 MHz RFQ module (CERN) [10] 

As a result of the extensive teamwork, a model of the RFQ quarter with a length of 95 mm was 

designed, based on AM manufacturing capabilities, state-of-art equipment (see section 3) and bearing 

in mind the high material costs. The RFQ has a quadrupolar symmetry and therefore all complexity and 

characteristic elements can be encompassed within the 90° RFQ sector (see Fig. 3) which is an indicative 

sample of the whole optimised RFQ structure. The quarter-sector prototype includes the vane tip, inner 

surfaces, improved cooling channels and re-designed inner structure.  

 

Fig. 3: RFQ quarter-sector - design for AM with improved cooling channels system (G.Pikurs, CERN) 

The lightened structure of RFQ was re-designed by using a honeycomb pattern (see Fig. 3 and 4). 

Thus replacing the most massive sections and introducing shaped cooling channels as in Fig. 3 results 

in a significant material volume reduction of ~37% in comparison with conventional RFQ designs. The 

honeycomb structure and cooling channel re-design reduced the weight by 21% and 16% respectively. 

A honeycomb structure with a wall thickness of 0.6 mm was chosen; this value is slightly above the 

minimum wall thickness for a reliable manufacturing process. Naturally, all cooling channel shapes and 

AM build inclination angles were adapted for AM requirements. The thermal analysis, which is 

described in the next section also was taken into account for design development. 
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Fig. 4: RFQ proof-of-concept prototype - build job, build plate at bottom position (S.Gruber, Fraunhofer IWS) 

2.2 Thermal analysis 

The basic concept of the thermal management for AM produced RFQ was tested on Ansys 19.1 

Steady-State Thermal analysis workbench. Input data for ANSYS simulation are based on general 

approximations and assumptions from the recently built at CERN 750MHz PIXE RFQ [11]. Crucial 

input data for the analysis were: a) 22°C cooling channel temperature, b) heat flux on vane tip 2x10-3 

W/mm2, c) flux on the vane and internal walls 8x10-3 W/mm2, and additional negligible values for heat 

loss through convection from outer surfaces. Thermal analysis results are provided in Fig. 5. From the 

Steady-State Thermal analysis it is evident that the difference of 0.8 °C is not posing any risk for the 

RFQ functionality. The proposed design concept, especially honeycomb internal structure and improved 

cooling channels, could be highly beneficial for the AM manufactured RFQs as well to other complex-

shape and structure accelerator components. 

 

Fig. 5: RFQ proof-of-concept prototype - Steady-State Thermal analysis (G.Pikurs, CERN) 
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 Manufacturing 

3.1 AM specific needs and optimisation of the process parameters 

In order to attain the best possible results, state-of-art AM technology and manufacturing 

equipment has been chosen for the production of the very first pure-copper RFQ prototype. A 

TruPrint1000 Green Edition (see Fig. 6) in combination with a green TruDisk1020 laser providing the 

wavelength of 515 nm and maximum laser power of 500 W was used at Fraunhofer IWS in Dresden. 

This machine allows for the cylindrical build volume of 100 mm in diameter and 100 mm in height. The 

last one was used as a limiting technological parameter for the proof-of-concept RFQ height. The 

TRUMPF pre-set pure-copper manufacturing technological parameters and algorithms were used 

throughout carefully monitored machining process. 

 

Fig. 6: TruPrint1000 Green Edition at Fraunhofer IWS 

As a production material, m4pTM PureCu gas-atomized spherical shaped powder was used, which 

was confirmed with the Camsizer X2 and dynamic imaging analysis (see Table 2 and Fig. 7), measuring 

the sphericity at 0.923 and through scanning electron microscope imaging. The particle size distribution 

was confirmed between 19.5 and 34.9 µm which is common for L-PBF processes. 

Table 2: Main characteristics of particle size distribution of Cu-ETP 

Powder  D10 in µm  D50 in µm  D90 in µm  Sphericity  

Cu-ETP  

(Electrolytic Tough-

Pitch: pure copper) 

19.5 26.2 

 

34.9 

 

0.923 

     

Fig. 7: SEM images of Cu-ETP powder, left: magnification of x100, right: magnification of x300 
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The used process parameters were based on previous investigations published by Gruber et al. 

[4], who qualified the parameters set for two different pure copper powders and by Wagenblast et al. 

[5], who achieved sample relative densities above 99.9 % and electrical conductivity above 100 % IACS. 

To prepare and tune for the full prototype manufacture, several simulations and pre-trials took place and 

valuable experience was obtained. Further details and analysis of the processing conditions, material 

microstructure and other sample properties will be provided in future publications.  

The printing job took 16h 29min, the build height was 98.01 mm and thus consisted of 3267 layers 

(for a layer thickness of 30 µm). The manufactured prototype can be seen in Fig. 8. 

   

Fig. 8: RFQ proof-of-concept prototype – out of production and still joined to the build plate  

 (T. Torims, RTU/CERN) 

 Obtained geometrical accuracy and surface roughness 

4.1 Geometrical accuracy 

To measure the geometrical accuracy, the 3D scanner ATOS GOM Core 135 was used for a 3D 

optical surface scan of the as the manufactured proof-of-concept RFQ at Fraunhofer IWS (Fig. 9). 
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Fig. 9: RFQ proof-of-concept prototype - left: 3D optical scanning set-up (S.Gruber, Fraunhofer IWS), 

right: comparison of measured point cloud with CAD data  

The largest deviation of 0.31 mm on the vane tip was found in the bottom region of the sample. 

The deviation probably originated due to distortion of the support structures during the build process. 

Therefore, in the future it is recommended to use solid supports in the region of the vane tip or 

throughout the bottom of the RFQ. However, the deviations along the vane tip decrease to 0.02÷0.04 

mm which is a particularly promising result for the geometrical accuracy of this first prototype of AM 

manufactured RFQ. Furthermore, the geometrical accuracy on the outer sides of the quarter left and 

right of the RFQ were only ±0.01 mm. 

4.2 Surface roughness 

The surface roughness was measured at Fraunhofer IWS with the perthometer Surfcom Touch 50 

which is contact profilometer from Accretech, on both sides of the vane (see Fig. 10. measurement No. 

9 and 10) and RFQ internal surfaces (see Fig. 10. measurement No. 6 and 8); repeating each 

measurement three times.  

 

Fig. 10: RFQ proof-of-concept prototype - surface roughness measurement locations and direction 
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The surface arithmetical mean roughness Ra average was calculated at 14.32 µm and the 

maximum height of the profile - Rz at 116.7 µm. The latter was measured additionally to RFQ prototype 

requirements (Table 1) to obtain more comprehensive understanding of the surface quality of the 

prototype. The most indicative surface roughness measurement results are provided in the Table 3. 

Table 3: RFQ proof-of-concept surface roughness values according to ISO 4288 

 Ra (µm) Rz (µm) 

Location Measurement No. Measurement No. 
 

1 2 3 mean 1 2 3 mean 

6 10.4 12.4 12.8 11.9 84.2 89.5 85.6 86.5 

8 15.1 15.0 15.3 15.1 148.8 138.7 143.0 143.5 

9 13.8 14.9 13.5 14.1 117.2 123.6 104.7 115.1 

10 13.9 14.9 14.9 14.6 117.5 134.2 103.3 118.3 

Although these first roughness measurements of the proof-of-concept RFQ show that the obtained 

surface roughness quality is still far from the required Ra=0.4 µm, it is important to keep in mind that 

these results were obtained without any specific adaptation of the AM technological process to strike 

for the better surface roughness outputs. Therefore, even before considering potential post processing 

needs and methods for the AM made RFQ, clearly there is a range of opportunities to optimise the pure-

copper L-PBF manufacturing processes itself and to attain a better surface roughness quality. This shall 

be part of the future experimental and research work along with the consideration of the appropriate 

post-processing scenarios and experiments. 

 Conclusions and way forward 

Joint multidisciplinary effort proved that a pure-copper RFQ prototype can be successfully 

manufactured with AM technology, and is, to the best knowledge of authors, the first AM manufactured 

RFQ in the world. Indeed, the latest developments of the AM technology are providing much-needed 

means to improve the manufacturing aspects of the RFQ and could considerably reduce machining time 

and overall costs. Therefore, thanks to dedicated teamwork, the concepts on how to improve RFQ design 

and manufacturing features offered by the state-of-art L-PBF technology were described in this paper. 

The pure-copper RFQ proof-of-concept allowed the following conclusions to be derived:  

1. AM technology is particularly well suited for the required mechanical complexity of RFQ and 

offers significant design and optimisation freedom to meet the stringent manufacturing 

requirements that cannot be achieved by conventional technologies. This also opens a way to 

major RFQ improvements and eventually a full-size production, even using pure-copper, which 

is a technologically demanding material. 

2. Pure copper RFQ prototype, using L-PBF system equipped with a green laser, can be 

manufactured in reasonable time – 16h 29min with 3267 layers of 30 µm layer thickness. 

3. Most of the external and internal shapes of the RFQ can be successfully optimised. The lightened 

RFQ structure is feasible by using a honeycomb pattern and by replacing the most massive 

sections. 

4. Shape and structure of the RFQ cooling channels, can be improved according to the optimum 

thermal management and flow-dynamics needs – and not dictated by technological restrictions of 

the conventional manufacturing.  

5. The honeycomb structure implementation and optimisation of the cooling channels are allowing 

for substantial weight reduction – in this case ~37% (~21% and ~16% respectively). 
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6. The Steady-State Thermal analysis showed that for the operating conditions of the CERN PIXE 

RFQ the temperature difference between different sectors remains in order of ~0.8 °C – thus not 

posing any risk for the RFQ functionality. 

7. The surface roughness measurements indicated that the prototype surface roughness quality is still 

far from the required Ra=0.4 µm. The surface arithmetical mean roughness Ra average was 

registered at 14.32 µm and the maximum height of the profile Rz at 116.7 µm. However, these 

results are encouraging, since were obtained without any adaptation of the AM technological 

process for better surface roughness outputs. 

8. The geometrical accuracy measurements revealed promising results – with the conventional AM 

methodology approaching the required precision of 20 µm on vane tip and fully reaching 100 µm 

on other surfaces. The largest deviation of 0.31 mm on the vane tip can be attributed to the 

technological glitch – distortion of the support structures during the build process. 

5.1 Lessons learned 

To prepare and tune for the full prototype manufacture, several simulations and pre-trials took 

place and valuable experience was gained throughout this proof-of-concept exercise, both for the L-PBF 

pure-copper technological process developments and the RFQ design improvements. There is no doubt 

that these encouraging proof-of-concept results could be only achieved with an open-minded and truly 

multidisciplinary approach to this endeavour. Importantly, this proof-of-concept project involved new 

partners and brought-in world-class brand-new AM expertise into the particle accelerator community. 

These partners learned how to work together and how to trust each-others expertise. Results are evident. 

It appears that the whole process of the RFQ manufacturing with L-PBF will require additional 

improvements and fine-tuning. To achieve the utmost quality of the AM manufactured pure-copper 

RFQ, further development of the technological chain may require subsequent surface finishing steps 

and post processing stages. The technological and constructive optimisation shall include the 

modifications of the initial design (CAD part), e.g. to add an offset for the post processing as well as the 

use of simulation tools in order to calculate the desired pre-deformation of the RFQ surfaces, before 

manufacturing, to compensate the distortion. Individualized support structures in critical areas of the 

part can also minimize distortion. 

5.2  Way forward 

The initial proof-of-concept results presented in this paper, are clearly demonstrating the 

manufacturing feasibility of the complex pure copper accelerator components already with the 

commercially available AM solutions offered by the current state-of-art. This is already a valuable 

contribution to the I.FAST programme [12], and the technological approach itself could be instrumental 

in pushing forward accelerator technologies as requested by e.g. the updated European Strategy for 

Particle Physics [13]. 

Next steps will be to perform in-depth specialised RFQ metrological measurements following the 

well-established algorithms used for the HF RFQs at CERN, followed by the relevant vacuum, 

degassing and voltage holding tests. A sample AM manufactured piece is being designed to be tested 

for voltage holding at a special test bench used for CLIC RF testing at CERN. 

Furthermore, based on the experience gained with the proof-of-concept RFQ, it is foreseen that a 

complete RFQ (all four vanes in a single piece) will be AM manufactured at Politecnico di Milano, as 

the next prototype. All the testing and measurement sequences will be repeated as for the proof-of-

concept RFQ. 

At the same time, further research and experimental work shall focus on suitable post-processing 

techniques and larger build volume with the L-PBF system laser configuration. There is a range of 
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options to optimise the pure-copper manufacturing processes and potential means to attain the required 

surface roughness quality. This shall also encompass details and analysis of the processing conditions, 

material microstructure and other sample properties.  

Considering the above aspects, although major RFQ design changes will not be needed, in-depth 

multi-physics analysis of the RFQ system will be soon needed (e.g. thermal expansion, material 

tensions, conductivity etc.). Subsequently, the cooling connectors and adaptors should be added to the 

next design iterations, also implementing improvements in cooling channel shape and their internal 

surface conditioning, optimization of lattice structure size and shape.  Empirical experience showed that 

in the future, it is recommended to use solid supports in the region of the vane tip or throughout the 

bottom of the RFQ. 

Finally, various hybrid machining, post-processing and surface finishing scenarios are being 

considered (e.g. laser smoothening, abrasive-vibro-processing, high-speed milling [14, 15] etc.). 

Utilisation of the 3D surface roughness parameters and surface texture standards as per ISO 25178 could 

be beneficial for the better understanding of the RFQ surface microtopography and would help to 

quantify the influence of the technological AM parameters to the final surface roughness quality. 
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