Characterisation of the interior structures and atmospheres of multiplanetary systems Lorena Acuña^{1*}, T. A. Lopez¹, T. Morel², M. Deleuil¹, O. Mousis¹, A. Aguichine¹, E. Marcq³, A. Santerne¹ - ¹ Aix Marseille University, CNRS, CNES, LAM - ² STAR Institute, Liège University. - ³ LATMOS/CNRS/Sorbonne University/UVSQ - * lorena.acuna@lam.fr LAM LABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE #### Introduction • TRAPPIST-1 (Acuña+ 21, Agol+ 20), TOI-178 (Leleu+ 21): Multiplanetary systems are environments suitable to explore the compositional diversity of low-mass planets, their formation and evolution #### Interior structure model • Brugger+ 16, 17: Mass Core Mass Fraction (CMF) Water Mass Fraction (WMF) Surface pressure and temperature **Density** # Interior-atmosphere coupling Water phase diagram: - Supercritical: Mousis+ 20. EOS from Mazevet+ 19 - Atmosphere model: Pluriel+19, Marcq+17 - Coupling algorithm: Acuña+ 21 ### Multiplanetary systems - Low-mass planets ($M < 20~M_{\oplus}$) - Systems with 5 or more planets **TRAPPIST-1** K2-138 **TOI-178** Kepler-11 Kepler-102 Kepler-80 Masses, radii and stellar abundances MCMC Bayesian algorithm (Dorn+ 15, Acuña+ 21) # Results ## WMF in multiplanetary systems | System | Planet | CMF | WMF | Significance | $\Delta M_{H2} [M_{\oplus}]$ | |------------|--------|------------------------|------------------------|------------------|------------------------------| | TOI-178 | b | 0.21±0.30 | 0 | <1 σ | 0.83 | | | c | 0.30 ± 0.02 | $0.02^{+0.04}_{-0.02}$ | <1 σ | < 0.01 | | | d | 0.10 ± 0.01 | 0.69 ± 0.05 | 1.3σ | 0.16 | | | e | 0.18 ± 0.02 | 0.40 ± 0.06 | <1 <i>\sigma</i> | < 0.01 | | | f | 0.22 ± 0.03 | 0.28 ± 0.10 | <1 \sigma | < 0.01 | | | g | 0.10 ± 0.01 | 0.58 ± 0.16 | 3.0σ | < 0.01 | | Kepler-11 | b | 0.20 ± 0.04 | 0.27 ± 0.10 | <1 σ | < 0.01 | | | c | 0.18 ± 0.01 | 0.33 ± 0.04 | $1.7 \ \sigma$ | < 0.01 | | | d | 0.10 ± 0.02 | ■ 0.65±0.05 | 2.4σ | < 0.01 | | | e | 0.12 ± 0.01 | ■ 0.55±0.04 | 4.4σ | < 0.01 | | | f | 0.14 ± 0.06 | 0.47±0.10 | 1.9σ | 0.56 | | Kepler-102 | b | $0.91^{+0.09}_{-0.16}$ | 0 | <1 <i>σ</i> | 0.13 | | | c | $0.95^{+0.09}_{-0.30}$ | 0 | <1 σ | 0.10 | | | d | ■ 0.80±0.14 | 0 | <1 σ | < 0.01 | | | e | 0.22 ± 0.02 | 0.17 ± 0.07 | <1 σ | 0.01 | | | f | 0.27 ± 0.09 | 0.04 ± 0.04 | <1 <i>σ</i> | 0.02 | | Kepler-80 | d | $0.97^{+0.03}_{-0.05}$ | 0 | | < <u></u> | | | e | 0.43 ± 0.18 | | <1 <i>σ</i> | < 0.01 | | | b | 0.13 ± 0.02 | 0.58 ± 0.07 | <1 <i>σ</i> | < 0.01 | | | c | 0.09 ± 0.01 | 0.70 ± 0.04 | <1 <i>σ</i> | < 0.01 | | | g | 0.31 ± 0.02 | $< 1.5 \times 10^{-3}$ | <1 σ | 140 | | | C | | | | | Gradient + plateau trend Trend deviations case by case #### Conclusion - Our interior structure model can be applied to low-mass planets at a wide range of irradiations. - We obtain a clear increasing water content with distance from host star + a plateau for several multiplanetary systems. - These trend could be shaped by atmospheric escape, migration type I and pebble accretion in the vicinity of the ice line. - We analyse case-by-case those planets that do not fit the trend. We are able to explain these cases with either Jeans atmospheric escape, H/He envelopes or high-CMF forming processes, such as mantle evaporation, collisions or formation in the vicinity of the rocklines. Contact: lorena.acuna@lam.fr