Characterisation of the interior structures and atmospheres of multiplanetary systems

Lorena Acuña^{1*}, T. A. Lopez¹, T. Morel², M. Deleuil¹, O. Mousis¹, A. Aguichine¹, E. Marcq³, A. Santerne¹

- ¹ Aix Marseille University, CNRS, CNES, LAM
- ² STAR Institute, Liège University.
- ³ LATMOS/CNRS/Sorbonne University/UVSQ
- * lorena.acuna@lam.fr

LAM LABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE

Introduction

• TRAPPIST-1 (Acuña+ 21, Agol+ 20), TOI-178 (Leleu+ 21):

 Multiplanetary systems are environments suitable to explore the compositional diversity of low-mass planets, their formation and evolution

Interior structure model

• Brugger+ 16, 17:

Mass

Core Mass Fraction (CMF)

Water Mass Fraction (WMF)

Surface pressure and temperature

Density

Interior-atmosphere coupling

Water phase diagram:

- Supercritical: Mousis+ 20.
 EOS from Mazevet+ 19
- Atmosphere model: Pluriel+19, Marcq+17
- Coupling algorithm: Acuña+ 21

Multiplanetary systems

- Low-mass planets ($M < 20~M_{\oplus}$)
- Systems with 5 or more planets

TRAPPIST-1

K2-138

TOI-178

Kepler-11

Kepler-102

Kepler-80

Masses, radii and stellar abundances

MCMC Bayesian algorithm (Dorn+ 15, Acuña+ 21)

Results

WMF in multiplanetary systems

System	Planet	CMF	WMF	Significance	$\Delta M_{H2} [M_{\oplus}]$
TOI-178	b	0.21±0.30	0	<1 σ	0.83
	c	0.30 ± 0.02	$0.02^{+0.04}_{-0.02}$	<1 σ	< 0.01
	d	0.10 ± 0.01	0.69 ± 0.05	1.3σ	0.16
	e	0.18 ± 0.02	0.40 ± 0.06	<1 <i>\sigma</i>	< 0.01
	f	0.22 ± 0.03	0.28 ± 0.10	<1 \sigma	< 0.01
	g	0.10 ± 0.01	0.58 ± 0.16	3.0σ	< 0.01
Kepler-11	b	0.20 ± 0.04	0.27 ± 0.10	<1 σ	< 0.01
	c	0.18 ± 0.01	0.33 ± 0.04	$1.7 \ \sigma$	< 0.01
	d	0.10 ± 0.02	■ 0.65±0.05	2.4σ	< 0.01
	e	0.12 ± 0.01	■ 0.55±0.04	4.4σ	< 0.01
	f	0.14 ± 0.06	0.47±0.10	1.9σ	0.56
Kepler-102	b	$0.91^{+0.09}_{-0.16}$	0	<1 <i>σ</i>	0.13
	c	$0.95^{+0.09}_{-0.30}$	0	<1 σ	0.10
	d	■ 0.80±0.14	0	<1 σ	< 0.01
	e	0.22 ± 0.02	0.17 ± 0.07	<1 σ	0.01
	f	0.27 ± 0.09	0.04 ± 0.04	<1 <i>σ</i>	0.02
Kepler-80	d	$0.97^{+0.03}_{-0.05}$	0		< <u></u>
	e	0.43 ± 0.18		<1 <i>σ</i>	< 0.01
	b	0.13 ± 0.02	0.58 ± 0.07	<1 <i>σ</i>	< 0.01
	c	0.09 ± 0.01	0.70 ± 0.04	<1 <i>σ</i>	< 0.01
	g	0.31 ± 0.02	$< 1.5 \times 10^{-3}$	<1 σ	140
	C				

Gradient + plateau trend

Trend deviations case by case

Conclusion

- Our interior structure model can be applied to low-mass planets at a wide range of irradiations.
- We obtain a clear increasing water content with distance from host star + a plateau for several multiplanetary systems.
- These trend could be shaped by atmospheric escape, migration type I and pebble accretion in the vicinity of the ice line.
- We analyse case-by-case those planets that do not fit the trend. We are able to explain these cases with either Jeans atmospheric escape, H/He envelopes or high-CMF forming processes, such as mantle evaporation, collisions or formation in the vicinity of the rocklines.

Contact: lorena.acuna@lam.fr