
ProcessTron: Efficient Semi-Automated
Markup Generation for Scientific Documents

Guido Sautter
KIT

Am Fasanengarten 5
76128 Karlsruhe

guido.sautter@kit.edu

Klemens Böhm
KIT

Am Fasanengarten 5
76128 Karlsruhe

klemens.boehm@kit.edu

Conny Kühne
KIT

Am Fasanengarten 5
76128 Karlsruhe

conny.kuehne@kit.edu

Tobias Mathäß
KIT

Am Fasanengarten 5
76128 Karlsruhe

ABSTRACT
Digitizing legacy documents and marking them up with XML is
important for many scientific domains. However, creating com-
prehensive semantic markup of high quality is challenging. Re-
spective processes consist of many steps, with automated markup
generation and intermediate manual correction. These corrections
are extremely laborious. To reduce this effort, this paper makes
two contributions: First, it proposes ProcessTron, a lightweight
markup-process-control mechanism. ProcessTron assists users in
two ways: It ensures that the steps are executed in the appropriate
order, and it points the user to possible errors during manual cor-
rection. Second, ProcessTron has been deployed in real-world
projects, and this paper reports on our experiences. A core obser-
vation is that ProcessTron more than halves the time users need to
mark up a document. Results from laboratory experiments, which
we have conducted as well, confirm this finding.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing – Linguistic processing.

General Terms
Algorithms, Experimentation, Human Factors, Languages.

Keywords
Semantic XML Markup, Data-driven Markup Process Control.

1. INTRODUCTION
Digitizing legacy documents and marking them up according to an
XML schema is an important task in the sciences. One objective is
to facilitate machine processing, e.g., analyses like information
retrieval and data mining. Creating comprehensive markup of high
quality, covering both document structure, e.g., sections and
paragraphs, and semantically important details, e.g., named
entities like names of geographic locations, is challenging.
Respective processes consist of many subsequent steps that build
on the results of each other.

Example 1. Consider a markup process where a first step P
corrects paragraph boundaries or marks up missing paragraphs
in OCR output. A second step S marks up sections, as an
overlay of the paragraphs. It exploits that section boundaries
always coincide with paragraph boundaries. ■

In Example 1, erroneous paragraph boundaries induce erroneous
section boundaries, causing additional correction effort. To pre-
vent such error propagation, each step consists of two phases: In
the Automated Phase, a tool, mostly NLP-based, generates mark-
up. Since NLP tools typically do not yield error-free results – their
accuracy is rarely above 95% [8] – the user checks and corrects
the auto-generated markup in the Correction Phase.

A study accompanying a real-world markup project has confirmed
that interleaving automated markup generation and manual
corrections reduces the correction effort of the user significantly
[11]. Further, the study makes two important observations: (1)
Users should run the steps of the process strictly in the intended
order to keep the error rate low. (2) The correction phases are
tedious and time-consuming, as users spend a lot of time seeking
and correcting errors. – Thus, curbing the user effort requires a
control mechanism that provides assistance in two ways: (a) To
guide users through the markup process step by step, enforcing
their appropriate order, and (b) to highlight possible errors, in
order to reduce the effort of finding them.

To control complex processes, one usually relies on Workflow
Management Systems. The steps of a markup process would be
activities of a workflow. In this current context however, it solely
depends on the state of the document which step is next, i.e., on
the markup created so far and on the errors in this markup. It does
not directly depend on the steps that have been executed last, as
we will explain. In contrast to workflows, there are no well-
defined transitions between the steps. In particular, free text
editing can change the state of a document arbitrarily: For
instance, users might simply undo the results of previous steps,
which then have to be re-executed. This situation would be
impossible to model as a workflow in practice.

From the perspective of XML validation, a markup process is
complete if the document passes a process-specific validation.
With this point of view, a step in a markup process fixes a specific
type of error. Thus, it is promising to use XML schema languages
to specify the desired outcome of the various steps of a markup
process. However, XML Schemas, which are essentially gram-
mars, validate a document strictly in a top-down fashion, starting
with the root element. Thus it is difficult to impossible to describe

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

JCDL’10, June 21–25, 2010, Gold Coast, Queensland, Australia.
Copyright 2010 ACM 978-1-4503-0085-8/10/06... $10.00.

the intended outcomes of intermediate steps with the same sche-
ma: In Example 1, an XML Schema for Step P would have to al-
low paragraphs to be top-level elements. This rules out enforcing
that paragraphs are nested in sections, as would be the case after
Step S. Schematron [12] in contrast, another XML schema lan-
guage, uses XPath-based rules to validate individual markup ele-
ments. A Schematron schema is a collection of such rules. This
point-check approach is well suited to spot specific errors: A
Schematron schema for Example 1 can specify one rule to make
sure that the paragraph boundaries are correct (Step P) and a se-
cond one to enforce paragraphs to be nested in sections (Step S).
We have found that Schematron rules are well suited to describe
markup processes. However, a problem that XML Schema and
Schematron have in common is their execution models: Validation
tools report errors as they encounter them, not in the order a mark-
up process intends to fix them. Thus, existing tools are not well
suited to control the step-by-step execution of a markup process.

To assist users in performing complex markup processes, we
propose ProcessTron. In essence, the idea is to describe a markup
process by means of a Schematron schema, with some minor
extensions. The execution models of Schematron and ProcessTron
differ significantly, however: The ProcessTron execution model
applies the rules in sequential order, in line with the order of the
markup steps.

Contributions. This paper motivates and presents the Process-
Tron mechanism. It assesses its benefit both in a controlled labo-
ratory experiment and in the context of a real-word project that
has created markup for over 600 document pages. In particular,
we have found that (1) ProcessTron is suitable to model and
control complex real-world markup processes, and that
(2) working with ProcessTron more than halves the time it takes
users to mark up documents. The laboratory experiment validates
this second finding with a statistical significance beyond 90%.
Further we report on our experiences from modeling markup
processes with ProcessTron and formulate guidelines that help
with modeling.

Paper Outline. The rest of this paper is organized as follows:
Section 2 presents the TaxonX Process, which will be a running
example. Section 3 discusses related work. Section 4 explains
Schematron, the basis of ProcessTron. In Section 5, we present the
ProcessTron mechanism. Section 6 features our evaluations,
Section 7 concludes.

2. THE TAXONX PROCESS
TaxonX [3] is a dedicated XML Schema for biosystematics
documents. We refer to the markup process that generates this
markup as the TaxonX Process. In this subsection, we describe
this process. It is representative of complex markup processes for
scientific documents: It includes OCR cleanup at the structural
and word level, markup of the logical document structure, and
markup of semantic details. ([11] describes the individual steps of
the TaxonX Process in more detail, discusses their dependencies,
and explains why they have the specific order listed below.)

The goal of the TaxonX Process is to transform raw, XHTML for-
matted page-by-page OCR output into XML documents with ma-
chine-interpretable semantics. Such a document has the following
characteristics: (1) The document is free from artifacts that do not
belong to its actual content, e.g., page titles, and consists of flo-

wing text, without line breaks or hyphenation. (2) Named entities
are marked up and carry representations that are unambiguous,
i.e., their interpretation does not require the surrounding document
text. In particular, these named entities are taxon names (scientific
names of life forms, e.g., Drosophila melanogaster) and locations.
The former have Life-Science Identifiers (LSIDs, [1]) as their
unique representation, the latter geographical coordinates. (3) The
document has markup representing its structure above paragraph
level, with an emphasis on so-called treatments, a specific kind of
section. A treatment is the part of a document that refers to a
specific taxon. – The process now is as follows. (Note that. for
brevity, the following description subsumes several steps under
one heading, and we do not mention all steps explicitly.)

1. Layout-Artifact Detection. Detect captions of figures and ta-
bles, page titles, and footnotes: Mark up page boundaries and
pages, and then mark up page titles and footnotes next to the
page boundaries. Finally, extract page numbers.

2. Paragraph Correction. Correct paragraph boundaries, which
may be erroneous in OCR output.

3. Paragraph Normalization. Remove paragraph-internal line
breaks and re-join hyphenated words. Add page-number
attributes to the paragraph elements. Remove the page
markup, which is not needed any longer.

4. Structural Normalization. Clean up layout artifacts. In
particular, delete page titles and move footnotes and captions
out of paragraphs they disrupt.

5. MODS Referencing. Import a metadata header [9] from a
web service into the document.

6. Taxon-Name Markup. Mark up the taxon names, the most
important details in the document. Further steps normalize the
taxon names and import their LSIDs into the document.

7. Treatment Markup. Mark up the taxonomic treatments, the
most important structural unit in biosystematics documents.

8. Location Markup. Mark up location names in the document
text. Add their geographical longitude and latitude.

9. Structure of Treatments. Mark up the subsections of the
treatments.

3. RELATED WORK
Workflow Management Systems (WfMS) [13, 14] control com-
plex processes, which are, for instance, represented in BPEL [2].
However, in these systems (and their underlying process models)
transitions between activities are well-defined and take place
within a closed domain of states, e.g., who is next to take action in
an editorial process. The activity just executed, together with its
result, determines which activity is next. The state of a data item
in the workflow therefore depends on the activities completed. In
general, WfMS execute workflows in a process driven fashion. In
a markup process in turn, the state of a document can change
almost arbitrarily, as users can freely edit the document. In
particular, they can corrupt or undo the results of steps already
completed. Such arbitrary transitions are hard to impossible to
model in description languages for workflows. Instead, it is
practical to execute a markup process in a purely data driven fash-
ion, as we will show. This is, the state of a document in a markup
process solely depends on the markup in the document and on the
errors in this markup.

XML Schema [16] is widely employed to validate XML
documents. It defines the structure of XML documents as a
context free grammar. Measuring the progress of a markup
process can be seen as checking if a document is valid for a given
step. XML Schema validates a document top-down, starting with
its root element. This would require generating the markup in a
top-down fashion as well. This is not the optimal order of markup
steps, however. For instance, a convenient way to mark up
sections is to generate them as an overlay of the paragraphs (see
Example 1). In this case, paragraphs have to be marked up first.
Consequently, using XML Schema to assess the status of a
document in a markup process would require a sequence of
different schemas that reflect the step-by-step creation of the
markup. As Example 2 shows, XML element nesting can change
almost arbitrarily in the course of a markup process.

Example 2. Consider a process marking up sections, sub-
sections, paragraphs, and named entities (listed in top-down
order for sake of clarity). Suppose that the best order (i.e.,
highest degree of automation) of creating this markup is as
follows: paragraphs, named entities, sections, subsections.
Enforcing this order would require three different XML
Schemas: one allowing paragraphs as top level elements, a
second one allowing paragraphs solely as children of sections,
and finally one that enforces paragraphs to be nested in
subsections that are, in turn, nested in sections. In addition, all
these XML Schemas would have to contain the named entities,
which are marked up before the sections. ■

The effort to create and maintain a series of schema definitions
would be extremely high. It would also reduce flexibility by
much, as adaptations would induce changes to a series of schema
definitions. Altering such a series of schema definitions would be
tedious and error prone.

Annotation-Control Mechanisms are software components that
coordinate the generation of markup. Such components have been
successfully used in corpus-annotation projects like the Penn
TreeBank Project [7] or the GENIA Project [5]. However, the
scope of the control mechanisms in these projects was limited to
individual steps – for instance to highlight words for which
annotators do not agree on the part-of-speech tag [7]. They are not
intended and not suited to control an entire markup process. In
contrast, they usually are special-purpose implementations for
specific types of detail-level markup elements. Thus, these plug-
ins do not solve the problem addressed here. Furthermore, special-
purpose components tend to have a low level of genericity, so
changes to the markup process would require changes on the
implementation level.

4. SCHEMATRON
Schematron [12] is an XML validation approach that, instead of a
grammar-style schema, uses XPath expressions [15] (called rules)
to validate document markup. Each rule stands by itself, so it is
possible to target specific parts of the markup, regardless if other
parts have been created or validated. This rule-based approach
forms the basis of our markup-process-control mechanism.

A Schematron schema has the following structure: It contains one
or more rules. A rule validates a specific part of the document
markup, the so-called rule context, expressed as an XPath expres-
sion. Each rule contains one or more assertions or reports, which

perform the actual validity checks. An assertion consists of an
XPath predicate evaluated against the context of the surrounding
rule. If the predicate evaluates to false, the assertion outputs an
error message. Reports in turn output an error message if the pre-
dicate evaluates to true. To support workflows, Schematron allows
for grouping the rules, and one can switch groups on and off.
When using this grouping feature, however, the user has to speci-
fy which step a given document is in, by means of a parameter to
the Schematron validator. Our goal in turn is to identify the
current step automatically, based on the state of the document.

In principle, validation of a document against a Schematron rule
works as follows: First, the validator uses the XPath query from
the context attribute to select the elements to check, the so-called
context elements. In Example 3, these are all paragraph ele-
ments. Then, the validator evaluates the XPath predicates spe-
cified in the test attributes of the reports and assertions, for each
of the context elements. If the predicate of an assertion evaluates
to false, the validator outputs the textual content of the assertion
element. If the predicate of a report evaluates to true, the validator
outputs the textual content of the report element.

Example 3. The following Schematron rule tests if paragraphs
have proper boundaries, Step 2 in the TaxonX Process. The
assertion uses a regular expression and the matches()
function from XPath 2.0 to test whether the textual content of
a paragraph element ends with a punctuation mark. In the
same way, the report identifies any paragraph elements
whose textual content starts with a lower case letter. Expres-
sions evaluated and text output during validation are in bold:
<rule context="paragraph">
 <assert test="matches(text(), '.+[\.|\!|\?]')">
 Paragraphs must end with a sentence-ending
 punctuation mark.</assert>
 <report test="matches(text(), '[a-z].+')">
 Paragraphs must not start with a lower case word.
 </report>
</rule>
Note that this rule is designed to find every paragraph that
might be erroneous, even at the cost of some false positives. ■

The default Schematron execution model is based on XSLT. It
first compiles a Schematron schema into an XSLT stylesheet,
where each rule becomes an XSL template. Then it applies the
stylesheet to the document to be validated. The output is a
sequence of error messages. Due to the way XSLT works, the
order of these messages corresponds to the document order of
(possibly) erroneous markup elements. Further, the output
includes all error messages for the entire document markup. In
other words, the default Schematron execution model evaluates
the rules as if they were an unordered set. However, enforcing the
order of the steps requires a well-defined ordering of the rules. In
particular, only the error messages of the first rule that has failed
are relevant. This calls for an alternative execution model.

5. PROCESSTRON
In this section, we introduce our markup-process-control mecha-
nism. First, we show how to represent a markup process by means
of a Schematron schema. Second, we define the ProcessTron
execution model (PEM for short), which controls markup
processes based on such schemas. As opposed to the default

Schematron execution model (see Section 4), the PEM applies the
rules sequentially.

5.1 DESCRIBING MARKUP PROCESSES
WITH SCHEMATRON SCHEMAS

We propose to represent each step of a markup process as a
Schematron rule. To describe and control markup processes, we
require for each step (1) an identifier for the respective automated
markup tool and (2) immediate, ID-based access to the possibly
erroneous markup elements. We therefore extend the definition of
a rule in two points:

- AMT-ID: Each rule bears the identifier of the automated
markup tool that performs the automated phase of the re-
spective step. This facilitates automated execution of the tool.

- Element-ID: For each assertion/report, we require the textual
message to specify the ID of each failing markup element.
Using the (optional) name element of Schematron and its path
attribute, this is straightforward; we only make it mandatory.
This facilitates highlighting suspected errors in the correction
phase of the step represented by the rule.

For clarity, we refer to a Schematron schema that provides these
extensions as a ProcessTron schema. Example 4 is a rule repre-
senting the step which checks and corrects paragraphs boundaries.

Example 4. The following ProcessTron rule represents the
step that corrects paragraph boundaries (parts specific to
ProcessTron in bold). The automatedMarkupTool element
specifies in its id attribute which markup tool to apply if a
paragraph in a document does not comply with the rule. This
is the case if the paragraph fails the test of an assertion or
passes the one of a report. Both indicate that the paragraph
boundaries might be erroneous. The path attributes of the
name elements in the assertions and reports include the IDs
of the affected paragraphs in the error messages. The actual
test is exactly the same as in Example 3; the difference is that
the ProcessTron specific parts (in bold) have been added:
<rule context="paragraph" id=”1”>
 <automatedMarkupTool
 id=”#paragraphBoundaryCorrector”/>
 <assert test="matches(text(), '.+[\.|\!|\?]')">
 <name path=”@id”/>: Paragraphs must end with a
 sentence-ending punctuation mark. </assert>
 <report test="matches(text(), '[a-z].+')">
 <name path=”@id”/>: Paragraphs must not start
 with a lower case word.</report>
</rule> ■

The design of the XPath tests requires special attention: To
reliably highlight all potential errors in the correction phase, the
XPath tests have to be designed for 100% recall, i.e., to make sure
that every possible error is indeed highlighted. A certain number
of false positives are acceptable, i.e., markup elements that are
actually correct, but fail a given XPath test: A user can quickly
recognize that they are not erroneous and mark them as correct.
Example 5 illustrates this.

Example 5. The XPath test of the assertion in Example 3, for
instance, would recognize every section heading in this paper
as a potential error – because headings do not end with a
punctuation mark. This is necessary, however, in order to not

miss any paragraphs that do have erroneous boundaries.
However, marking the relatively few section headings as
correct is little effort for the user, compared to checking all
paragraph boundaries in a document. ■

5.2 PROCESSTRON EXECUTION MODEL
While Schematron schemas require only marginal extensions to
describe markup processes, the picture is different for the
execution model. The XSLT-based one of Schematron is not well
suited to control a markup process. In particular, its output does
not reflect the order of the rules, but the document order of the
markup elements the error messages refer to. However, the order
of the rules reflects the order of the steps of the markup process.
Thus, it is essential to enforce this order. Consequently, we
introduce a new execution model for ProcessTron schemas, the
ProcessTron Execution Model (PEM).

Figure 1. The ProcessTron execution model
Figure 1 visualizes PEM as pseudo code. PEM applies the indivi-
dual rules sequentially, one by one (Line 21). Keep in mind that

01 // functions for evaluating rules on a document
02 boolean fails(Test T, Document D) :=
03 true if D contains any markup elements that do not match
 (for assertions) or match (for reports) the XPath test of T,
04 false otherwise
05 boolean fails(Rule Φ, Document D)
06 for (Test T in Φ) // apply individual tests
 (assertions & reports) of Φ
07 if (fails(T, D) // D fails T, and thus Φ
08 return true
09 return false // D did not fail any test,
 thus does not fail Φ
10 // functions for performing individual
 steps in a markup process
11 void executeAutomatedPhase(Rule Φ, Document D) :=
12 apply the automated markup tool for
 the step represented by Φ
13 void executeCorrectionPhase(Rule Φ, Document D) :=
14 display D for manual correction, using Φ to
 highlight potential errors
15 void executeStep(Rule Φ, Document D) // execute the
 step represented by Φ
16 executeAutomatedPhase(Φ, D)
17 while (fails(Φ, D)) // stay in correction phase
 until D passes Φ
18 executeCorrectionPhase(Φ, D)
19 // main rule evaluation functions
20 Rule getCurrentStep(PT-Schema P, Document D)
21 for (Rule Φ in P) // treats schema as
 ordered sequence of rules
22 if (fails(Φ, D)) // D fails Φ
23 return Φ
24 return nil // no failing rule found
25 // main function
26 void executeProcess(PT-Schema P, Document D)
27 while (true)
28 Rule Φ = getCurrentStep(P, D) // find current step
29 if (Φ == nil) // D did not fail any rule
 markup process complete for D
30 return
31 else executeStep(Φ, D) // execute step
 represented by Φ

the order of the rules reflects the order of the steps in the markup
process described by the ProcessTron schema. The loop goes
through the rules in this order. As soon as a rule Φ fails (Line 22),
i.e., it reports potentially erroneous markup elements, rule appli-
cation stops. Φ corresponds to the first step of the markup process
that is not yet complete, i.e., the next step to execute, referred to
as S in the following. PEM then executes S (Line 31): First, it
applies the automated markup tool that belongs to S (Line 16).
Then execution remains in the correction phase of S until the user
has handled all potential errors reported by Φ (Lines 17 and 18).
The user has two ways of doing so: (1) He can correct the error.
(2) He can approve the markup element in question, i.e., stating
that it is not an error. – To curb the user effort, our implementa-
tion of PEM (described in Section 6.1) uses the XPath tests of Φ
to highlight all markup elements in doubt. When S is complete,
i.e., Φ reports no more errors, execution starts again by applying
the first rule in the markup-process definition (Line 28). This is
necessary because a user might have introduced new errors in the
correction phase. When no rule reports an error any more, the
markup process is complete.

Note that PEM is lightweight and easy to implement in common
XML editors. It only requires an IO facility to read the process
definition and an XPath engine to evaluate the rules.

6. EXPERIENCES FROM EXPERIMENTS
AND REAL-WORLD DEPLOYMENT

In this section, we first report on a controlled laboratory
experiment we have conducted with ProcessTron. With a statisti-
cal significance of over 90%, it shows that working with
ProcessTron yields a speedup of over 50%. Second, we report on
the experiences we have gained with ProcessTron in a real-world
markup project, the ZooTaxa Project. This project has used the
TaxonX Process (Section 2) to generate TaxonX markup for all
ant-related documents from the ZooTaxa1 collection, i.e.,
30 documents with over 600 pages in total. – Our core
observation, which is fully in line with the laboratory experiment,
is that ProcessTron significantly curbs user effort: It more than
halves the time a user must work on a document page. We further
report on the insights we have gained when modeling the markup
process of the ZooTaxa Project with ProcessTron. The main
finding is that ProcessTron is well suited to model markup
processes. Further, based on our observations, we propose some
general process-modeling guidelines, which we deem helpful
when designing and modeling a given markup process. – The
focus of our evaluation lies on the laboratory experiment and the
ZooTaxa Project rather than on the process modeling itself. This is
because, in any markup project, there is only one markup process
to model. This happens at a central instance. On the other hand,
we envision many users working with ProcessTron on many
documents. Thus, reducing the user effort is far more important; it
outweighs the effort for modeling the markup process by much.

6.1 EXPERIMENTAL SETUP
Software. As the platform for our experiments, we have used the
GoldenGATE Editor [10]2. Its purpose is to assist users creating

1 ZooTaxa (http://www.mapress.com/zootaxa/) is a biology journal.
2 Software and documentation available for download at

http://idaho.ipd.uka.de/GoldenGATE

and correcting semantic markup. It supports the separation of each
step into an automated phase and a correction phase. To facilitate
deployment of automated markup tools, it provides interfaces for
their integration. To simplify correction for users who are not
XML experts, manual editing works on the element level in
GoldenGATE, as opposed to the character level in other XML
editors. This means, for instance, that users do not have to bother
with escaping the values of attributes, e.g., replacing ‘<’ with
‘<’, as this happens automatically. Likewise, creating, remo-
ving, and renaming XML elements are atomic operations, as op-
posed to editing XML tags at the character level. In addition, Gol-
denGATE offers specialized document views that let the user sift
through specific markup elements very quickly, e.g., a list view
for location names. For our experiments, we have implemented
ProcessTron as a plug-in for the GoldenGATE editor. Besides the
process-control mechanism, the plug-in provides editing facilities
for ProcessTron schemas: an editor for individual rules, with a test
function for the XPath expressions, and a selector for the auto-
mated markup tool assigned to the step the rule corresponds to. On
execution, the ProcessTron plug-in uses a specialized list view to
display potentially erroneous markup elements. The rationale is
that the user does not have to inspect the whole document.

Measures Used. In both the laboratory experiment and the real-
world markup project, we use the following measures to quantify
user effort: d is the number of documents, ti the time it took to
mark up document i, subsequently referred to as working time for
the document, and pi the number of pages in document i. Given
this, the measures are as follows:

1. The average working time per page (AWT) is based on the
working times for the individual documents, regardless of
document size:

2. The weighted average working time per page (WAWT)

weights the times for each document relative to the document
size, i.e., the overall average working time per document
page:

Measurement. In all experiments and studies, we have measured
the time it took users to complete the markup of a document,
starting with the OCR output. From these numbers, we have then
computed AWT and WAWT. In the laboratory experiment, we
consider the markup of a document to be complete if it matches
that of a reference document. In all our markup efforts, the
markup of a document is complete if the TaxonX Process is
complete, i.e., the document is properly marked up and valid
according to the TaxonX schema.

6.2 LABORATORY EXPERIMENT
To assess the benefit of ProcessTron under controlled conditions,
we have conducted a laboratory experiment, with 8 participants.
From preliminary experiments, we knew that we could expect a
speedup of around 2. According to [4], with 8 participants and a
speedup of 2 we can expect a statistical significance below 10% in
a one-sided t-test, with about 80% power [4]. – We have not used
biosystematics documents for this experiment. This is because

marking them up requires domain knowledge. When recruiting
participants for the experiment, we did not want to be restricted in
this way. We have used documents that are (a) commonly under-
standable and (b) comparable to biosystematics documents in
structure and markup complexity. The documents used here are
recipes for pasta dishes. The markup covers both details (ingredi-
ents and cooking tools) and document structure (recipes, and
within these, titles, ingredient lists, and step-by-step preparation
instructions).

We have defined and modeled a markup process for cooking
recipes, consisting of the following steps:

1. Layout-Artifact Detection, same as in Section 2.

2. Paragraph Correction, same as in Section 2.

3. Paragraph Normalization, same as in Section 2.

4. Structural Normalization, same as in Section 2.

5. Ingredient Markup. Mark up the ingredients. This helps to
identify recipe titles and ingredient lists in subsequent steps.

6. Recipe Markup. Mark up individual recipes.

7. Cooking Tool Markup. Mark up cooking tools. This helps to
distinguish between ‘ingredient list’ and ‘preparation’ in the
next step.

8. Structure of Recipes. Mark up the subsections of the recipes,
namely title, ingredient list and preparation, plus (if present)
background information, advanced tips and recipe variations.

This means that we could re-use the rules for almost all the
normalization steps fom the TaxonX Process model, which repre-
sent about half of the process, namely Steps 1 through 4. The only
part we had to adjust and partly model anew was the detail and
structural markup that follows thereafter. For instance, we had to
adjust the configuration of the tool that marks up the inner struc-
ture of treatments to mark up the inner structure of recipes, which
involves other sub section types, and other categorization rules. –
The 8 participants in this experiment received a brief training with
the GoldenGATE Editor and ProcessTron, neither of which they
had used before.

Table 1 displays the average time it took the participants to mark
up a document with and without the support of ProcessTron. We
have obtained the baseline numbers in a previous experiment with
GoldenGATE [10] where users marked up the same documents,
but without the support of ProcessTron. The numbers prove that

ProcessTron yields a considerable speedup. In particular, the time
it took the participating users to mark up a document with
ProcessTron is less than half the time it took without. The post-
hoc statistical significance of this result is below 1% in the paired
t-test, at over 90% power. This result by far exceeds the expected
strength, emphasizing the usefulness of ProcessTron. The quality
of the resulting markup was equally high in both cases; we
verified this through comparison with reference documents.

Table 1. Results of laboratory experiment

 ProcessTron Baseline
Average working
time in minutes
(minutes/page)

29.50 (2.46) 79.1 (6.59)

Standard Deviation 14.22 18.30

Speedup
(over baseline) 62.71% N/A

6.3 THE ZOOTAXA PROJECT
After the favorable laboratory experiment, we have successfully
deployed ProcessTron in the ZooTaxa Project. This project was a
real-world markup project in the biosystematics domain. Using
the GoldenGATE Editor and ProcessTron, a biologist has created
TaxonX markup for all ant-related documents from the ZooTaxa
collection, i.e., 30 documents with over 600 pages in total. We
have measured how the average working time per page has
evolved during the project.

We compare the ZooTaxa Project to another markup project that
took place in the biosystematics domain as well, the so-called
Madagascar Project [11]. Using the GoldenGATE Editor, the Ma-
dagascar Project has generated TaxonX markup for the complete
literature on the ant fauna of Madagascar, comprising over
100 documents with a total of over 2,500 pages. Note that the sets
of documents marked up in the two projects are mutually disjoint.
The only difference between the two projects, apart from the fact
that the documents are different, is that ProcessTron was used in
the ZooTaxa Project but not in the Madagascar Project. The
biologist who participated in the ZooTaxa Project had participated
in the Madagascar Project before. Thus, she was proficient with
the TaxonX Process and the GoldenGATE Editor before the start
of the ZooTaxa Project, and we can rule out any learning effects
in this respect. Thus, using or not using ProcessTron is the only
variable. Its effect is easy to measure. Our measurements from the

Figure 2. Document size in pages & working time per page in minutes

Madagascar Project are well suited to serve as the reference point
for the ZooTaxa Project. It took users about 3-5 minutes to mark
up a document page in the Madagascar Project. This number will
be our reference point.

Figure 2 graphs the evolvement of the working time per document
page over all documents in the ZooTaxa Project. The graph
implies that it took the user only the first 3 documents to get used
to working with ProcessTron, as the working time per page
declines significantly with these initial documents. From Docu-
ment 4 on, the working time levels off around 2 minutes per page.
It keeps slightly decreasing over the remaining documents,
towards around 1 minute per page. We attribute the oscillations in
the graph to the peculiarities of the individual documents,
requiring more or less manual corrections.
Table 2 shows the average and weighted average working time
per page. Note that the number of documents d = 30 in the
ZooTaxa Project. Due to the familiarization phase that spans the
initial 3 documents, we also give both averages without these
documents, labeled ‘after familiarization’, with i starting at 4
instead of 1 in the above formulas. The numbers clearly show the
benefit of ProcessTron: The working time per page is slightly
more than 1 minute. Compared to the 3-5 minutes per page
measured during the Madagascar Project without ProcessTron,
this represents a speedup of around 2.5, even higher than in the
laboratory experiment.

Table 2. Measurements from ZooTaxa Project

Measured Working Time
(minutes / page)

Average working time per
page over all documents 1:56

Average working time per
page after familiarization 1:19

Weighted average working time
per page over all documents 1:27

Weighted average working time
per page after familiarization 1:11

6.4 PROCESS-MODELING EXPERIENCES
To deploy ProcessTron in the ZooTaxa Project and elsewhere, we
have modeled the TaxonX Process in ProcessTron3. The process
consists of over 20 steps, and the resulting ProcessTron schema
contains the same number of rules. We encountered some intere-
sting issues, to be discussed below, but no major difficulties. The
individual rules, and the tests (report or assertion) in particular,
are not very complex: Most of the rules require only one test.
Only few rules – mostly those with regular expression patterns –
are easier to model with two or three tests. This is because
otherwise the regular expressions become highly complex.

3 The ProcessTron markup process definition is available from

http://idaho.ipd.uka.de/ProcessTron/TaxonX-Process.xml. We deem
the rules for steps Normalization.Paragraphs.ParagraphBounda-
ries and CollectionData.MaterialsCitations.MarkUpGeoCoordi-
nates good examples for the use of regular expression patterns.

As a general result of the ZooTaxa Project, ProcessTron is well
suited to model complex markup processes like the TaxonX
Process. This outcome is somewhat expected, considering the high
expressiveness of XPath, which serves as the basis for
ProcessTron.

In our modeling effort, we have observed several interesting
issues, which we now report on, namely the modeling of steps that
(a) mark up details that may or may not be present in a document,
(b) work with temporary markup or mark up artifacts that will be
deleted later on. – Suppose a given Step S creates markup of a
specific type, referred to as M in the following. An apparently
straightforward approach to model S is to design an XPath test
that checks whether or not markup of type M is present in a
document: If markup of type M is present, S has been executed,
otherwise not. However, this simple approach works in neither
Case (a) nor Case (b), as we will describe in the next paragraphs.
Logging which steps have been executed is not an option either:
Since users can simply undo entire steps by hand, as explained
earlier, ProcessTron is – and has to be – completely data driven.

(a) Checking the results of the steps that generate the markup for
important details is not trivial: If no detail markup of a specific
type (e.g., location) is present in the document, this can either
mean that the step creating this markup is not yet complete, or that
the automated markup tool intended to create this markup did not
do so. The reason for the latter may well be that no such details
are present in the document at all. In this case, we have two
options: First, if the markup tool performing a given step leaves
specific traces besides the markup it creates, we can rely on these
traces to check if the step is complete, as illustrated in Example 6.

Example 6. Page numbers are removed from the document
later in the markup process because they are layout artifacts.
The tool that extracts the page numbers, however, does not
only mark them up, but also adds them as attributes to the
page and paragraph elements. Thus, the page-number
attributes of the paragraphs are evidence whether or not the
page-number-extraction step is complete. ■

Second, to check if a step that marks up distinctively structured
parts of the text is complete, we can use regular expression pat-
terns: The respective XPath test can check if a piece of the docu-
ment text matches a specific pattern, but is not marked up accor-
dingly. Example 7 illustrates this for geo-coordinates; we have
used the same approach for dates.

Example 7. Geo-coordinates are not always given in older
documents. Thus, it is not sufficient to check for the presence
of respective markup elements to find out if the respective
markup step is complete or not. We use a regular expression
pattern to test if the document text contains parts that might be
geo-coordinates, but are not marked up accordingly. ■

(b) Temporary markup is markup that is created in a specific step
of a markup process, but is removed again in a later step. Its pur-
pose is to act as a helper in the steps between its creation and
removal. It is challenging to decide if temporary markup is yet to
create, or if it has already been removed. As we cannot rely on
logging, we have to rely either on markup created in steps related
to the one that creates the temporary markup, or on evidence from
the document text. Example 8 illustrates this.

Example 8. In an early step of the TaxonX Process, we
temporarily mark up pages to help detecting footnotes and
print artifacts. After artifact detection is complete, the page
markup is removed. Thus, checking for the presence of pages
alone is insufficient to tell if pages are yet to be marked up.
We additionally rely on the page boundaries, which mark the
border between two pages in the OCR output: The first step
marks up the page borders, the second one the actual pages
between these borders. Both page borders and pages are re-
moved after the structural normalization. Exploiting this
dependency, we check if the document contains both page bor-
ders and pages. If the former are present, but the latter are not,
pages are to be marked up. If neither is present, pages have
been removed. ■

Process-Modeling Guidelines. While modeling the TaxonX pro-
cess, we have found that it is very helpful to study the automated
markup tools that perform the individual steps: Knowing the way
they work and the evidence they rely on (see Example 9), as well
as the output and the errors they might generate is extremely
helpful when designing the XPath tests for the rules. Furthermore,
it is helpful to test the rules for the individual steps in isolation on
specific example documents, as this shows possible errors early
on. This is similar to unit tests [6] in software engineering. Only
after these individual tests it makes sense to compose the actual
ProcessTron schema. This is, to arrange the rules according to the
order of the markup process steps they represent.

Example 9. The markup tools used in the different steps of a
markup process may rely on different evidence. NER
components, for instance, might use word structure (by means
of regular expression patterns) or lexicons. Tools that create
structural markup may rely on statistical models or rules
referring to detail markup. As these different techniques are
susceptible to different errors in the document, it is sensible to
use rules whose design reflects these differences: If the tool
for the automated phase of a given step uses regular
expressions, for instance, it is often sensible to use regular
expressions in the rule that represents this step as well. The
following two instances illustrate this:
1. Think of a tool that marks up dates. Further, suppose that
this tool uses regular expression patterns to recognize dates
based on their distinctive syntactical structure. Then an XPath
with a regular expression that tests if all text snippets with this
particular structure are marked up as dates is a suitable means
to test whether or not the step that marks up dates has been
executed.
2. Think of a tool that marks up figure captions. Further,
suppose that this tool relies on caption paragraphs to start with
‘Figure X:’, where X is the figure number. Then an XPath
expression that tests if all paragraphs starting with the word
‘Figure’ followed by a number and a colon are marked up as
captions is a suitable means to test whether or not this tool has
been executed. ■

Summary. Modeling a markup process is not as straightforward
as it might seem at first glance. To handle temporary markup, one
has to carefully study the interdependence of individual markup
steps. To model steps that mark up semantic details of documents,
it has helped us to put much attention to the functioning of the
automated markup tools. Our guidelines from this section should

facilitate the deployment of ProcessTron in a wide variety of
markup processes.

7. CONCLUSIONS
In this paper, we have presented ProcessTron, a lightweight
mechanism for controlling semi-automated markup processes. It
guides users through markup processes and assists them in
correcting errors left by automated markup tools. We expect
ProcessTron to be easy to implement in other existing markup
environments, as it relies completely on the on-board facilities of
common XML editors. Both a laboratory experiment and
observations from a successful real-world deployment show that
ProcessTron yields considerable benefit: It more than halves the
time it takes users to mark up a document.

8. REFERENCES
[1] Brazma, A. et al. Standards for systems biology. Nature

Reviews Genetics 7, pp. 593–605, 2006.
[2] Business Process Execution Language (BPEL)

http://www.bpelsource.com/bpel_info/spec.html
[3] Catapano, T. et al. TaxonX: A Lightweight and Flexible

XML Schema for Mark-up of Taxonomic Treatments. In
Proceedings of TDWG 2006, St. Louis, MO, USA, 2006.

[4] J. Cohen, Statistical Power Analysis for the Behavioral
Sciences, 2nd ed., Erlbaum, Hillsdale, NJ, USA, 1988, ISBN
0-8058-0283-5

[5] Kim, J.-D. et al. GENIA corpus – a semantically annotated
corpus for bio-text-mining. Bioinformatics, pp. i180-i182,
Oxford University Press, 2003.

[6] Kolawa, A.; Huizinga, D. Automated Defect Prevention:
Best Practices in Software Management. Wiley-IEEE
Computer Society Press, 2007

[7] Marcus, M. P. et al. A. Building a Large Annotated Corpus
of English: The Penn Treebank. Computational Linguistics,
Vol. 19, No. 2, pp. 313-330, 1994.

[8] Mikheev, A. et al. Named Entity Recognition without
Gazetteers, in Proceedings of EACL, Bergen, Norway, 1999

[9] Metadata Object Description Schema.
http://www.loc.gov/standards/mods/

[10] Sautter, G. et al. Empirical Evaluation of Semi-Automated
XML Annotation of Text Documents with the GoldenGATE
Editor. In Proceedings of European Conference on Research
and Advances in Digital Libraries, Budapest, Hungary, 2007.

[11] Sautter, G. et al. Creating Digital Resources from Legacy
Documents - an Experience Report from the Biosystematics
Domain, in Proceedings of ESWC, Heraklion, Greece, 2009

[12] The Schematron Assertion Language http://
xml.ascc.net/resource/schematron/Schematron2000.html

[13] Van der Aalst, W. M. et al. Workflow Patterns, Distributed
and Parallel Databases 14(1): pp. 5-51, 2003

[14] Van der Aalst, W. M., van Hee, K. Workflow Management:
Models, Methods, and Systems. The MIT Press, Cambridge,
Massachusetts, 2004

[15] XML Path Language. http://www.w3.org/TR/xpath
[16] XML Schema http://www.w3.org/XML/Schema

