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Abstract—During acquisition, processing, compression and
transmission, images may be corrupted by multiple distortions
such as blur, noise or compression artefacts. However, most
of the existing image quality assessment (IQA) methods are
designed for images degraded by a single distortion type. This
paper proposes a reduced-reference (RR) IQA method for quality
assessment of multiply distorted images. The method extracts a
number of quality-characterizing features from the reference and
the distorted images for quality prediction. Based on internal
generative mechanism (IGM) theory, the images are decomposed
first into their predicted and disorderly portions. Next, a number
of quality-characterizing features are extracted from each portion
and feature differences are computed between the reference
and distorted images. Finally, support vector regression (SVR)
is adopted to obtain a quality score. Experimental results on
public multiply-distorted image databases, namely MDID2015
and MLIVE, show that the proposed method is well-correlated
with subjective ratings and outperforms several IQA methods.
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I. INTRODUCTION

Following to the rapid advances in multimedia technology
and wide usage of smart phones, digital images have become
a prevalent medium which can be captured, stored and shared
easily. Despite of this progress, digital images are subjected
to various distortions in end-to-end application chains. Dis-
tortions such as blur, noise, blocking and ringing artifacts
can seriously affect the perceived image quality. Therefore,
development of objective image quality assessment (IQA)
algorithms is necessary to measure the effect of distortion on
the visual quality.

Full-reference (FR) IQA algorithms [1] [2] quantify the
difference of a distorted image with its reference image.
Reduced-reference (RR) methods use only partial information
of the reference image in quality assessment. No-reference
(NR) IQA methods [3] [4] predict image quality without using
any reference image. FR metrics cannot be used when there is
no information about the reference image. In such cases, an NR
IQA method is needed. However, designing an NR algorithm

performs well on different image contents and distortion types
is very challenging. RR IQA methods attain a good trade-off
between FR and NR metrics as they use partial information of
reference image and achieve high performance.

In general, RR IQA models are based on extracting a
number of quality-aware features from reference and distorted
images. Wang et al. [5] proposed an RR method using a natural
image statistic model in the wavelet domain. It computes the
Kullback-Leibler distance between marginal probability distri-
bution of wavelet coefficients of reference and test images.
Soundararajan et al. [6] proposed an RR IQA that uses the
difference of the weighted entropies between the reference
and distorted images in the wavelet domain. Based on the
orientation selectivity mechanism of the primary visual cortex,
Wu et al. [7] proposed an orientation selectivity based visual
pattern (OSVP) to extract visual content for RR IQA.

Current IQA methods are mostly devised for evaluation of
images degraded by single distortion types. However, different
processing steps may introduce multiple distortion types to im-
ages. In communication systems, images may pass through ac-
quisition, compression and transmission steps before reaching
end users. Therefore, images may be subjected simultaneously
to multiple distortion types hence cluttering final IQA. Two
new multi-distortion databases namely MLIVE (LIVE multiply
distorted image quality database) [8] and MDID2015 (multiply
distorted image database) [9] challenge many state-of-art IQA
methods. Therefore, it is of great importance to design IQA
models for images corrupted by multiple distortion types.

The interaction between various distortion types may com-
plicate the design of an effective metric. IQA design becomes
even more challenging in case of RR methods when the
reference image is not fully accessible. In this paper, we
propose an RR IQA method for quality assessment of images
subjected to multiple distortion types. The input images are
decomposed into predicted and disorderly parts according to
the internal generative mechanism (IGM) [10]. A number of
quality-characterizing features are extracted from each part
based on the shearlet transform and Rényi directional entropy.
Then, the feature difference values are computed between ref-
erence and distorted images and the support vector regression
(SVR) is adopted to obtain a quality score. The performance ofQoMEX2017 – Erfurt, Germany; 978-1-5386-4024-1/17/$31.00 c©2017 IEEE



Fig. 1. (a) IGM-based image decomposition: (a) Original (reference) image, (b) predicted portion (IP ) and (c) disorderly portion (ID) [scaled to 0-255].

the proposed RR-IQA approach is evaluated on the MDID2015
and MLIVE multi-distortion databases.

The remainder of the paper is organized as follows. In
Section II, we describe the image decomposition based on the
internal generative mechanism (IGM). Section III elaborates
on the feature extraction based on shearlets and Rényi entropy
analysis for respectively the predicted and disorderly parts.
The extraction of the final quality score computed from these
elementary measures is detailed in Section IV. Experimental
results are provided in Section V. The final section addresses
the conclusions of this paper.

II. IGM-BASED IMAGE DECOMPOSITION

Researches in brain science revealed that the human visual
system (HVS) possesses an internal generative mechanism
(IGM) [10] [11]. IGM actively predicts the visual content and
avoids residual uncertainty/disorders. Inspired by IGM theory,
for quality assessment, an image can be decomposed into
predicted and disorderly portions.

Wu et al. [12] proposed a Bayesian prediction based au-
toregressive (AR) model to mimic the visual content prediction
of IGM and they decomposed an image into its predicted and
disorderly portions. Based on IGM, the prediction of the visual
content is highly correlated to similarities among nearby pixels.
Thus, the value of a central pixel xc can be predicted by
deploying an AR model as follows:

vc =
∑
vi∈X

ρivi + ε (1)

where vc is the predicted value of xc and vi is the value of
neighbourhood pixels X . The normalized correlation coeffi-
cients are represented by ρ and ε is a term characterized as
white noise.

Using (1), an input image I is decomposed into the pre-
dicted image IP and the disorderly image ID = I - IP . Fig. 1a
shows a reference image from the MDID database with its

predicted and disorderly parts. The predicted image presents
the main visual content. The distortions on this part mostly
affect the visual structure of an image which can degrade
visual understanding. The disorderly image contains residual
uncertainty information. Distortions on this part mainly change
the disorder of the image, which causes an uncomfortable
perception with limited effect on image understanding.

Various distortion types induce different degradations on
the predicted and disorderly parts. For example, additive white
Gaussian noise (AWGN) has no significant effect on the
visual structure and mainly causes uncomfortable perception.
Therefore, AWGN is more likely to appear in the disorderly
portion. Oppositely, blur changes the primary visual informa-
tion (edges) and degrades the visual understanding, impacting
mainly the prediction portion. Since different distortion types
have a distinct effect on the two decomposed portions, we
proposed to use the IGM-based image decomposition for
quality assessment of multiply distorted images. Fig. 1b and
1c show two input images subjected to multi-distortion types
(blur-noise and blur-jpeg). As shown in Fig. 1b, the blur
degradation can be better observed in the predicted part while
the noise mainly changes the disorderly image. In Fig. 1c, the
blur mainly damaged the structural information in the predicted
part, while the JPEG degrades both parts.

Designing IQA models for multiple distortion types is
challenging since one should consider the interaction between
the distortions the image was subjected to. We suggest that the
degradation effect of multiple distortion types can be better
interpreted on predicted and disorderly images. Inspired by
the IGM based prediction model, we proposed a new RR
IQA method that quantifies the degradation effect of multiple
distortion types on predicted and disorderly parts.

III. PROPOSED METHOD

First, reference and distorted images (I and I ′) are de-
composed into predicted (IP and I ′P ) and disorderly (ID and
I ′D) images (Fig. 2). Then, a number of quality-characterizing



Fig. 2. Overview of the proposed framework

features are extracted from the decomposed images and a qual-
ity index is obtained using support vector regression (SVR).
The degradation in the predicted part is modelled by feature
extraction in the shearlet domain, yielding quality features (fP
and f ′P ). The quality features of the disorderly part (fD and
f ′D) are obtained by computing the Rényi directional entropy.
Next, the differences between the features of reference and
distorted images are separately computed for predicted and
disorderly parts. Finally, the difference values are fed in the
SVR for quality assessment.

A. Features of the Predicted Image

First, we extract a number of features from the predicted
parts of reference and distorted images to obtain their cor-
responding feature vectors. The predicted part of an image
includes primary visual information such as edges. Such
information can be well presented in the shearlet domain.
The shearlet transform [13] provides a sparse representation
for multidimensional data and anisotropic information, most
notably edges, at multiple scales. The quality degradation
can be predicted by quantifying the deviations of shearlet
coefficients of distorted images from those of a reference
image. Here, a number of quality-related features are extracted
from the predicted images in shearlet domain.

1) Shearlet Transform: Shearlets form an affine system
parameterized by three parameters, namely scale, shear, and
translation. The shearlet transform of an image I is defined as:

I → SHϕI(a, s, t) = 〈I, ϕa,s,t〉 (2)

where a>0 is the scale parameter, s ∈ R is the shear parameter
and t ∈ R2 denotes the translation parameter. The shearlet
coefficient ϕa,s,t is given by:

ϕa,s,t(x) = |detMa,s|
− 1

2
ϕ(M−1a,s (x− t))where

Ma,s = SsAa =

[
a s
√
a

0
√
a

]
Aa =

[
a 0
0
√
a

]
Ss =

[
1 s
0 1

] (3)

ϕ(.) is Meyer wavelet function. To achieve optimal sparsity,
the anisotropic dilation matrix Aa ensures the multiscale
property, while the shear matrix Ss provides a mean to detect
directions.

2) Features Extraction: The predicted part of reference and
distorted images are transformed into one low-pass shearlet
subband and ten high-pass directional subbands using 1-level
shearlet decomposition. Since high frequency components of

an image are more sensitive to distortion, ten directional
subbands of the finest – i.e. highest frequency – scale are
considered for feature extraction. In each directional subband
i (1<i<10), the mean of shearlet amplitudes is computed
as feature. Finally, the normalized difference σP between
the mean values of reference and distorted images (in i-th
subband) is obtained as follows:

σP (i) =
µ
′

P (i)− µP (i)

µP (i)
(4)

where µ′P and µP are the mean values of the shearlet ampli-
tudes in the distorted and reference images, respectively. Using
(4), ten quality measures are obtained from the predicted part.

B. Features of the Disorderly Image

The disorderly portion of an image represents information
that the HVS cannot interpret. The pixel values in the dis-
orderly image depict the degree of uncertainty. As shown in
Fig. 1, each distortion has a distinct impact on the amount and
composition of information in the disorderly part. To capture
the amount of the information changes in various directions,
the generalized Rényi entropy [14] has been employed.

Information entropy is an effective measure of the amount
of information in an image and distortion can alter image
entropy in different ways. To compute the amount of direc-
tional information, Gabarda et al. [14] proposed a generalized
Rényi entropy in which the directional selectivity is enabled
by using the 1-D pseudo-Wigner distribution (PWD) [15]
implementation. The general Rényi entropy is defined as:

Rγ =
1

1− γ
log2

(∑
n

∑
k

Uγ [n, k]

)
(5)

where γ ≥ 0 and γ 6= 1, and γ ≥ 2 is recommended for
space-frequency distribution measures. U [n, k] represents the
discrete space-frequency distribution of the image, and n, k
are space and frequency variables, respectively. The spatial-
frequency distribution of a given image U [n, k] can be modeled
by associating the gray-level spatial data with Wigner spatial-
frequency distribution. A discrete approximation of the Wigner
distribution [15] is given by:

Wz [n, k] = 2

L/2−1∑
r=−L/2

z [n+ r] z∗[n− r]e−2i(2πr/L)k (6)

where r is a shifting parameter, z[n] indicates a 1-D gray
values sequence of L pixels in the desired direction, and z∗



is the complex conjugate of z. The equation is in the spatial
interval [−L/2, L/2 − 1] (the PWD window), which allows
local information extraction. Full PWD of the image can be
obtained by shifting the PWD window to all possible positions
over the image. By rotating the window in different directions,
we can obtain directional distributions.

Using a proper normalization, Wz[n, k] is associated to
U [n, k] and then a pixel-wise Rényi entropy can be measured.

The PWD is computed in a 1-D oriented window to obtain
the entropy in a selected direction. We compute the pixel-wise
Rényi entropy in 6 equally-spaced directions (0 ◦, 30 ◦, 60 ◦,
90 ◦, 120 ◦, and 150 ◦) for both the reference and distorted
images. The means of the entropy values in each direction
j are obtained as features and the difference σD between the
mean values of the reference and distorted images is computed:

σD(j) =
µ
′

D(j)− µD(j)

µD(j)
(7)

where µ′D and µD are the mean values of the pixel entropies
in the disorderly part of the distorted and reference images,
respectively. Hence, six quality measures are obtained from
the disorderly part.

IV. QUALITY EVALUATION

Hence, we obtained as such ten quality measures from
the predicted part σP and six measures from the disorderly
part σD. In total, sixteen measures are collected for quality
assessment. Since the effect of the different distortion types
are not similar in the predicted and the disorderly parts,
the performance of the sixteen measures in these two parts
will differ depending on the natures of the distortions the
image was subject to. To combine these quality measures with
appriopriate weights, support vector regression (SVR) [16] is
adopted and a quality prediction model is constructed. The
final quality score Q is computed by:

Q = SV R(σP , σD) (8)

In our method, SVR with a radial basis function (RBF)
kernel was implemented, utilizing the LIBSVM package [17].

V. EXPERIMENTAL RESULTS

In this section, we examined the ability of the proposed
method for quality estimation of multiply-distorted image
databases (MDID2015 and MLIVE).

The MDID2015 image database was used for training
the IQA model. The database contains 20 reference images
corrupted with five distortions of random types and levels.
The distortion types are Gaussian noise (GN), Gaussian blur
(GB), contrast change (CC), JPEG, and JPEG 2000. The CC
distortion is excluded and a total number of 558 distorted im-
ages are used in the experiment. The human subjective ratings
are reported as differential mean opinion scores (DMOS). A
5-parameter logistic function is used to nonlinearly map the
quality scores of objective metrics to the DMOS scores:

TABLE I. MEDIAN LCC AND SROCC COMPARISON ACROSS 100
TRAIN-TEST ON MDID2015 DATABASE.

LCC SROCC
DIIVINE (NR) 0.573 0.498

ShearletIQM (NR) 0.575 0.502
BLIINDS II (NR) 0.584 0.509

SSIM (FR) 0.698 0.676
PSNR (FR) 0.711 0.690
FSIM (FR) 0.899 0.896

HDR-VDP-2.2 (FR) 0.907 0.903
OSVP (RR) 0.743 0.705

Proposed Method (RR) 0.823 0.796

f (q) = α1

(
1

2
− 1

1 + e(α2.(q−α3))

)
+ α4.q + α5 (9)

where f(q) is the predicted score and α1 to α5 are fitting
parameters

The MDID database was iteratively partitioned in train and
test data sets for performance evaluation. The train and test
images were separated by content to ensure the validity of
experiment. The training set contained 80% of the original
images and their distorted versions and the remaining 20%
of images were included in test set. A regression model is
obtained from each training set which is used for quality
assessment of test images. The random training-test set split
was repeated 100 times, and the median performance indices
across 100 experiments were reported for each IQA metric.

The performance indices are the linear correlation coeffi-
cient (LCC) and Spearman rank order correlation coefficients
(SROCC) between the IQA methods and DMOS scores.

The proposed method is compared with several FR (PSNR,
SSIM [1], FSIM [2] and HDR-VDP-2.2 [18]), RR (OSVP-
RR [7]) and NR IQA (ShearletIQM [19], DIIVINE [3] and
BLIINDS II [4]) metrics.

Table I shows the performance of the proposed method on
the MDID2015 database over 100 train-test iterations. Com-
pared to FR methods, the proposed method has higher LCC
and SROCC values than PSNR and SSIM. The performance
of HDR-VDP is the highest among all methods. The proposed
RR method delivers superior performance over the competing
RR and NR IQA methods.

The median values in Table I illustrate the performance
differences between competing methods. However, these dif-
ferences may not be statistically relevant. Thus, we further
computed the statistical significance of five metrics with
highest performance. A two-sample t-test is performed on
the SROCC values over 100 train-test trials. The results are
shown in Table II. A value ’1’ in Table II shows that an IQA
method on the horizontal axis is statistically superior (with
95% confidence) to a method on the vertical axis. The value
is ’0’ when there is no statistically significant distance between
two IQA methods (or the two metrics are equivalent). A value
’-1’ indicates that the IQA metric on the horizontal axis is
statistically inferior to a metric on the vertical axis.

To prove that the proposed method is independent from the
test database (MDID2015), we also performed an evaluation



TABLE II. RESULTS OF STATISTICAL SIGNIFICANCE T-TEST ON THE
SROCC VALUES.

PSNR SSIM FSIM HDR-VDP OSVP Proposed
PSNR 0 0 -1 -1 -1 -1
SSIM 0 0 -1 -1 -1 -1
FSIM 1 1 0 0 1 1

HDR-VDP 1 1 0 0 1 1
OSVP 1 1 -1 -1 0 -1

Proposed 1 1 -1 -1 1 0

TABLE III. THE LCC AND SROCC COMPARISON ON MLIVE
DATABASE.

LCC SROCC
BLIINDS II (NR) 0.357 0.248
ShearletIQM (NR) 0.582 0.536

DIIVINE (NR) 0.639 0.608
SSIM (FR) 0.734 0.645
PSNR (FR) 0.737 0.677
FSIM (FR) 0.893 0.863

HDR-VDP-2.2 (FR) 0.896 0.874
OSVP (RR) 0.775 0.732

Proposed Method (RR) 0.806 0.781

test on the MLIVE database. The MLIVE database consists
of 450 distorted images and spans two types of distortions:
Blur-JPEG and Blur-Noise. The model was trained on the
entire MDID database and the trained model was used for
quality evaluation of the MLIVE distorted images. The results
in Table III confirm that the proposed method has good
performance independent of the trained database.

The computational time of the proposed method is com-
pared with several metrics in Table IV. The original matlab
code of each algorithm is executed on the first image of
MDID database with resolution 512x384 for 10 iterations and
the average time is reported. The total computational cost
of the method is 10.45 seconds in which the IGM-based
decomposition takes 6.64 seconds. The computational cost of
the proposed method is reasonable compared to the machine-
learning based approaches (such as BLIINDS II and DIIVINE).

VI. CONCLUSION

An RR IQA method is proposed for quality assessment of
multiply-distorted images. Inspired by IGM, the reference and
distorted images are decomposed into predicted and disorderly
parts in which a number of features are extracted. The shearlet
transform is used to capture the features in the predicted
part. In the disorderly part, directional Rényi entropy values
are computed as features. The features differences between
reference and distorted images are computed to obtain quality
measures. Finally, quality measures are weighted using a sup-
port vector machine utilizing a radial basis function kernel. The
evaluation results on two multi-distortion databases, namely
MDID2015 and MLIVE show that the proposed RR IQA
method has high prediction accuracy and its performance is
independent from the trained database and it is competitive
with state-of-the-art IQA solutions.

TABLE IV. THE AVERAGE COMPUTATIONAL TIME OF DIFFERENT
METHODS (IN SEC).

HDR-VDP FSIM OSVP BLIINDS DIIVINE Proposed
Time (sec) 1.49 0.347 0.12 19.35 10.27 10.66
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