
Data Study 
Group Final 
Report: CatsAi

31 Aug – 25 Sep 2020
Communicating high-street bakery 
sales predictions using 
counterfactual explanations



________________________________________________________________ 

https://doi.org/10.5281/zenodo.5562660



Contents

1 Executive summary 3
1.1 Challenge Overview . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Data Overview . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Main Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Main Conclusions . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Recommendations and Future Work . . . . . . . . . . . . . 5

2 Introduction 6
2.1 Challenge Overview . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Predictive Models using Meteorological Data . . . . . . . . 7
2.4 Interpretable Models . . . . . . . . . . . . . . . . . . . . . . 7

3 Exploring Explainable AI 8
3.1 Explainable AI: some recent progress . . . . . . . . . . . . 8
3.2 Issues with some state of the art methods . . . . . . . . . . 9
3.3 Beyond correlation based explanations towards

counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Data overview 12
4.1 Dataset Summary . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Data Quality Issues . . . . . . . . . . . . . . . . . . . . . . 12

5 Exploratory Data Analysis 14
5.1 Data Wrangling . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Experiments 26
6.1 Pre-processing Steps . . . . . . . . . . . . . . . . . . . . . 26
6.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Predictive Models . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4 Explanation Methods . . . . . . . . . . . . . . . . . . . . . . 38

1



7 Future Work and Research Avenues 45

8 Team Members 48

9 Appendix 50
9.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.2 Detailed Descriptions for pre-processing steps . . . . . . . 54
9.3 Features for building Random Forest Models . . . . . . . . 54
9.4 Features for Gradient Boosting Regressor (one-hot encoded) 54
9.5 Features for Gradient Boosting Regressor (label encoded) . 55
9.6 Features used for Gradient Boosting Model in R . . . . . . 55
9.7 Features for MLP . . . . . . . . . . . . . . . . . . . . . . . . 55
9.8 Structured timeseries model components weights . . . . . . 55

References 58

2



1 Executive summary

1.1 Challenge Overview

This challenge aims to help CatsAi better serve their client (a large
wholesaler) to estimate bakery orders to reduce waste and under
delivery. The main tasks were to predict high-street sales based on
meteorological factors and apply explainability techniques to effectively
communicate their outputs to the client.

1.2 Data Overview

During the challenge, we explored data relating to sales for a key client
operating in a single country. The data comprised four different sections:
location, products, weather and product sales, our target variables. Each
group of variables provided several details about particular weather
conditions or location (maximum temperature, visibility, competitor index,
etc.), providing fine-grained information about sales.

1.3 Main Objectives

The main research questions we wanted to answer were:

1. Which features are predictive of sales (i.e. orders placed to the
warehouse)?

2. Powerful predictive models are often difficult to interpret. Can we
explain which features are important to a business owner?

1.4 Approach

Keeping in mind our mission to improve product delivery by catsAI and
their commitment to predicting product sales and explaining the factors
that affect these predictions, we undertook a three-prong approach. We
first explored different features that might affect sales, including the
weather, location and seasonality. Informed by our initial explorations, we
built predictive models. Finally, we used in-built and post-hoc explanation
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methods to shed light on which features best explain sales predictions.
Our approach was as follows:

1. Exploratory Data Analysis: to better understand what drives sales,
we performed spatial and temporal analysis on the data (Section 5),
which we describe in more detail in Section 4.

2. Predicting Sales: In Section 6.3, we describe the various models
we built and validated, broadly categorised as white-box, which are
easier to interpret, and black-box, which are better interpreted using
posthoc methods. Since we worked on a limited feature set made
available (due to preserving the privacy of a CatsAi client), we did not
achieve the highest possible performance. Still, we identified several
modelling directions helpful for catsAi.

3. Explaining Predictions: Our final analysis involves applying various
explanation methods, broadly categorised as in-built like feature
importances, and posthoc, such as LIME. These explanations work
on both single instances (local) and the whole model (global). We
describe these methods in Section 6.4.

1.5 Main Conclusions

Our analysis highlighted several valuable structural insights for model
developers which the CatsAi team can leverage to improve their
predictive models and explanations. For example, we found some
correlation with weather data, like wind, temperature and visibility.
However, further analysis would benefit from a more granular data set
and further data availability, both of which would enable the incorporation
of more features into machine learning models.

For explanation methods, we found that different methods yield similar
explanations, implying that our analysis is stable and valid. Model
agnostic post-hoc methods had overlaps with in-built methods for
explaining predictions, which shows that both of these options are viable
for generating client-friendly and accessible explanations.
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1.6 Limitations

As mentioned in “Predicting Sales”, we worked on a limited feature set to
preserve the privacy of the CatsAi customer and, therefore, could not
experiment with other valuable features such as demographics of the
customer base, information on competitors and fine-grained location
information. Future work can exploit these features and build more
powerful predictive models. Further work could also incorporate a larger
customer base, facilitating the use of the above features while retaining
anonymisation.

1.7 Recommendations and Future Work

1. There are several positive implications from our analyses. We show
that some weather features play a role in sales, more so for certain
products. A natural extension of our predictive models would be
disaggregating by product type and building individual models for
different products.

2. One could also explore additional modelling techniques such as
agent-based modelling and directed acyclic graphs (DAGs). The
latter is especially attractive for the scenario of explaining
predictions, since they go beyond correlation captured by other
post-hoc methods and encode causality.

3. We also found that location plays an important role. Therefore, using
more location-related features such as distance to the city centre, the
number of tourists and presence of competitors could lead to better
predictions.

4. Finally, we showed through quantitative evaluations that several
explanation methods can work with regression-based models we
built. Future work can explore qualitative evaluations with these
explanations, especially to gauge how helpful they are for
end-users.
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2 Introduction

2.1 Challenge Overview

The CatsAi challenge focus is on ‘Communicating high-street bakery
sales predictions using counterfactual explanations’. A central tenet of
their project is the interpretability of machine learning models that predict
the sales of a large wholesaler to smaller individual bakeries. Models that
predict sales in the real-world need to be explainable to build trust with a
large audience of business-minded stakeholders. While strong model
performance is valuable, interpretability is critical - if the output of a model
is not easily understandable, it will find very little use in practice. For this
reason, CatsAi encouraged a focus on approaches that enable
explainability of the sales predictions produced, particularly through
‘counterfactual explanations’. They provided participants with a
comprehensive dataset of historical sales and meteorological data across
thousands of bakery sites. While catsAI anticipated a clear link between
weather and sales, they understood that this would simply provide a start
to understanding the key drivers of bakery sales.

2.2 Research Questions

We investigated several research questions throughout the data study
group:

1. Can we use machine learning to develop models that are capable of
predicting bakery sales from geo-locational and temporal data?

2. Can bakery sales be predicted with meteorological factors?

3. Can we interpret the output of the machine learning models we have
developed?

4. What is the trade-off between the performance or complexity of a
model and its explainability to a lay audience?

5. How can we evaluate the explanations produced by explainability
techniques?

Our subsequent work centres around developing predictive models using
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meteorological data (Section 2.3) in addressing Research Questions 1
and 2, and in the development of interpretable models (Section 2.4) in
answering Research Questions 3, 4 and 5.

2.3 Predictive Models using Meteorological Data

Meteorological features are time-varying variables that originate from
global circulation of the Earth, a world-wide system that drives different
meteorological phenomena at different geological locations. To
understand the weather pattern of a particular location, one must look at
its past history (temporal variation ) and local geological characteristics
(spatial variation). Thus, a causal inference framework is required to
verify the causal assumptions of the data generating process. Further
details about this approach are given in Chapter 6 (Future Work and
Research Avenues).

2.4 Interpretable Models

The complexity of the meteorological data and associated models
required to capture underlying patterns, currently utilised by CatsAI, do
not allow for easy interpretation. The multi-faceted machine learning
pipeline, which includes clustering, anomaly identification and
dimensionality reduction, achieves good performance, however it results
in an opaque AI system. However, it results, in an opaque AI system.
This performance-interpretability tradeoff is a paradigm plaguing those in
industry who have recently applied machine learning to their business.
Industry has therefore started to consider explainable AI, a research area
that works towards building interpretable machine learning solutions for
complex models and pipelines.

Developing explainable machine learning models for CatsAI would
facilitate the business to build trust in their predictive systems, giving
practitioners more confidence in making informed next steps. We hope
that this case study will provide practical guidance to support the broader
adoption of explainable machine learning and AI.
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3 Exploring Explainable AI

We include below a preliminary explanation of some research approaches
in explainable AI. Extensive reviews and far more details can be found in
[1, 2].

3.1 Explainable AI: some recent progress

There are many different dimensions by which to categorise the existing
literature on explainable AI, including considering the type of end user of
the explanation, the stage in the machine learning pipeline an explanation
is being applied to or the type of explainability metric.

3.1.1 Interpretable Models

Often the easiest way to achieve explainability is through the use of
inherently interpretable models whose relative simplicity (when compared
to black box models) offer a direct way of relaying model characteristics to
the end user. Common interpretable models include logistic and linear
regression, decision trees and rule based models. There are those in the
explainable AI space who argue the only way to achieve true
explainability is through the sole use of interpretable models and we
should stop trying to explain black box models [3]. However, this is hotly
contested within the domain and the predictive performance of black box
models is hard to ignore.

3.1.2 Model Agnostic Methods

Model agnostic explainability methods are perhaps the subset of
explainability techniques that have attracted the most popularity. Their
applicability to almost all machine learning models is desirable.

Global Model Agnostic Explanations: Global explanations offer insight
into the behaviour of the overall underlying machine learning model. These
include methods that learn an interpretable model alongside the black-box
to be used as an explanation module [1].

Local Model Agnostic Methods: Local explanations provide
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justifications for the individual predictions made by the machine learning
model. These include feature importance measures such as LIME [4],
SHAP [5] that question features were important for a particular prediction,
visual explanations such as saliency maps as well as counterfactual
explanations that reframe the question to ask, which features would have
to change to change the predicted class of a model.

3.1.3 Model Specific Methods

Desite not offering the generality of model agnostic explainability, the
customisation offered by model specific explanations often means they
are able to avoid some of the pitfalls associated with model agnostic
methods. These include specific methods for support vector machines
and neural networks.

3.2 Issues with some state of the art methods

Despite the recent progress within explainable AI there are several issues
that represent the open research questions within the space [2]:

• Bad Model Generalization: Under- or overfitting models will result
in misleading interpretations regarding true feature effects and
importance scores, as the model does not match the underlying
data generating process well. An interpretation can only be as good
as its underlying model. It is crucial to properly evaluate models
using training and test splits and cross validation methods. Flexible
models should be part of the model selection process so that the
true data generating function is more likely to be discovered.

• Unnecessary use of Complex Models: A common mistake is to
use an opaque, complex ML model when an interpretable model
would have been sufficient. Authors recommend to start with
simple, interpretable models such as (generalized) linear models,
LASSO, generalized additive models, decision trees or decision
rules and gradually increase complexity in a controlled, step-wise
manner, where predictive performance is carefully measured and
compared. Complex models should only be analysed if the
additional performance gain is both significant and relevant.
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• Interpretation with Extrapolation: When features are dependent,
perturbation-based interpretable machine learning methods such as
the Permutation Feature Importance (PFI) and Partial Dependence
Plots (PDP) extrapolate in areas where the model was trained with
little or no training data, which can cause misleading interpretations.
Before applying interpretation methods, practitioners should check
for dependencies between features in the data. ALE plots are
preferable to the PDP when visualizing feature effects of dependent
features. Furthermore, dependent features should not be
interpreted separately but rather jointly. This can be achieved by
visualizing, e.g., a 2dimensional ALE plot of two dependent
features.

• Correlation is confused as causation: SelfExplanatory problem.
Solutions can be a lowdimensional data can be visualized to detect
dependence (e.g., scatter plots). If dependence is monotonic,
Spearman’s rank correlation coefficient [6] can be a simple, robust
alternative to PCC. For categorical or mixed features, separate
dependence measures have been proposed, such as Kendall’s tau
for ordinal features, or the phi coefficient and Goodman and
Kruskals lambda for nominal features. several nonlinear association
measures with sound statistical properties exist. Kernelbased
measures such as kernel canonical correlation analysis (KCCA) [7]
or the HilbertSchmidt independence criterion (HSIC) [8] are
commonly used. In addition to using PCC, use at least one measure
that detects non-linear dependencies (e.g. HSIC).

• Misleading Effect due to Interactions: Global interpretation
methods such as PDP or ALE plots can produce misleading
interpretations when features interact. While PDP and ALE average
out interaction effects, ICE curves directly show the heterogeneity
between individual predictions.

• Ignoring Model Variance and Estimation Uncertainty: Due to
variance in the estimation process, interpretations of ML models
can become misleading. Methods such as PDP and PFI use Monte
Carlo sampling techniques to approximate expected values. By
repeatedly computing PDP and PFI with a given model, but with
different permutations/bootstrap samples, the uncertainty of the
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estimate can be quantified, for example in the form of confidence
intervals.

• Unjustified Causal Interpretation: Practitioners are often
interested in causal insights into the underlying data generating
mechanisms, which ML methods in general do not provide.
Consequently, the question whether a variable is relevant to a
predictive model does not directly indicate whether a variable is a
cause, an effect or does not stand in any causal relation to the
target variable. The PDP between a feature and the target can be
interpreted as the respective average causal effect if the model
performs well and the set of remaining variables is a valid
adjustment set. Designated tools and approaches are available for
causal discovery and inference [2].

3.3 Beyond correlation based explanations towards
counterfactuals

Many of the above issues with state of the art explainability metrics were
noted by Russell et al. [9], who argue that counterfactuals should be the
standard explainability mechanism for individual predictions.
Counterfactuals are explanations in the form of “By what amount do I
need to change feature X to change label Y” e.g. “By how many degrees
does the temperature need to change to order 100 more croissants?”.

Counterfactuals should provide actionable insights rather than
unchangeable reasoning leading to certain predictions which is common
with usual explainability algorithms. For eg: a person’s loan being
rejected due to poor credit history but doesn’t clarify what steps can be
taken to improve this. Counterfactual would say ”if you earned 10,000$
more you would have received the loan”. Single counterfactual
explanation may not be useful as sets of conterfactuals, depending on
personal circumstances.

It is not possible to identify individual-level causal effects from the
observational data. However, if the conditions of positivity, consistency
and exchangeability are satisfied, average causal effects are shown to be
identifiable [10].
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4 Data overview

4.1 Dataset Summary

The data provided was for one client (a large wholesaler) catering to
several sites across a single country for 2018 and 2019. Multiple datasets
covered characteristics such as location, product details and weather
variables. All the datasets were merged prior to use. Each data point
pertained to sales, product and weather data for a single site on a single
day of the corresponding year. We include a detailed glossary of features
and their definitions in Appendix 9.1.

4.2 Data Description

The data falls into the following broad categories.

Location: The location feature was broken down into several levels of
detail starting from “Level 1” being the country/state to “site” which was
individual bakery sites. There were 5118 sites in total across the two
years of data provided. There were seven unique values in the “Level 2”
feature pertaining to counties/districts, which were focused on during
model building.

Product: There were 45 unique products each belonging to one of the
seven Family and Category features, explained in Appendix 9.1. Another
additional feature Units per order included the number of items per
box.

Weather: There were 41 weather variables provided which included
several indicators such as temperature, pressure and wind gust which
were then analysed for consistency.

As discussed in the next section, there were inconsistencies found in
different feature variables that were independently tackled.

4.3 Data Quality Issues

We appraised the quality of the data. Here we describe the approach taken
to identify and address inconsistencies in the data.
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4.3.1 Missing Data

Figure 1 shows that there were several missing in the various features. Of
particular interest was that 83% of values of ‘sales’ (our target variable)
were missing. We consulted with the challenge owner who confirmed that
a missing value meant there were no sales for that product on that day for
the specified site. Therefore, this missing data proved instructive for our
prediction task. In the rest of the report we will refer to missing sales data
as “zero sales” to differentiate this from months where data is absent (i.e.
Jan-Feb ’18 and Nov-Dec ’19), as described in Section 4.3.2 below.
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Figure 1: Missing Values as a percentage of all entries

On investigating the missing sales data further, Figure 2 shows January
and February 2018 as well as November and December 2019 did not
have any data for this characteristic. This was an important finding that
influenced the model building and conclusions sections.
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Figure 2: Sales for each month (2018-2019)

4.3.2 Predictive Limitations of Missing Data

We faced challenges due to the limited period for which the data was
available. To better capture the seasonal variation of sales with respect to
weather, we would have benefited from data collected over a longer
period with more consistent weather descriptions. We found contradicting
data in the weather variables such as icon (Eg: rain, clear-day), Summary
(Eg: Rainy morning) and cloud cover. Since the weather data was largely
a daily average, it did not necessarily remain so across the day. Based on
the exploratory data analysis, unanimous decisions were made on which
characteristics would benefit the predictive models.

5 Exploratory Data Analysis

5.1 Data Wrangling

Multiple datasets had to be combined coherently for analysis. The data
was available in monthly frequency and were combined to form a single
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dataset for 2018 and 2019. There were different datasets for product, site
and weather data which were united using common keys like productId
and siteId.

We used the dataset which already had weather local information in it,
but augmented it with other data we found in weather city. weather local
is used by catsAI API. weather local has information about the city itself;
where values were missing we used values provided in weather city which
covers a wider radius.

The combined dataset had 4.5 million rows and 60 columns. The
dataset had 45 unique product names and 5118 unique sites.

5.2 Data Analysis

5.2.1 Product Sales Analysis

We first analyse the sales of products across different categories over time.
The motivation behind this step was to see whether any particular products
were being ordered more or less in a particular month or season. We
noticed 47 unique entries for productId but 45 unique product names. On
further inquiry, we found out that two products have two IDs, namely Large
Salt Bread and Muffins. Hence, we decided to use Product Names for
this analysis which helped since we could associate products with sales
rather than referring back to the product info data.

Figure 3 illustrates that Donuts, Croissants and Swirl are the most
ordered items in general in our dataset (regardless of precipitation, rain or
snow). Extra Large Baguette tends to be ordered when the weather is
nice. Savory Ready to Proof are always popular (especially during
Spring and Winter). Between March and October there were more orders
(this is because some months were excluded because of holidays).
Savoury read to proof is popular in all seasons. Pastry fully baked is
very popular in spring compared to other seasons.

5.2.2 Monthly and Seasonal Analysis

The monthly and seasonal analysis was conducted to identify the ‘sales‘
distribution among months for each year and among the different
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Figure 3: Sales over months/years across different categories
differentiated over Precipitation Type

seasons. The month and year variables were extracted from the date
column. We could see that data is absent for January and February 2018
and November and December 2019. Some months were preferred over
others; however, these spikes in preference were not consistent. In 2018,
October, July and March took the lead, with October having substantially
higher sales than the other months. While in 2019, March to May saw
huge sales spikes.

For a seasonal analysis, we aggregated the sales data and grouped them
by each season. The seasons were divided as follows:

• Spring: March, April and May

• Summer: June, July and August

• Autumn: September, October and November

• Winter: December, January and February

The seasonal data showed a clear bias towards Summer and Spring;
however, there were a few missing months making seasonal analysis
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unreliable. When Autumn had complete data, it was at the same level as
Summer and Spring while Winter was absent from the dataset in both the
years; hence, it displayed a perpetually underwhelming performance
when it came to sales. However, as seen in the monthly data, the spring
of 2019 was a high sales period, with all three months being the top 3
sales periods.

While monthly data and seasonal data did not show the seasonality we
were expecting, we see a huge bump in sales during the summer and
spring months. In 2018, Autumn is comparable to the other two months
only because of the huge bump in October Sales. While a period of
approximately two months is absent from the dataset, even if the sales of
Summer and Spring values are divided by three, they would still be more
than the winter sales. This indicates that lower temperatures discourage
sales and a pleasant temperature with light showers might be favourable
towards bakery sales. We will turn to weather data for further
analysis.

5.2.3 Comparing prevalence of different weather condition on a
monthly basis

To understand the prevalence of different weather conditions monthly, we
calculated the ratio of different weather conditions, as indicated by the icon
feature in the dataset, on the left axis and plotted the total monthly sales
on the right axis (Figure 4). The figure shows that the month with the most
sales happened between March 2019 to May 2019. However, those are
the months with well-mixed weather conditions, and hence we could not
identify a strong link between icon and total sales. Another finding was the
shift in weather pattern between the two years provided to us; weather in
2018 seems to favour more clear days than 2019.

We took the ratio of every weather condition under feature icon, plotted it
on the left axis, then plotted the sale for every category of pastry on the
right axis. We find some products have seasonal preferences; for example,
ready to bake items are less popular in winter than other times of the year;
those months have the highest mixture of weather conditions. The months
with increased rain shows a higher purchase of Ready to Proof bakery
items.
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Figure 4: Prevalence of weather type on a monthly basis.

Between March and October, there were more orders (this is because
some months were excluded because of holidays).

5.2.4 Sales on Weekends and Holidays

We found out very early in this analysis that Sunday has no sales
whatsoever. Consequently, we added is sunday to the dataset and
updated the one shared with everyone. This allows us to provide a
shortcut in prediction models to predict zero for Sundays. There was no
variation between Saturdays and other days of the week.

Next, we looked at bank holidays, which sometimes actually have orders
on that day. We looked at four days before and up to four days after bank
holidays and plotted a double plot that highlighted these days. Bank
holiday has no immediate impact on sales.

5.2.5 Sales vs UV index for each category

Figure 5 confirms that there’s a clear tendency of placing more orders
when the weather is nicer (clear sky, higher uv index, low to none
precipitations, as shown above) compared to when it’s rainy or cold.
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Figure 5: UV INDEX

5.2.6 Sales behaviour for each product category and weather
variables

We focused on the interaction between the sales of a particular product
category and its relationship with a particular weather variable. We plotted
scatter plots for numerical weather variables (Figure 6). The scatter plots
help identify how the sales are dependent on numeric weather variables for
each data point. These are presented for precipitation intensity in Figure 6
and Visibility in Figure 7. There is a clear preference for ‘clear’ conditions:
We can see that despite monthly variation in sales, shops tend to order
more products from the warehouse when it is not raining.

5.2.7 Location Analysis

To understand how the location of the sites contributed to the sales data,
we explored the contribution from each Level 2 district in terms of log of
total sales (Figure 8). It is evident from the figure that most of the sales are
contributed from two districts, Level2 2 and Level2 3, which means that
any trained model will inevitably be biased towards the customer behaviour
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in the first two districts and have an impact on the ability of the model to
generalise to other districts.
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Figure 8: Total Sales in different level 2 districts

5.2.8 Sales trend analysis

Daily Sales Pattern. To understand if there are any obvious trends (e.g.
seasonality, outliers), we plotted the daily total sales from every site (blue
line)(Figure 9). The orange line is the rolling average of the daily sales
with a 30 days window. The date of public holiday is also plotted here (red
dotted line). There is a frequent drop to zero which mostly corresponds to
Sunday, when the warehouse closed down and did not receive any orders
from bakeries. By inspecting the daily sales variation, there is an
indication that sales are increasing from Spring 2019 to late Summer
2019. This increase is more evident if we look at the 30-days rolling
mean. This increase in sales is unseen in 2018, which is mostly flat
compared to 2019. The long duration of increased sales is also
unexplained by seasonality nor public holidays. The difference between
the two years flags the issue of inhomogeneity. This prompted us to focus
on instead on 2018 rather than the entire datasets.

5.2.9 Week on week sales pattern

While looking at the data and our part of our understanding of the problem
we formed a hypothesis that if a bakery under/over-orders in a certain
week, the next week they will over-/under-order to compensate, and after
that, they should stabilise without a sudden increase in that order. To
investigate the hypothesis, we plotted sales on a particular day against
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Figure 9: Total Daily Sales

the sales of the previous week and aggregate the results. The heatmap
10 shows the pattern that validates the hypothesis; lighter colour shows a
substantial increase in orders placed from the bakery, often followed by a
darker colour, meaning the following week they under-ordered, but soon
after it stabilises and averages around 0 difference with +-200 variance
between a week on week.

This property shows that knowing the placed order of the last week can
be influential in a model that aims to learn a pattern in a time series, as
highlighted in Figure 10.

5.2.10 Daily Sales pattern in each category.

We extended the same approach from the previous section and applied it
to different categories. We realised that different categories exhibit very
different patterns in terms of sales. For instance, sales in the Pastry Fully
Baked category seems to have a recurring peak around the April period.
While other categories like Pastry Ready to Proof and Donut seem to
follow the global sales trend outlined in the previous section.
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Figure 10: Heatmap showing the difference between a sale on a specific
day compared to the sale of that product the week before, allowing a
visualisation of any possible patterns of week on week purchase patterns.
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Each category’s different sales patterns hinted at the difficulty in deriving
a general model for every product and every site (Figure 12).
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Figure 11: Total Daily Sales in each category

5.2.11 Sales seasonality pattern analysis.

It appeared that there is some inherent seasonality to it: certain days will
be more popular with bakeries than others. We guessed Monday after
a weekend and Thursday closer to the weekend are days when bakeries
place their orders, and to explore this hypothesis we produced plot 12. In
the plot, the x-axis shows the date and plotted against the total daily sales
of all products and sites. While the aggregation is too granular, the main
goal of the plot is to find if there are any seasonality patterns. To detect the
seasonality we used a Gaussian Filter [11] and used in [12] for seasonality
analysis. We used a sigma of 1 to capture daily behaviour, and sigma of
3.5 to capture the monthly trend.
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Plot 12 captures the seasonality trends. The green shaded labels show
a sine-wave like pattern week-on-week for the total daily sales indicating
that we can reasonably assume days are indeed a factor in the total order.
The month-on-month (yellow in the plot) shows some pattern, but it is not
a seasonality pattern. Further to this plot, we noticed that sales dip on
Sundays, and we confirmed with the stakeholder afterwards that no sales
happen on Sunday.
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Figure 12: Daily and monthly seasonality trend for total sales in every
location.
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Random Forest Gradient Boosting Machine XGBoost MLP Time Structured Prediction

Replaced with mean Overall mean:
pressure

Overall mean:
temperatureHigh,
temperatureLow,

humidity,
windSpeed,

temperatureMin,
temperatureMax

grouped mean:
temperatureHigh, temperatureLow,
pressure, windSpeed, windGust,

windBearing, uvIndex

KNN mean:
Temperature features

Categorical encoding label encoding label encoding label encoding one hot encoding label encoding

Removed features

Product name, family,
category, level 1, level 3,

moon phase, days to holiday,
summary

Removed features with
>5% missing values

Product name,
family, category,
level 1, level 3,

days to holiday, summary

product name,
family,

category,
level 1,

summary
Date transformation Yes No

Standardisation No No No Yes Log of sales

6 Experiments

6.1 Pre-processing Steps

We performed several preprocessing steps before we fed the data into
various black-box/white box models. As preprocessing steps are tailored
to different methods, Appendix 9.2 summarises the different approaches
we pursued in the process. For all approaches we have performed the
following two steps:

1. Removed observed weather time-related features. Features that
specified the observed weather time.

2. Added additional features: is sunday and days to holiday.

3. Replace missing values in sales-related features with zero. This step
does not affect the interpretation of the data as no sales is treated as
missing in the first place

6.2 Performance Metrics

We use the R2 metric to evaluate all predictive models’ performance since
it is a standard metric used for evaluating regression problems[]. R2 was
also the metric used by CatsAi. Future work should explore how other
metrics such as Mean Average Error (MAE) and Root Mean Squared Error
(RMSE) compare with R2 for this particular scenario.
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Train Data Test Data Model Performance
All of 2018 All of 2019 0.22
Mar 2018 - Oct 2018 Nov 2018 - Dec 2018 0.23
Mar 2018 - Aug 2019
(Top 5 features)

Sept 2019 - Oct 2019
(Top 5 features) 0.25

Mar 2018 - Aug 2019 Sept 2019 - Oct 2019 0.26
Mar 2018 - Oct 2018
(filtered by category - Bread ready to bake) Nov 2018 - Dec 2018 0.28

All of 2018
(filtered by category - Donuts)

All of 2019
(filtered by category - Donuts) 0.29

6.3 Predictive Models

We experimented with various black-box and white-box models for
generating sales predictions.

6.3.1 Random Forest Regressor

The first tree-based model that we implemented to predict the orders that
a bakery places on each day was the Random Forest Regressor, an
ensemble method that uses the concept of bootstrap aggregating or
bagging. It is a powerful tree-based algorithm that considers the bias and
variance within the dataset by random sampling and replacement. It is
also an explainable model which shows us where the tree was split and
on what conditions. For this model, we trained the RandomForest on
multiple data splits and achieved a variety of results. The first split was
2018 data for training and 2019 data for testing. We achieved an R2 score
of 0.22 on this split. On changing the testing data to September-October
2019 and training data to March 2018 to August 2019, we achieved an R2

score of 0.25 which was the best performing RF on the complete data.
Furthermore, when the data was filtered by category, the R2 scores
improved, leading to the conclusion that category-specific models will be
more effective. Below, we have laid out the combinations of train-test split
used to build the models. We include the full list of features in Appendix
9.3. Once the model was created, we also performed feature importance
to identify the features which contributed the most to the models. Figure
13 shows that the 10 most important features.
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Figure 13: Random Forest - Feature Importance plot

Gradient Boosting Regressor
Model Type Train Data Test Data Model Performance

Model with all the features 1 Mar 2018 to Aug 2019 Sept and Oct 2019 0.2483
Model with only the 5 most important features 2 Mar 2018 to Aug 2019 Sept and Oct 2019 0.2468

Model with all the features all of 2018 all of 2019 0.2351
GBM hyperparameter tuning via grid search Subset of all data stratified across sales for 2018 and 2019 N/A

Model with 22 features 3 80% of all data stratified across
sales for 2018 and 2019

20% of all data stratified across
sales for 2018 and 2019 0.2873

6.3.2 Gradient Boosting Regressor

The second tree-based model that we implemented to predict sales was
Gradient Boosting Machine (GBM), a supervised machine learning
technique for regression and classification problems. GBM combines a
group of weak learners in order to enhance the predictive performance of
the model. In Python, these models were built after removing outliers.
They were trained on 2018 and 2019 except September 2019 and
October 2019, which were used to assess the models’ performance.
Different gradient boosting regressor models were built; a brief overview
of the variables used to train and test data, including the model
performance is provided in the table below.
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6.3.3 Extreme Gradient Boosting (XGB)

One of the tree-based models we implemented to predict sales was
Extreme Gradient Boosting (XGB). XGB is a fast implementation of
Gradient Boosting and allows users to obtain good performance and
training speed in most real-world problems. Because of its flexibility,
performance and intrinsic feature selection, it is often considered state of
the art in many applications. The model works by iteratively building a set
of high-bias weak learners (models that perform slightly better than
chance) and finally combining them into strong learners.

We trained an XGBRegressor on 2018 and most of 2019 data which was
tested on the remaining 2019 data. Before training the Regressor, we
removed outliers and encoded the categorical features present in the
dataset. After grid-search, the best performance we obtained was using
the following hyperparameters; “eta” of 0.1, a “max depth” of 8,
“subsample” of 0.8 and “gbtree” as booster.

6.3.4 Feed-forward Neural Network or Multi-Layer Perceptron
(MLP)

Since deep learning neural networks have a reputation for being the most
opaque machine learning models, we thought it would be interesting to
explore the interpretability of this approach. A simple multi-layer
perceptron was selected because it requires significantly less processing
power than a Convolutional Neural Network (CNN) or Recurrent Neural
Network (RNN) and because it was already successfully employed by the
CatsAi team. The use of a Long Short-Term Memory (LSTM) [13] network
was also considered due to this algorithm’s inherent ability to process
sequences and text well. As such, it would be valuable to consider this
approach in the future since MLP’s have no memory and are probably not
the best-performing or state-of-art technique for this problem.

It seemed valuable to include all features at the onset since the standard
deep learning approach largely excludes manual feature engineering in
pursuit of abstract representations learnt by the algorithm of choice.
However, since a key metric of this work is explainability to a lay-person, it
was necessary to select a subset of important features that could
perhaps predict sales.
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In terms of pre-processing for the neural network, our initial approach was
to create a data.matrix() from the data.frame() containing both variable
types - categorical and numerical. However, the neural network did not
seem to respond well to this structure. We then switched to treating each
variable type differently. First, we combined all categorical variables and
one hot encoded them and then we combined all numerical variables and
normalised them within one standard deviation of the mean. The target
variable, ‘sales’, was simply extracted from the full dataset for 2018 and
transformed into an array using the as.array() function. In order to train a
model, it was decided to use 2019 data for the held-out test set since the
temporal order of this data was an important consideration for the problem
statement at hand. The test data was pre-processed in the same way the
training data had been.

The model architecture can be described as a basic fully-connected
network. CatsAI made use of a model with one hidden layer, but we opted
to use two hidden layers of 10 units each and a ‘relu’ activation. The
output layer contained only 1 unit for the sales target and no activation
function. An ‘adam’ optimizer was used with an ‘mse’ loss function. At
first, we wanted to train the network for 100 epochs but subsequently
scaled it down to 50 with a matching batch size of 50. Other
hyperparameters that were used included a dropout of 0.1 in each hidden
layer and an L1 regularisation of 0.001.

The best practice for validation for this kind of approach would be to use
k-fold cross validation. This was attempted initially using a k value of 5,
but due to a slow CoCalc environment and other issues, this choice of
validation was discarded in an attempt to get a working model. Also, we
tried tuning the parameters (i.e. L1 regularisation, n units, and dropout)
of the neural network using random samples of 10% of the whole training
dataset. Natural next steps for this work would be to consider a greater
proportion of the training set for parameter tuning. During the Data Study
Group, we did not have time to perform hyperparameter tuning using the
complete training set. The final model performance with 2018 as training
data and 2019 as test data was 0.26.
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6.3.5 Structured Time Series Prediction

Model summary. We developed a white-box model to forecast sales. The
model is a Bayesian structured time series (STS) model that captures the
seasonality of the features and explains it by inspecting the model, the
model additionally allows answering questions of the form: ”what is the
likelihood of sales being under 700 but over 400.”. The model achieved an
R2 of 0.68 when tested against December 2018 after training on the earlier
months.

Model background. An alternative approach to explainability is to use a
white-box explainable model in the first place. The term white-box refers
to the idea that each component of the model is something a scientist
can look at in isolation and interpret its results. Often these are much
harder to develop as the scientist requires specific domain knowledge and
deep understanding of their data, but once those are captured the model
can learn faster and outperform other more ”complex” methods. The main
motivation behind these models is that we humans already have developed
years and decades of expertise in a certain problem area, we can feed this
expertise to models and let them focus on capturing the things we do not
know rather than the things we already know.

Bayesian structural time series models [14] are techniques for
incorporating domain expertise over the analysis of time-series data.
These models are an easily interpretable and common technique to
reason with time-series data, for example, Brodersen et al. [15] used STS
models also used to infer causality and reason with the market response
in the field of economics and marketing. These models are an
appropriate choice for the Bakery sales prediction problem; as we
observed from the exploratory data analysis we performed and discussed
earlier, we recognise many of the features are directly impacted by the
time of the year (with shifting pattern from a year to year due to climate
change phenomena that can be captured easily as well).

These models provide several advantages over traditional ML
models:

• They capture the seasonality trend over various time-steps.

• They capture linear locality of features: the interaction between
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features around the same time step.

• They handle anomaly and out of distribution data by incorporating
priors and not be impacted significantly by data that does not follow
the general distribution.

• It is easy to extend them to handle externality by fitting an
autoregressive layer that attempts to learn a latent random variable
that captures anything that is not defined in the feature
set—allowing the scientist to know if they have enough features in
their model or they need to incorporate more domain knowledge.

• They forecast the future and provide uncertainty intervals, allowing
queries such as: ”What is the likelihood of selling between 300 and
400 doughnuts in the London bakery in 3 days”. The ability to
enable questions with lower, upper or various statistical language
makes them very powerful models that facilitate greater levels of
interpretability.

• They allow a large degree of freedom of expressing the output shape
and various input variable, thus allowing a mixture of features to be
used: boolean indicators, a running mean for sales or category for
pastry type.

• Infer causality between features and output predicted variable by
marginalising every feature and comparing the weight impact on the
overall sale.

Since these models incorporate domain knowledge information, they can
learn from very little data and generalise well.

Tools used. Tensorflow Probability (v0.11) was used in building the
Bayesian model. Tensorflow (v2.4) was used for features matrix
multiplication.

Model specification. Here we describe the building blocks of the STS
model and the prior assumption we had. The building blocks for these
models are predefined models found in the TensorFlow probability
package.

We fitted a linear trend model over the date feature via a Gaussian
random walk with a mean of 0 and variance of 1 and a step-size of 7,
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allowing us to capture week-on-week trends. For days to holiday feature,
we created a masking layer over the days that are not within five days of a
public holiday, and this layer ensured that the weights are not impacted in
those days. The prior here is that holidays only affect sales when they are
+-4 days. We then fitted a linear regression for this feature. For every
weather feature, we standardised them over the distance from their
respective mean value and then fitted a linear regression model over
them. All the model components were summed over in a final layer and
summarised using a mixture distribution.

We performed stochastic variational inference optimisation for training
using Adam optimiser with a learning rate of 0.1 and over 1000 steps.
Given more time or computational resources, NUTS or HMC sampling
would have produced a better fit for the model.

Evaluation.

We trained the model on the 2018 dataset, the model was trained on the
months’ March to November and was tested on December’s month. As a
simplification, we looked at a single city (locality 29) and the overall sales
for that day of all sites. The model achieved an R2 of 0.68, however, worth
noting Bayesian models provide uncertainty and upper and lower bounds
of the prediction and the R2 score doesn’t take that into account. Figure
14 shows 100 draws from the predictive posterior distribution of the STS
model. The figure shows the model was able to follow the trend of the data
and the ground truth is within the expected variance of the model, on the
y-axis is the daily product sale in logarithmic scale, and the x-axis is the
date.

Explainability The main aspect of the challenge is understanding the
impact of the features on the model, this subsection will go through two
features and what the model learnt of them, we refer the reader to the
appendix ?? for a visualisation of every feature analysis and its impact on
the sale.

Temperature impact on sales Here we inspect what the STS model on
both main temperatures features temperatureHigh and temperatureLow.
The first plot 15 shows the weights of the linear regression layer with 100
draws from its posterior distribution. The temperatureHigh had a strong
correlation to sales during the summer months (higher temperature), and
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Figure 14: STS model forecasting the sales for the December month.

the opposite effect during winter and fall. The variance of this feature is
very tight, i.e. the model is more confident about the impact it has on
the overall predictions, and this communicates to the bakeries that the
temperatureHigh in summer plays a big role in their orders.

A similar story is shown in the second plot 16 of the temperatureLow.
However, the main difference is this feature has a higher variance meaning
the model is not as confident. However, it still follows the same trend of the
temperatureHigh, and this communicates that while the temperatureLow
of the day plays a role, the impact of it changes depending on other factors,
this is very obvious during winter months when temperatureLow has a
higher variance with the p95 weight of -1.5 - meaning the temperatures in
these months has a strong negative correlation with the sales.

Day of the week on sale In figure 17 we inspect a feature that follows a
seasonality trend, please note we did not tell the model about the impact
of Sunday on the sales nor told it about the seasonality of the days. The
model learnt by performing a Gaussian Random walk of size 7 (days)
over the date feature and learnt that no sales happen on Sundays, while
Tuesdays and Thursdays are more popular for sales, this remained
consistent throughout the year. A similar analysis was done on the
days to holiday feature as well as shown in the appendix ??.

Future extensions. The STS model is complex to set-up but simple to
reason with, due to the time limitation of the DSG we made many
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Figure 15: The posterior distribution of the weights in the linear regression
layer of temperatureHigh feature.
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Figure 16: The posterior distribution of the weights in the linear regression
layer of temperatureLow feature.
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Figure 17: The posterior distribution of the weights in the linear regression
layer of date feature.

assumptions to expedite the model development process, here we state
the assumptions and the possible mitigations:

• The model operated only on locality. Mitigation: introduce a
Categorical distribution that captures a different probability
distribution for every locality within the dataset, allowing the model
to be trained on the joint distribution of every site independently of
each other whilst sharing knowledge between them - for example,
customer behaviour around the holidays.

• The model output is log scaled: Mitigation: Training on
non-normalised sales records but have a bijector that transforms the
input and output of the model to Poisson distribution. The
justification here is that sales are a form of count variable and
Poisson distribution is a perfect fit for these, its output always
positive and able to capture the generator process of these
variables.

• The model ignored family, category, name, and site features.
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Mitigation: Similar to the locality, these are a form of categorical
random variables, fitting a different categorical distribution for each
variable will allow the model to learn any ”same-family”
”same-category” or ”same-site” behaviours and provide even more
in-depth explanations of predictions.

• The training was approximated using a variational inference
method. Mitigation: variational inference is a fast class of training
method in Bayesian landscape by approximating the result into an
exponential distribution family form. Instead, sampling methods
such as HMC methods provide a better fit by drawing many samples
from the model until it reflects the real-world model. They are easy
to configure as they are already defined within the TensorFlow (and
other libraries) however they require much longer training time (a
day in comparison to VI five minutes).

Alternative consideration. Gaussian processes (GPs) [16] are also a
popular choice for time-series analysis [16, 17]. GPs take in a kernel
choice as prior (expected behaviour of the data) and for time series a
periodic kernel is often chosen. They are non-parametric methods that
aim to capture the shape of the data by fitting all features in a covariance
matrix and performing regression over them. They are probabilistic
methods, so they also provide uncertainty over their output and are much
simpler to construct than the STS model described. However, GPs have
certain limitations that stop them from being applied in this DSG: GPs
have a complexity of O(N3) where N is the data * features due to the
Cholesky decomposition used to calculate the inverse of the covariance
matrix and multiply it by the feature weights. There are several
optimisations to GPs that allow them to scale, however fitting them to the
large dataset we have is still challenging. GPs assumes all features
converge towards a Gaussian distribution at the limit and does not handle
categorical data or unexplained jumps in the data easily. While in our
STS model we simplified this by taking out categorical data, if we had
additional time we could encode a categorical distribution transformation
that allowed the STS to work with these features, however, there there is
no straightforward way of doing this in a GP. With these two limitations, we
decided to focus our Whitebox modelling effort on the STS model.
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6.4 Explanation Methods

Within Section 3 we motivate the importance of providing explanations for
predictions made in this context. Here we explore SHapley Additive
exPlanations (SHAP) in Section 6.4.1, Local Interpretable Model-Agnostic
Explanations in Section 6.4.2 and Counterfactual Explanations
in 6.4.3.

6.4.1 Shapley Additive Explanations

SHAP (SHapley Additive exPlanations) is a game-theoretic feature
importance approach. It is better than the conventional feature
importance methods provided with the machine learning models. SHAP
overcomes a huge drawback associated with the conventional methods
which do not provide the direction of impact associated with each feature,
by illustrating the direction of impact. This is very important for explaining
the output of any machine learning model. It is a method to explain
individual predictions of the model, aggregate them together for each
feature and quantify them by the means of optimal credit allocation with
local explanations using the classic Shapley values.

This study used TreeShAP, a variant of SHAP for tree-based machine
learning models such as decision trees, random forests, gradient boosted
trees and XGBoost. The advantage of SHAP is its ability to compute
Shapley values for all the data points and produce global model
interpretations for the model predictions. The current SHAP was run on
the XGBoost model, which gave an R2 score of 0.26 (ref XGBoost
table)

Summary Plot

Figure 18 is a summary plot that we have created which helps in
interpreting model feature impact on the target variable aggregated over
the whole data set. The summary plot combines feature importance with
feature effects. Each point on the summary plot is a Shapley value for a
feature and an instance. Characteristics of the summary plot:-

• The features are ranked in the decreasing order of importance.

• The graph appears to have a lot of dots for each feature. Each dot
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represents a single data point for the feature.

• The colour of the point represents the value of the feature (blue - low
value and red/pink - high value).

• The points which are found on the right side of 0 SHAP value point
have a positive impact on the predictions and the features on the left
side have a negative impact.

• The position of the point on the x-axis relates to the degree of impact
of that point on the predicted value.

Figure 18: Shap Values for the most important features in the XGBoost
Model

Inferences from the SHAP summary plot The location of the store is
the most important feature in the prediction of the sales for the model.
The number of competitors within the 500 m radius is also impactful but
in the opposite direction. Higher number of competitors in the same area
discourages sales. Among the weather variables temperature really stood
out. Low temperature values (expressed in blue) tend to have a negative
impact on the sales which is in line with the EDA that we performed. Low
Pressure is also not preferable while moderate pressure values have a
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positive effect on the sales.

Force Plot

Figure 19 is a ”force plot” showing the impact of individual features on
a single prediction. In this case, we can see that high temperature and
low competitor index (1500) bring the score up (above the base value -
the average value across all the data points-) suggesting that they have
a positive impact on sales, whereas a competitor index (500) of 20 brings
the score down suggesting a negative impact.

Figure 19: Force Plot for the first entry using SHAP

6.4.2 LIME

Lime (Local Interpretable Model-Agnostic Explanations) is a tool often
used to explain model predictions. In this challenge we used it to interpret
the XGB model’s prediction when the ‘sales’ variable is equal to 0. Below,
three “Explainer Correlation Plots” show the features that are positively or
negatively correlated to zero sales. Three data points corresponding to
the same outcome were chosen to evaluate explanation consistency. As
shown in the graphs, dlW, is sunday and dlw to yesterday sum are
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negatively correlated with sales. TemperatureMax, on the other hand,
seems to be positively correlated to sales.

Figure 20: LIME explanatory plot for the first entry for XGB model’s
prediction of zero sales.

6.4.3 Counterfactual Explanations

Counterfactuals in the context of regression: an open research
problem: When considering counterfactual explanations of the form “If X
had not happened then Y would not have happened”, it is clear that they
are more aligned with classification tasks, “If X had not happened then Y
would have been predicted by a different class”. For regression, where
the target variable is continuous, the application of counterfactual
explanation is more ambiguous. Primarily, a concern is the infinite
number of alternate worlds where the event Y (the predicted target) had
not happened. For this reason most state-of-the art approaches to
counterfactual explanations for black-box models are only applicable to
classification problems [1].

From Regression to Classification: For this reason, we chose to bin our
target variable *predicted sales* into two discrete classes, *no sales* and
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Figure 21: LIME explanatory plot for the second entry for XGB model’s
prediction of zero sales.

Figure 22: LIME explanatory plot for the third entry for XGB model’s
prediction of zero sales.

42



Gaussian Naive Bayes
Precision Recall F1-score

Accuracy 0.84
Macro Average 0.63 0.52 0.51
Weighted Average 0.78 0.84 0.78

Random Forest Classifier
Precision Recall F1-score

Accuracy 0.84
Macro Average 0.80 0.51 0.48
Weighted Average 0.83 0.84 0.78

*sales*, transforming the regression problem into a binary classification
challenge. The distribution of the target, particularly the fact that 83.61%
of sales were zero, meant choosing an alternative binning strategy (e.g.
multiple classes or *low sales* and *high sales* to be infeasible as this
would result in highly unbalanced classes.

Preprocessing the data The feature set selected and preprocessing
steps are consistent with those described in section 5.1

Unbalanced dataset and classifier choice: Due to the large number of
zero sales, our two classes were heavily imbalanced. This had
consequences for both our choice of classification model and evaluation
metric. We chose to use a Random Forest Classifier and Gaussian Bayes
Classifier. Random Forests are robust to outliers and can handle missing
values, however, they have a high complexity due to the creation of a
large number of trees. The Gaussian Naive Bayes algorithm works well
with high dimensional data and is relatively fast to compute, however it
operates under the assumption that all features are independent. The
models generated the performance illustrated in the above tables.

Future work would involve experimenting with alternative classifiers,
particularly exploring which models work best with imbalance data,
however, as the focus of this part of the project was on generating
counterfactual explanations we arbitrarily selected the Gaussian Naive
Bayes Classifier to be used as the black box model to be explained.

Counterfactual Explanations To generate counterfactual explanations,
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we used the implementation from the fat-forensics library [18]. The
algorithm finds counterfactual explanations for the prediction of an
arbitrary black box model for a given instance by using brute-force grid
search with a specified step size. Due to the high variance in our data we
selected the step size to be 10. The algorithm works to find the nearest
instances to the given example that are classified as the opposite
class.

The counterfactual explanations given for a given classified instance are
composed of several parts: A list of the nearest counterfactual neighbours
(instances assigned a different class to the example being explained) The
Euclidean distance between the example to be explained and each of its
neighbours The predicted class of each nearest counterfactual neighbour
The difference between the example to be explained and each of its
nearest counterfactual neighbours which translates into the modifications
to each feature needed to be made to the example to be explained in
order for it to be classified as the opposite class.

An example counterfactual explanation for a given test point is given
by:

Explaining data point (index 0) of class *no sales* (class index 0)

Counterfactual instance (of class *sales*): Distance: 11
feature *dLW*: *0* → *10*
feature *is sunday*: *1* → *0*

Counterfactual instance (of class *sales*): Distance: 21
feature *dLW to yesterday sum*: *0* → *20*
feature *is sunday*: *1* → *0*

Counterfactual instance (of class *sales*): Distance: 40
feature *dLW*: *0* → *40*

The example above generates an explanation for the test point predicted
as *no sales*. The generated explanation consists of the three closest
nearest counterfactual nearest neighbours, at a Euclidean distance of 11,
21 and 40 respectively from the example to be explained (calculated
across all features). The explanation generated by the first counterfactual
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neighbour can be interpreted as: If the example to be explained had 10
sales on this day last week instead of 0 and it wasn’t a Sunday, it would
have been classified as *sales*. Discussions with domain experts
suggest such an insight is instructive in communicating the factors
impacting on this prediction.

Evaluating Counterfactuals The counterfactuals above provide an
intuitive explanation for a particular example. In order to provide some
insight into the validity of our counterfactuals we chose to evaluate by
comparing the explanations generated by the algorithm for two similar
test points where we would hope the counterfactuals generated would
also be similar. We chose two test points that were identical in all but
three feature values *Name*, *UnitsPerOrder* and *Family* with a
Euclidean distance of 11. The top 10 nearest counterfactual neighbours
generated for each instance were identical. This is reassuring as an
explanation mechanism that generates similar explanations for similar
test points implies robustness.

7 Future Work and Research Avenues

We consider several avenues for future work. These include the expansion
of techniques experimented with in this project, as well as implementing
new methods.

Data. Due to the seasonal nature of sales, data over longer periods
would be highly beneficial for the machine learning models to learn any
inherent trends. A dataset encompassing similar seasons/weather
conditions over multiple years will provide better insights. Additional
features pertaining to customer behaviour, such as end-user sales data
or location of stores, would be valuable in future data collection exercises.
Similarly, knowledge of characteristics related to competitors within the
explored competitor index, such as information if the competitor is an
independent bakery or a chain, may influence sales in the site.

Modeling Sales. It would be interesting to apply reinforcement learning
or agent-based modelling to replicate human behaviour given certain
weather conditions. We could also frame the problem as a time series
task which would consider shorter spans of time to account for future
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sales. Apart from this, we suggest the inclusion of causal inference
approaches, like Directed Acyclic Graphs (DAGs). DAGs are a subset of
graphical causal models that are used to illustrate the causal
relationships between an exposure, outcome and confounders. All arrows
of a DAG are unidirectional (thus, “directed”) and the variables cannot
cause themselves (thus, “acyclic”) [19]. In a few words, a DAG is a graph
that allows researchers to verify the causal assumptions of the data
generating process.

Explaining Models. To improve the explainability aspects of this project,
we suggest gathering a better understanding of the end-user
requirement. We think the feasibility of the explanation plays a critical role
since not all features are under human control. For example, a change in
weather condition cannot be controlled; however, a suggestion to
consider sales on a Sunday may be more feasible for the client to
incorporate. There is also scope to apply counterfactual software such as
DiCE (Diverse Counterfactual Explanations), which may improve the
recommendations obtained.

Evaluating explanations. Our analysis puts forth explanations from
several interpretability methods and our initial experiments confirm their
validity. Beyond our work, the success and efficacy of explanations are
best understood through the lens of the various stakeholders. This
includes the model developers and the clients who hope to benefit from
model predictions. While the former would find explanations useful in
confirming their hypotheses about their models, the latter might use them
to assess the reliability of the models’ predictions. To that end,
explanations generated for mode predictions, both whitebox and
blackbox, should be evaluated based on their effectiveness to developers
and clients. Future work can look at two avenues for evaluation:
quantitative and qualitative.

1. Quantitative evaluation - Intermethod agreement. Future work
can extend our existing comparison of explanations for similar data
points. Further experiments with explanation on randomly stratified
data can be used to gauge whether the same and different methods
are consistent. Using interrater reliability metrics like Cohen’s kappa
can shed light on the relative performance of different explanation
methods.
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2. Qualitative Evaluation - Agreement with human explanations.
Previous work has compared explanations from humans with
machine-generated explanations, finding that the two often do not
converge. Future work can explore which feature humans find most
informative and compare that to machine-generated explanations.
Finally, one can also assess the efficacy of explanations based on
how helpful they are to clients. Two types of user studies can be
undertaken:

Before/after test. Users would be asked about their user experience
before and after having access to explanations.

Treatment-control test. Similar to a randomized control trial,
clients can be randomly divided into treatment and control groups
such that both groups have a similar distribution of characteristics.
The treatment group would have access to explanations while the
control group would not. Statistical tests can then be conducted to

Impact of COVID-19. The predictive models developed in this report by
The Alan Turing Data Study Group were based on data for 2018 and
2019 before the outbreak of a novel coronavirus that brought cities to a
halt in 2020. After lockdowns in countries worldwide, businesses, such as
bakeries and coffee shops, were forced to close and move their
operations online or await the end of these forced closures. After many
long months, most businesses have been able to resume their
operations. However, the nature of their immediate environments have
changed, people are less drawn to city centres as they spend their days
working from home, avoiding crowded areas, while others have resorted
to spending less as they recover from the economic knock of job losses
or their businesses closing. Students worldwide have travelled back to
their home countries and have not returned to university campuses. The
world has changed, and the data we used before 2020 may no longer be
applicable. What are the new drivers of sales amidst a global pandemic?
Does weather still play a role, and in what sense? Are bakeries likely to
see an increase in business again as people start to work wherever they
might find a seat, a strong wifi connection and some fresh coffee? Will
bakeries be able to measure their sales in new and advanced ways as
they sell their products online or via home delivery? Is the necessity of a
social media page to market your bakery now more critical than ever? Will
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all these factors influence s  ales o  r w  ill l  ife i  n 2  022 m  irror t  he s  ales s  een in 
2018 or 2019 once again? Only time (and data science) will tell.
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9 Appendix

9.1 Glossary

Here are the feature names and definitions of the features in our
dataset.

site: site key

date: date (d)

productId: product key

sales: actually ‘orders’. Those orders taken by the wholesaler from the
bakery themselves, not the sales at the bakery to consumers.

dLW: sales this time last week (d-7).

dLW rolling: average sales for the last two weeks (d-7 + d-14) of the
current day of the week.

dLW toyesterday: total sales for the last week (d-7 to d-1).

Level 1: administrative area level 1 indicates a first-order civil entity
below the country level. Within the United States, these administrative
levels are states. Not all nations exhibit these administrative levels. In
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most cases, administrative area level 1 short names will closely match
ISO 3166-2 subdivisions and other widely circulated lists; however this is
not guaranteed.

Level 2: administrative area level 2 indicates a second-order civil entity
below the country level. Within the United States, these administrative
levels are counties. Not all nations exhibit these administrative levels.

Level 3: locality indicates an incorporated city or town political entity.

Name: product name

UnitsPerOrder: the number of units (X) in an order (i.e 1 order of croissants
= 1 box of X croissants)

Family: highest level category of the product.

Category: category of the product (i.e. sub-category to Family).
competitor index 500: a count (max 20) of local competitors up to a
radius of 500m.

competitor index 1500: a count (max 20) of local competitors up to a
radius of 1500m.

apparentTemperatureHigh: daytime high apparent temperature.

apparentTemperatureHighTime: UNIX time representing when the
daytime high apparent temperature occurs.

apparentTemperatureLow: overnight low apparent temperature.

apparentTemperatureLowTime: UNIX time representing when the
overnight low apparent temperature occurs.

apparentTemperatureMax: maximum apparent temperature during a given
date.

apparentTemperatureMaxTime: UNIX time representing when the
maximum apparent temperature during a given date occurs.

apparentTemperatureMin: minimum apparent temperature during a given
date.

apparentTemperatureMinTime: UNIX time representing when the
minimum apparent temperature during a given date occurs.
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cloudCover: percentage of sky occluded by clouds, between 0 and 1,
inclusive.

dewPoint: dew point in degrees Fahrenheit.

humidity: relative humidity, between 0 and 1, inclusive. icon: a machine-
readable text summary of this data point, suitable for selecting an icon for
display. If defined, this property will have one of the following values: clear-
day, clear-night, rain, snow, sleet, wind, fog, cloudy, partly-cloudy-day, or
partly-cloudy-night.

moonPhase: the fractional part of the lunation number during the given
day: a value of 0 corresponds to a new moon, 0.25 to a first quarter moon,
0.5 to a full moon, and 0.75 to a last quarter moon. (The ranges in between
these represent waxing crescent, waxing gibbous, waning gibbous, and
waning crescent moons, respectively.)

ozone: columnar density of total atmospheric ozone at the given time in
Dobson units.

precipAccumulation: the amount of snowfall accumulation expected to
occur (over the hour or day, respectively), in inches. (If no snowfall is
expected, this property will not be defined.)

precipIntensity: the intensity (in inches of liquid water per hour) of
precipitation occurring at the given time. This value is conditional on
probability (that is, assuming any precipitation occurs at all).

precipIntensityError: the standard deviation of the distribution of
precipIntensity.

precipIntensityMax: the maximum value of precipIntensity during a given
day.

precipIntensityMaxTime: UNIX time of when precipIntensityMax occurs
during a given day.

precipProbability: probability of precipitation occurring, between 0 and 1,
inclusive.

precipType: type of precipitation occurring at the given time. If defined,
this property will have one of the following values: ”rain”, ”snow”, or ”sleet”.
(If precipIntensity is zero, then this property will not be defined.)
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pressure: sea-level air pressure in millibars.

summary: a human-readable text summary of this data point.

sunriseTime: UNIX time of when the sun will rise during a given day.

sunsetTime: UNIX time of when the sun will set during a given day.

temperatureHigh: daytime high temperature.

temperatureHighTime: UNIX time representing when the daytime high
temperature occurs.

temperatureLow: overnight low temperature.

temperatureLowTime: UNIX time representing when the overnight low
temperature occurs.

temperatureMax: maximum temperature during a given date.

temperatureMaxTime: UNIX time representing when the maximum
temperature during a given date occurs.

temperatureMin: minimum temperature during a given date.

temperatureMinTime: UNIX time representing when the minimum
temperature during a given date occurs. time: UNIX time at which a data
point begins.

uvIndex: UV index

uvIndexTime: UNIX time of when the maximum uvIndex occurs during a
given day.

visibility: average visibility in miles, capped at 10 miles.

windBearing: direction that the wind is coming from in degrees, with true
north at 0 degrees and progressing clockwise. (If windSpeed is zero, then
this value will not be defined.)

windGust: wind gust speed in miles per hour.

windGustTime: time at which the maximum wind gust speed occurs during
the day.

windSpeed: wind speed in miles per hour.
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9.2 Detailed Descriptions for pre-processing steps

• Replace with mean values: Missing values in these columns are
treated in three ways:

1. overall mean: take the mean value of the entire column

2. grouped mean: take the mean value of the column using only
the entries within the same month

3. K-NN mean: replace the missing value using the mean of the
neighbouring 5 days.

• Date transformation: Date variable is transformed to ordinal
numerical values, using proleptic Gregorian ordinal.

• Removed time related features: Any time related features such as
TemperatureMinTime is removed as the our research question looks
at the sales on a particular day for a particular site, the temporal
element of a certain event may not have a big impact on the decision
making process.

9.3 Features for building Random Forest Models

The features include: productId, sales, dLW, dLW rolling mean,
dLW toyesterday sum, LW full rolling mean, Level 2,
competitor index 500, competitor index 1500, UnitsPerOrder, month,
season, icon, precipIntensity, precipProbability, temperatureHigh,
temperatureLow, apparentTemperatureHigh,apparentTemperatureLow,
dewPoint, humidity, pressure, windSpeed, windGust, windBearing,
cloudCover, uvIndex, visibility, ozone, temperatureMin, temperatureMax,
apparentTemperatureMin, apparentTemperatureMax, is sunday,
is holiday

9.4 Features for Gradient Boosting Regressor (one-hot
encoded)

date, dLW, dLW rolling mean, dLW to, yesterday sum,
LW full rolling mean, Level 1, Level 2,competitor index 500,
competitor index 1500, Name, UnitsPerOrder, Family, year, month,
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season, icon, moonPhase, precipIntensity, precipIntensityMax,
precipProbability, precipType, temperatureHigh, temperatureLow,
dewPoint, humidity, pressure, windSpeed, windGust, windBearing,
cloudCover, uvIndex, visibility, ozone, temperatureMin, temperatureMax,
is sunday

9.5 Features for Gradient Boosting Regressor (label
encoded)

LW full rolling mean,dLW, dLW rolling mean, dLW toyesterday sum,
is sunday

9.6 Features used for Gradient Boosting Model in R

date,sales, dLW,dLW rolling mean, dLW toyesterday sum,
LW full rolling mean, competitor index 500, competitor index 1500,
Name, UnitsPerOrder, Category, year, month, summary,
precipIntensityMax, temperatureHigh, temperatureLow, humidity,
windSpeed, visibility, temperatureMin, temperatureMax

9.7 Features for MLP

dLW, dLW rolling mean, dLW toyesterday sum, LW full rolling mean,
Level 1, Level 2, competitor index 500, competitor index 1500, Name,
UnitsPerOrder, Family, year, month, season, icon, moonPhase,
precipIntensity, precipIntensityMax, precipProbability, precipType,
temperatureHigh, temperatureLow, dewPoint, humidity, pressure,
windSpeed,windGust, windBearing, cloudCover, uvIndex, visibility,ozone,
temperatureMin, temperatureMax, is sunday.

9.8 Structured timeseries model components
weights
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Figure 23: Part A of The posterior distribution of the linear regression
weights for every component in the structured time series model. Showing
the impact of the feature on the overall prediction.56
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Figure 24: Part B of The posterior distribution of the linear regression
weights for every component in the structured time series model. Showing
the impact of the feature on the overall prediction.
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