OPEI'JaACCESS

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 — 8958 (Online), Volume-9 I ssue-4, April 2020

Protocol Dissector Tool for Deoding in Band

Packet Header on A Switch

Chiack far
updabas

Dipayan Sinha, Shobha G.

Abstract: Serviceability of networks is a vital part of network
management which helpsin isolating faults and triaging network
issues. Packet analyzers help in identifying faults, security threats
and other implementation flaws in the networking software by
capturing network traffic and analyzing it. Packet analyzing is
heavily based on protocols which need to be decoded from the raw
format and presented to the user in an understandable format. In
this work, a Command Line Interface based protocol dissector
tool has been developed which runs on the operating system of a
switch and performs packet decoding by capturing in band
packets flowing between control and data plane of the switch. The
tool also provides support for packet filtering in order to only
capture packets which the user needs. Existing packet dissectors
run on Wireshark in the form of Lua plugins. However, in this
work the implementation of the entire system isbased on C. Some
of the public protocols decoded by this tool involve 1Pv4, 1Pv6,
UDP, TCP, ARP, ICMP and so on. Also, this tool supports
decoding of private protocols as well.

Keywords: Decoding, In Band Packet, Network Element,
Packet Capture

. INTRODUCTION

Computer networks are responsible for interconnection of
networking elements around the world which enable users to
communicate over the Internet. In computer networking
terms, anetwork element isamanageablelogical entity which
unifies multiple physical devicesthat can be maintained from
a single management perspective. A computer network is
based on several public and proprietary protocols which
define the format of messages over which communication can
take place as well as rules for exchanging messages between
different networking elements. A network protocol defines
the syntax and semantics of communications. Network
analysis, also called packet sniffing isthe method of capturing
the network traffic and analyzing it to understand how the
network is behaving. Packet sniffing helpsin determining the
origin of the packet, destination of the packet, data carried by
it as well as other information specific to the protocol. A
packet analyzer decodes the captured packets which follow
protocol definitions that are known to the analyzer. The

Revised Manuscript Received on April 25, 2020.
* Correspondence Author
Dipayan Sinha*, Dept. of Computer Science & Engineering, RV
College of Engineering, Bangalore, India. Email: romulus.sinha@gmail.com
Dr. Shobha G., Dept. of Computer Science & Engineering, RV College
of Engineering, Bangalore, India. Email: shobhag@rvce.edu.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). Thisis an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Retrieval Number: D9011049420/2020©BEIESP
DOI: 10.35940/ijeat.D9011.049420
Journal Website: www.ijeat.org

1937

decoded contents are then displayed in a human-readable
format to the user. Network analysis helps in overcoming
situations of network outrages. Understanding of traffic flow
in the network helpsin overcoming flaws in the design of the
network software as well as any security flaws which may
compromise privacy. A network outrage refers to the failure
of switches, routers and other network elements in the
network infrastructure. It may occur due to failure of
hardware & software components as well as configuration
errors in the network setup. Failure of switches and routers
can lead to significant amount of network downtime which
can be damaging. In order to triage network issues,
serviceability of network elementsis needed. Serviceability is
an important feature for identifying faults and debugging as
well as isolating faults toroot cause anaysis. Packet
analyzers are efficient tools for triaging network issues. They
are used for testing and monitoring networks, devices and
software implementations running on them. It may also be
used for malicious purposes. Protocol dissectors are codes
that run on a packet analyzer to dissect and analyze the
captured network data stream. Dissectors are specific to
protocols. New protocols are coming up and hence new
dissectors are written to decode such protocols. The network
element under study in this paper is a switch. This work
studiesthe serviceability of network switches by decoding the
in-band packets flowing between control plane and data plane
of aswitch. A Command Line Interface tool is developed to
run on a switch which analyses packets and shows the header
and packet data in an easily understandable format. The
remainder of the paper is organized as follows. Section Il
comprises of survey of recent works on Packet Analyzers and
Dissectors. Section Il defines the problem statement and
Section IV identifies the objectives of the work. This is
followed by Section V which describes the methodology.
Section VI comprises of the System Architecture followed by
the Implementation details in Section VII. Section VIII
describes the results of the work. Section 1X and X contain
concluding remarks and future work respectively.

II. LITERATURE SURVEY

The authors of [1] have developed an automated feature to
study the expected behaviour of network protocols and al
possible variations. The tool helps in automating the process
of analyzing network packets. Their model takes a labelled
PCAPfile as an input and a hint of how to fix the error in that
PCAP file. The output produced by the tool isamodel which
describes the protocol behaviour and provides an interface to
utilize the model for diagnostic activities. In [2],

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Exploring Innovation


mailto:shobhag@rvce.edu.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Root_cause_analysis
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D9011.049420&domain=www.ijeat.org

Protocol Dissector Tool for Deoding in Band Packet Header on A Switch

the researchers studied the traffic coming from the internet by
applying filters on HTTP protocols and presented them in a
graphical format using Wireshark. The system devel opment
method used in this research is NDLC - Network
Development Lifecycle. It involves network analysis,
designing network monitoring schedule and evaluation of
network monitoring. The authors of [3] compare 2 packet
sniffing tools namely Tcpdump and Wireshark. They
concluded that Tcpdump performs better than Wireshark with
respect to battery, memory and processor usage. However,
Wireshark is more capable than Tcpdump in packet analysis
and speed of capture. The drawback identified in thiswork is
that Wireshark is a GUI based tool and TCP dump isa CLI
tool, hence, the memory & processor usage is not an apt
comparison. In [4], the authors provide a method to monitor
and analyze the traffic flowing in the network using UDP
which removes the existing deficiency of older tools used for
studying network traffic. A hierarchical network model has
been implemented in this work. In [5], the researchers have
developed a custom protocol dissector using Lua scripting
language for Wireshark. They used this dissector to identify
new DDOS variants over a period of five-month study. A
Botnet Protocol dissector was developed using Lua and
Wireshark for identifying protocol fields.

The researchers of [6] have developed a tool called
Flowscope. Thistool helps to capture and store packetsin an
in-memory ring buffer. The packets can be filtered and
dumped to disk on the occurrence of a specified trigger event.
The authors reported results of 120 Ghit/s with 128-byte
packets. The authors of [7] discuss about language security
and static analysis of Lua, an open source framework. Thisis
thefirst of itskind tool for public Static Analysis for Security
Testing (SAST). This work focusses on detecting web
vulnerabilities. In [8], the authors have implemented an
embedded packet logger (EPL) which is used for packet
sniffing in switches. This system analyses audit log data
collected from server and network equipment such as
switches and routers. The authors of [9] have discussed the
working of Wireshark tool, disadvantages, and used traceback
mechanism to improveitsfunctioning. They have developed a
packet marking algorithm in Wireshark to improve its
Intrusion detection capability. The authors of [10] have
proposed an intrusion detection system using a packet sniffer
which traces packets by linking to a network adapter in
promiscuous mode. The packets are then traced based on
filters set by the network administrator.

In [11], the authors demonstrate the application of Wireshark
in protocol diagnosis and its purpose to discover traditional
network attacks such as port scanning, |CMP-based attacks,
BitTorrent-driven denial service, etc. The authors of [12],
provide a comparison between Wireshark and Colasoft Capsa
as Packet Sniffing Tools. They are compared on basis of their
features, characteristic behaviour as well qualitative and
guantitative parameters. This paper concludes that Wireshark
isamore powerful tool in comparison to Colasoft Capsa with
respect to throughput, response time and packet drops
however Colasoft Capsa is more user friendly. In [13], the
authors analyze the TCP and UDP packets sent through email
through an open source tool called Wireshark. Moreover, the
decoding of TCP and UDP fields are explained in detail. The
authors of [14], have considered the architecture of network
traffic of an institute for monitoring and analyzing various
protocols like TCP/IP, HTTP, ARP, ICMP.

Retrieval Number: D9011049420/2020©BEIESP
DOI: 10.35940/ijeat.D9011.049420
Journal Website: www.ijeat.org

1938

In [15], researchers have focused on the basics of Packet
Sniffing tools by studying their working mechanism in a
comparative manner. Different packet sniffers such as
Wireshark, TCPdump, Nmap, Zenmap, Kismet, Caspa, Ntop,
Dsniff have been analyzed. The author of [16] discusses the
need for generating custom protocol dissectors for new
protocols which are not present in Wireshark. The author has
come up with atool that automates the generation of protocol
dissectors using Lua for Wireshark. The authors of [17]
describe the working of a packet sniffer in both switched and
non-switched environment. Also, the authors study about its
practicality by comparing its positive and negative aspects. It
involves the use of Wireshark for recognizing Network,
Transport and Application Layers. The existing system had
only packet capturing capability which involved showing the
size of the packets and no packet sniffing. Packet sniffing
concept alows the tracing of source and destination
addresses. This research work is used for Network Traffic
Analysis and Intrusion Detection System. However, there is
potential for exploitation of IDS by hackers due to ARP
Spoofing. In [18], the authors discuss about the different
packet capture mechanisms such as DashCap and nCap. This
work explains the packet capture techniques in real time
network traffic by comparison of different software based and
hardware-based solutions. The authors of [19] discuss the
creation of a packet sniffer tool just like Wireshark for
decoding packet fields. A library known as Libcap has been
used for capturing packets. Libpcap library helpsin capturing
packetsdirectly from the network adapter. In [20], the authors
have illustrated the application of Wireshark in the form of a
sniffing tool in networks. An experimental setup demonstrates
the efficiency of detection of a malicious packet in any
network.

[11. PROBLEM STATEMENT

The survey on the existing works reveals a wide variety of
tools for packet capturing and analysis on host machines.
Also, it is evident from previous works that Wireshark is the
most prominent packet analyzer tool available as open source
software. However, packet analyzers do not come directly
packaged with the operating system running on the switch and
often needs to be set up separately before analysis can take
place. Hence, thereis a need to devel op a packet analyzer and
decoder which can work seamlessly on the switch by
integrating it with the operating system running on the switch
which can perform the same tasks like Wireshark.

IV. OBJECTIVES

The aim of this study is to develop a protocol dissector for
decoding the in-band header of a packet flowing between data
plane and the control plane of a switch through a generalized
approach. This feature is developed in the form of a
Command Line Tool for triaging faults on the switch with
extensive support for filter-based packet decoding.

V. METHODOLOGY

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

WWW.IIEAT.ORG,

Exploring Innovation



OPENaACCESS

The packet sniffing process can be dividing into 3 major
stages namely Capturing, Decoding and Analyzing. In the
capturing phase, the raw binary data is captured from the
physical interface which is converted into a more user
understandable form by the decoder. Finaly, the decoded
packet is analyzed for extracting information from the
packet.The primary step in protocol decoding isto understand
theformat of the protocol. The protocol may be either apublic
or a proprietary protocol. This is done by creating a JSON
configuration file which stores the metadata fields of the
protocol header. The configuration file stores information
regarding the offset, mask, field value, field name as well as
different types and options for each field value. This JSON
configuration file then needs to be parsed for decoding the
header fields when the packet is captured and stored in the
capture buffer. A packet capture module is developed for
capturing and storing the incoming and outgoing in band
packet into a capture buffer. The packets coming from the
data plane are captured at the control plane and utilized for
header decoding. Packet decoding is done by developing a
custom dissector in C by parsing the JSON file and populating
C structures with metadata details. Capture Filter Module is
developed for applying filters to the capturing process in
order to capture only those packetswhich are of interest to the
developer. Finally, a command line interface tool in the
management plane is developed to enable user to specify
packet filters as well as start and stop packet capture.

VI. SYSTEM ARCHITECTURE

The system architecture consists of ‘n’ network elements as
shown in Fig. 1. which are capable of communicating with
each other. Each network element consists of:

A. Management Plane

This plane is used for interaction between the user and the
network element. The network element under considerationis
a switch. This layer contains the OS that runs on the switch
and alows users a CLI environment as well as SNMP for
management activities.

B. Control Plane

This layer operates between the Management and the Data
Plane. The software in the Control Plane uses a
Genera-Purpose CPU. It is a logica layer which has two
kinds of packet flows — In band and Out of Band Flows. In
band flows have data and control flowing in the same path.
Out of Band flows have data and packets flowing over
different paths. Out of Band Packets are used for
programming the Data Plane which houses the physical
hardware for forwarding. In band packets are of two kinds:

e Punt Packet — Packets flowing from Data Plane to

Control Plane
o |Inject Packet — Packets flowing from Control Planeto
Data Plane
C. DataPlane

This layer contains the hardware (ASIC) for forwarding
packets between different switches. Thisisthe physical layer
in the switch where actual decoding happens.

The in-band decoder is a functional module which isinvoked
at the control plane upon arrival or transfer of an in-band
packet.

Retrieval Number: D9011049420/2020©BEIESP
DOI: 10.35940/ijeat.D9011.049420
Journal Website: www.ijeat.org

1939

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 — 8958 (Online), Volume-9 I ssue-4, April 2020

VIlI. IMPLEMENTATION

The implementation of the system on the switch consisted of
the following modules as shown in Fig. 2.

Inject Packet

Punt Packet Injeet Packet

I In Band
I Packet [ Packet
I

[SRERpp—— Data Plane

Hardware based Packet Switching

Fig. 1. System Architecture

Filter DB

Store Packets
n ove Filler Name {

Retrieve Packet—
Retrieve Packet Count

» *

Fig. 2. Modular Design of the System

Retrieve Filter.

Rd1k|

Sha eu eDY

A. Packet Capture Module

This module is responsible for initiating packet capture. In
band packets flowing between the data plane and the control
plane are captured based on the type of filter set by the user
and then stored in a capture buffer. A capture thread is
spawned after acquiring a mutex lock. This thread receives
the packet, processes the packet header and then storesit in
the capture buffer. If the lock is aready acquired, packet
capture is not permitted.

B. Set Packet Filter Module

This module deals with the setting up of a capture filter based
on Wireshark standards. Standard filters such as ARP, IPv4,
IPv6, ICMP, UDP and MAC are supported by thisin addition
to Punt and Inject proprietary filters. The filter is set by the
user at the time of initiating packet capture. The filter string
entered by the user on CLI needsto be validated to ensure that
it isavalid string and then only it should be put into a filter
database. If the filter string is invalid, an appropriate error
message is shown to the user. The packets are then collected
in the capture buffer only if they match thefilter, elsethey are
discarded.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Exploring Innovation



Protocol Dissector Tool for Deoding in Band Packet Header on A Switch

C. Stop Packet Capture Module

Thismoduleis responsible for putting an end to the capturing
process by releasing the mutex lock and killing the capture
thread. The total number of captured packets are then
retrieved from the capture buffer and presented to the user.

D. Show Packet Summary Module

Once, the packet capture process is complete, the contents of
the packet need to be decoded and then displayed to the user
in an understandable format. This module reads the packets
from the buffer in an iterative manner and invokes the decoder
moduleto parse the packet contents. The results of the parsing
are then presented to the user on the CL1I.

E. Packet Header Decoder M odule

This module parses the packet header in a byte by byte
manner. The header decoding begins by parsing the ethernet
frame comprising of the destination and source MAC address
followed by the ether type field. The ether type field is a
2-byte field which indicates the type of protocol in the
payload. Based on the protocol type, the remainder of the
packet is decoded. Public and private protocol structures are
contained in the form of JSON configuration files which is
parsed to decode the protocol fields. Each protocol field hasa
definite mask value, offset, byte length, options and a shift
value which is essential to the decoding process. After the
entire packet has been parsed, the result is sent to the Show
Packet Summary Module which displays the decoded
contents to the user for further analysis.

F. Clear Packet Filter Module

This module enables the user to remove the existing filters
from the database and clears the packets captured in the
capture buffer. The system is again reset to the start state.
The topology of the experimental setup is as described in
Fig. 3. Three switches are connected via ethernet interfaces to
each other as well as well as to a common gateway. The
protocol dissector tool is run on one of the switches which
captures the packets arriving at its interface where it is
processed and displayed in the CLI tool to the user.

Gateway

Switch 3

Interface 2

Switch 2

Interface 1

Interface 3

Switch 1

Fig.3 Topology of the experimental setup

VIIl. RESULTSAND DISCUSSION

Fig. 4. shows the setting up of filter for a punt packet coming
from Source IP Address 100.100.100.1. A total of 5 ICMP
echo reguest packetsis sent to 100.100.100.1 in order to test
the working of the capture filter. Once packet capture is

Retrieval Number: D9011049420/20200BEIESP
DOI: 10.35940/ijeat.D9011.049420
Journal Website: www.ijeat.org

1940

stopped, it is seen that 5 packets were captured and on
decoding the packet contents it was seen that these packets
were | CM P packets coming from source | P 100.100.100.1.

#punt packet-capture set-filter 'ip.src==100.100.100.1"'

Filter successfully created

#

#

#punt packet-capture start

Packet capture started

#

#ping 100.100.100.1

Sending 5, 100-byte ICMP Echos to 100.100.100.1, timeout is 2 seconds:
1

Success rate is 100 percent (5/5), round-trip min/avg/max = 57/64/68 ms
#

punt packet-capture stop

Packet capture stopped. Captured 5 packet(s)

dest mac: 0050.5682.62c9, src mac: 0050.5682.3792
ethertype: 0x0800 (IPv4)

dest ip: 100.100.100.2, src ip: 100.100.100.1

packet len: 100, ttl: 255, protocol: 1 (ICMP)

icmp type: @, code: ©

ether hdr

ether hdr :
ipv4 hdr :
ipv4 hdr :
icmp hdr :

Fig. 4. Demonstration of Packet Filter Process
Fig. 5. illustrates the case when afilter is set for Source 1P
Address 100.100.100.4 but there is no interface with that 1P
Address and hence no packets are captured.

#punt packet-capture set-filter 'ip.src==100.100.100.4'
Filter successfully created

#

#

#punt packet-capture start

Packet capture started

#

#ping 100.100.100.4

Sending 5, 100-byte ICMP Echos to 100.100.100.1, timeout is 2 seconds:
Success rate is @ percent (0/5)

#

punt packet-capture stop

Packet capture stopped. Captured @ packet(s)

Fig. 5. Case where 0 packets are captured
Fig. 6. illustrates the situation when afilter is set for Source |P
100.100.100.2 but ICMP echoes are sent to 100.100.100.1. In
this situation packets from 100.100.100.2 are encountered but
due to the capture-filter they are not stored in the buffer.
Hence, 0 packets are captured.

#punt packet-capture set-filter 'ip.src==100.100.100.2'

Filter successfully created

#

#

#punt packet-capture start

Packet capture started

#

#ping 100.100.100.1

Sending 5, 100-byte ICMP Echos to 100.100.100.1, timeout is 2 seconds:
1t

Success rate is 100 percent (5/5), round-trip min/avg/max = 57/64/68 ms
#

punt packet-capture stop

Packet capture stopped. Captured © packet(s)

Fig. 6. Successful Packet Filtering Process
Fig. 7. shows a decoded ARP header of an incoming inject
packet. This packet was obtained by sending an ARP request
from the source interface with MAC address
6a:9b:d2:7e:ca:0b to a neighbouring interface (23.21.22.4) in
order to update the MAC address table on the switch.

ether hdr : dest mac: ffff.ffff.ffff, src mac: 6a%9b.d27e.caéb
ether hdr : ethertype: 0x0806 (ARP)
Hardware Type 1

Protocol Type 0x0800

Hardware Size 6

Protocol Size 4

Opcode 1 (ARP Request)

Sender MAC Address 6a9b.d27e.calb

Target MAC Address 0000.0000.0000
Sender IP Address 23.21.22.2
Target IP Address = 23.21.22.4

Fig. 7. ARP Packet Decoding
Fig. 8. shows the decoded ethernet header of the packet
followed by the ether type of IPv4 (0x8000) based on which
thefields of I P header are decoded and displayed on the CLI.

L T T T T T T ]

ether hdr dest mac: 0100.5e00.0005, src mac: 6c8b.d37d.ca@5
ether hdr : ethertype: 0x0800 (IPv4)
ipv4 hdr : dest ip: 224.8.0.5, src ip: 6.6.6.1
ipv4 hdr : packet len: 96, ttl: 1, protocol: 89
Fig. 8. Basic | Pv4 Decoding
Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Exploring Innovation



OPENaACCESS

Fig. 9. shows a sample | Pv4 packet which was captured by the
tool and Fig. 10. presents the decoded header of the packet for
analysis.

01 00 S5E 00 00 05 6C 8B D3 7D CA OB
08 00 45 CO 00 64 OE 36 00 00 01 59
OE 2E 16 16 16 02 EO 00 00 05

Fig. 9. Captured | Pv4 Packet

Internet Protocol Version 4, Src: 22.22.22.2, Dst: 224.0.0.5
Version: 4

Header Length: 2@ bytes
Total Length: 1ee
Reserved bit: Not set
Don't fragment: Not set
More fragments: Not set
Fragment offset: ©

Time to live: 1
Protocol: OSPF IGP (89)
Header checksum: @x9e2e

Fig.10 Detailed 1 Pv4 Decoding
Fig. 11. represents a sample IPv6 header which was captured
by the tool and Fig. 12. shows the decoded form of the IPv6
header based on the ether type (0x86DD).

33 33 11 11 00 05 6C 2B D2 3F 8A 1la 86 DD 6C 00 00 0O
00 2C 59 01 45 80 00 00 00 00 00 00 24 8B 13 FF 44 1F
24 0D 23 02 00 00 00 0O 60 OO 6O OO 60 6O 0O 00 0O 65

Fig. 11. Captured | Pv6 Packet

ether hdr : dest mac: 3333.1111.0005, src mac: 6c2b.d23f.8ala
ether hdr : ethertype: @x86DD (IPvé)

ipvé hdr : dest ip: 2302::5

ipvé hdr : src ip : 4580::248b:13ff:4417:240d

ipvé hdr : payload len: 44, hop count: 1, next hdr: 89

Fig. 12. Basic | Pv6 Decoding

The packet decoding tool can be used as a serviceability tool
to test the working of the software loaded on the switch. It can
be used to determine if the packet is coming from the right
source or whether it is going to the correct destination. For
instance, by decoding the ARP header of the packets, we can
see whether the packet transmission is happening from the
correct interface based on which the MAC tableis constructed
on the switch. Not only that, the captured packets can give
information about the data that is flowing through the switch
which can be used to detect privacy and security issuesin the
network. This tool can be packaged in the switch without the
need for aseparate Wireshark tool to act as a packer analyzer.
Such afeatureisvery useful for test engineers and devel opers
who are constantly developing and providing updates on the
switch software.

IX. CONCLUSION

Thiswork aimsto perform capturing and decoding of in band
packets on a switch by developing a CLI tool which runs on
the switch. Packet capture, decoding and analysis can help in
identifying design and implementation issues in the software
running on the switch. Thiswork explains the different types
of packets flowing between data plane and control plane of
the switch. It aso describes the design of how a packet
capture and decoder tool can be implemented for any
networking element in the absence of a supporting tool like
Wireshark. Finally, some examples of header decoding of
public protocols such as ARP, IPv4 and IPv6 have been
shown to give an idea of how the system worksin practice.

FUTURE WORK
Thisis a preliminary tool which works on limited protocols.

This system needs to be extended for a variety of custom

Retrieval Number: D9011049420/2020©BEIESP
DOI: 10.35940/ijeat.D9011.049420
Journal Website: www.ijeat.org

1941

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 — 8958 (Online), Volume-9 I ssue-4, April 2020

proprietary protocols. Also, the process of creating the
configuration JSON file can be automated to generate the
protocol structure of new protocols without any user
interface. Lastly, a GUI implementation in the form of an app
on the switch can make the tool more user friendly.

REFERENCES

1. Holkovic”, M., Rysavy, O. and Polc"ak, L. ‘Using Network Traces to
Generate Models for Automatic Network Application Protocols
Diagnostics’,

In Proceedings of the 16th International Joint Conference on
e-Business and Telecommunications (ICETE 2019), pages 37-47

2. Siswanto, Apri & Syukur, Abdul & Abdul Kadir, Evizal & Suratin,.
(2019). ‘Network Traffic Monitoring and Analysis Using Packet
Sniffer’, 10.1109/COMMNET.2019.8742369.

3. Piyush Goyal, Anurag Goyal, ‘Comparative Study of two Most Popular
Packet Sniffing Tools- Tecpdump and Wireshark’, 9th International
Conference on Computational Intelligence and Communication
Networks, 2017, pp.77-81

Md Ruhul Islam, Tawal K. Koirala and Ferdousi Khatun, > Network
Traffic Analysis and Packet Sniffing Using UDP’, 9th International
Conference on Computational Intelligence and Communication
Networks, 2017, pp.907-914

5. Max Gannon, Gary Warner, Arsh Arora, ‘An Accidental Discovery of
10T Botnets and a Method for Investigating Them With a Custom Lua
Dissector’, Annual ADFSL Conference on Digital Forensics, Security
and Law, 2017, pp.26-3

6.  Paul Emmerich, Maximilian Pudelko, Sebastian Gallenmu ller, Georg
Carle, ‘FlowScope: Efficient Packet Capture and Storage in 100 Gbit/s
Networks’, IFIP Networking Conference, Sweden, 2017

7. Andrei Costin, ‘Lua code: security overview and practical approaches
to static analysis’, IEEE Symposium on Security and Privacy
Workshops, 2017, pp.133-142

8. Chanankorn Jandaeng, ‘Embedded Packet Logger for Network
Monitoring System’, Springer International Publishing Switzerland
2016, pp.1093-1102

9.  SPavithirekini,D.D.M.M.Bandara, C.N.Gunawardhana,
K.K.S.Perera, B.G.M.M.Abeyrathne, Dhishan Dhammearatchi,
‘Improve the Capabilities of Wireshark as a tool for Intrusion Detection
in DOS Attacks’, International Journal of Scientific and Research
Publications, Volume 6, Issue 4, April 2016

10. YashKetkar, Wasim Khan, Deep Makwana, Vikrant Nemade, Ankush
Hutke, ‘A Protocol Based Packet Sniffer’, International Journal of
Computer Science and Mobile Computing, Vol.4 Issue.3, March-
2015, pg. 406-410

11. Ndatinya, Vivens & Xiao, Zhifeng & Manepalli, Vasudeva & Meng,
Ke & Xiao, Yang. (2015), ‘Network forensics analysis using
Wireshark’, International Journal of Security and Networks. 10. 91.
10.1504/13SN.2015.070421.

12. Nedhal A. Ben-Eid, ‘Ethical Network Monitoring Using Wireshark
and Colasoft Capsa as Sniffing Tools’, International Journal of
Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

13. Dr. Mahesh Kumar , Rakhi Yadav, ‘Tcp & Udp Packets Analysis
Using Wireshark’, International Journal of Science, Engineering and
Technology Research (IJSETR), Volume 4, Issue 7,2015,
pp.2470-2474

14. Amanpreet Kaur, Monika Saluja, ‘Investigating TCP/IP, HTTP, ARP,
ICMP Packets Using Wireshark’, International Journal of Emerging
Technology and Advanced Engineering, 2014, pp.191-198.

15. Inderjit Kaur, Harkarandeep Kaur, Er. Gurjot Singh, ‘Analysing
Various Packet Sniffing Tools’, International Journal of Electrical
Electronics & Computer Science Engineering Volume 1, Issue 5, 2014

16. Jarmo Luomala, ‘A Tool for Generating Protocol Dissectors For
Wireshark in Lua’, , Department of Computer Science and
Engineering, University of Oulu, Oulu, Finland. Master’s thesis, 2013,
78p.

17. Rupam, Atul Verma , Ankita Singh, ‘An Approach to Detect Packets
Using Packet Sniffing’, International Journal of Computer Science &
Engineering Survey (IJCSES) Vol.4, No.3, June 2013, pp.21-33.

&

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Exploring Innovation



Protocol Dissector Tool for Deoding in Band Packet Header on A Switch

18. Alias, Syazwina & Manickam, Selvakumar & Kadhum, Mohammad.
(2013), ‘A Study on Packet Capture Mechanisms in Real Time
Network Traffic’,pp.456-460. 10.1109/ACSAT.2013.95.

19. Mohammed Abdul Qadeer, Mohammad Zahid, ‘Network Traffic
Analysis and Intrusion Detection using Packet Sniffer’, Second
International Conference on Communication Software and Networks,
2010, pp.313-317

20. Usha Banerjee, Ashutosh Vashishtha, Mukul Saxena, ‘Evaluation of
the Capabilities of WireShark as a tool for Intrusion Detection’,
International Journal of Computer Applications (0975 — 8887) Volume
6- N0.7,2010, pp.1-5

AUTHORSPROFILE

Dipayan Sinha is an Undergraduate Scholar pursuing
Computer Science & Engineering in R.V. College of
Engineering, Bangalore. Heis passionate about Computer
Networking and Machine Learning and has a keen
interest on pursuing these in his higher studies. He has 2
publicationsunder hisnamein theloT and Mobile Agents
domain. He is a rank holder in the department of
Computer Science, RVCE. Heis currently working under
the mentorship of Dr. Shobha G.

Dr. Shobha G is a Professor in R.V. College of
Engineering Bangalore. She has over 25 years of
experience in teaching and over 14 years of experience
in research. Her primary interests lie in Data Mining,
Image Processing and Networking. She has 123
publications in International journals and conferences.
She has also filed 4 patents and reviewed several books.
She has published a chapter on ‘Machine Learning
Handbook of Statistics’. She was the former Head of Department of
Computer Science Department of RVCE.

Retrieval Number: D9011049420/20200BEI ESP Published By: o
DOI: 10.35940/ijeat.DI011.049420 Blue Eyes Intelligence Engineering
Journal Website: www.ijeat.org 1942 & Sciences Publication e

© Copyright: All rights reserved.



