

D1.1

Use case-driven specifications and technical requirements and initial channel model

Project number	101013425
Project acronym	REINDEER
Project title	REsilient INteractive applications through hyper Diversity in Energy Efficient RadioWeaves technology
Start date of the project	1 st January, 2021
Duration	42 months
Call	H2020-ICT-52-2020

Deliverable type	Report
Deliverable reference number	ICT-52-2020 / D1.1 / 1.0
Work package contributing to the deliverable	WP1
Due date	30 th September, 2021 (M09)
Actual submission date	30 th September, 2021

Responsible organisation	Technikon, TSA	
Editor	Martina Truskaller, Juan Francisco Esteban	
Dissemination level	Public	
Revision	1.0	

Abstract	This deliverable reports on the results of Task 1.1, providing an inventory of interactive use case specifications, representative deployment scenarios, technical requirements and KPIs for the four focus domains. D1.1 includes the initial channel model based on existing measurements and models. If reports on the particular investigation of the origin of latency in wireless applications	
Keywords	Use cases, technical requirements, deployment scenarios, channel model, cell-free operation	

Editor

Martina Truskaller (Technikon) Juan Francisco Esteban (TSA)

Contributors

Luana Fabrete, Alexandra Stanek, Martina Truskaller (Technikon) Daan Delabie, Liesbet Van der Perre (KU Leuven) Erik G. Larsson, Sarvendranath Rimalapudi (LIU) Emma Fitzgerald, Fredrik Tufvesson, Ove Edfors (ULUND) Andres Reial (EAB) Benjamin Deutschmann, Klaus Witrisal, Thomas Wilding (TU Graz) Ivo Vandeweerd (Blooloc) Marcus Borrmann, Ulrich Mühlmann (NXP) Juan Francisco Esteban (TSA)

Disclaimer

The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any particular purpose. The content of this document reflects only the author`s view – the European Commission is not responsible for any use that may be made of the information it contains. The users use the information at their sole risk and liability. This document has gone through the consortium's internal review process and is still subject to the review of the European Commission. Updates to the content may be made at a later stage.

Executive Summary

This is deliverable 1.1: "Use case-driven specifications and technical requirements and initial channel model". This document describes the results of Task 1.1 (Analysis of interactive use case scenarios and detailed technical requirements), providing an inventory of interactive use case specifications, representative deployment scenarios, technical requirements and KPIs for the four focus domains.

This analysis aims to comprise thirteen representative future interactive use cases enabling new services in the mentioned application domains. The deliverable also includes the initial channel model based on existing measurements and models.

Chapter 2 describes the main use cases identified for the REINDEER project and their respective KPIs. The technical requirements are described in Chapter 3, reporting the functional and quantitative requirements identified, that the infrastructure shall meet. The deployment scenarios are described in Chapter 4 reporting the main deployment opportunities for Radio Weaves (RW) and the use cases identified.

Considering the challenging technical requirements posed by the use cases, Chapter 5 contains a study of the latency requirements for emerging wireless applications. In Chapter 6 guidelines for initial channel models are provided, based on existing measurements and models related with Task 1.2 (Characterization and modelling of propagation environments).

Table of Content

Chapter 1 Introduction	1
1.1 Objective of the document	2
1.2 Structure of the document	2
1.3 Terminology	3
1.3.1 Scenarios	3
1.3.2 Technical requirements	3
1.3.3 Use cases	3
1.3.4 Key Performance Indicators	3
1.3.5 Services	3
Chapter 2 Use cases	4
2.1 Use cases description and KPIs	5
2.1.1 Augmented reality for sport events	5
2.1.2 Real-time digital twins in manufacturing	6
2.1.3 Patient monitoring with in-body and wearable sensors	8
2.1.4 Human and robot co-working	9
2.1.5 Tracking of goods and real-time inventory	11
2.1.6 Electronic labelling	13
2.1.7 Augmented reality for professional applications	15
2.1.8 Wander detection and patient finding	16
2.1.9 Contact tracing and people tracking in large venues	18
2.1.10 Position tracking of robots and UVs	19
2.1.11 Location-based information transfer	20
2.1.12 Virtual reality home gaming	22
2.1.13 Smart home automation	23
2.2 Use cases classification	26
2.2.1 Functional classification	
2.2.2 Challenges classification	27
Chapter 3 Technical requirements	32
3.1 Device classification	32
3.2 Functional requirements	32
3.3 Quantitative requirements	33
3.4 System Services	35
3.4.1 Infrastructure for federated learning over wireless communications:	
3.4.2 Environment mapping	
3.4.3 Localisation and tracking	
3.4.4 Edge Processing and Storage	41
Chapter 4 Deployment scenarios	43
4.1 Deployment characteristics	43
r - y	

D1.1 – Use case-driven specifications & technical requirements and initial channel model

4.2 Envir	onment descriptions	43
4.2.1 Ver	nue	43
4.2.2 Ma	nufacturing	45
4.2.3 Go	ods and logistics	48
4.2.4 Res	sidential	49
4.2.5 Pat	ient care	51
4.3 Radio	Weaves connectivity and transport	54
4.3.1 Mix	ed/mid-haul	54
4.3.2 Bad	khaul	54
4.4 Addit	ional considerations	55
4.4.1 Mu	ti-operator operation	55
Chapter 5	Latency in wireless applications	56
Chapter 6	Initial channel model	59
Chapter 7	Summary and Conclusion	62
Chapter 8	List of Abbreviations	63
Chapter 9	Bibliography	64

List of Figures

Figure 1: RW infrastructure sketch with antennas integrated into the environment bringing them closer to the devices and increasing spatial diversity for higher capacity and reliability
Figure 2: Use cases application type classification27
Figure 3: Challenges cluster 1. Augmented and virtual reality
Figure 4: Challenges cluster 2. Robots and industrial systems
Figure 5: Challenges cluster 3. Massive positioning and sensing
Figure 6: Challenges cluster 4. Tracking and location-based services
Figure 7: System services and corresponding importance of performance characteristics
Figure 8: Venue deployment scenario example. Tennis arena
Figure 9: Industrial deployment scenario example. Production hall
Figure 10: Goods and logistics deployment scenario example. Production hall
Figure 11: Residential deployment scenario example. Large apartment
Figure 12: Patient care deployment scenario example. Hospital floor
Figure 13: Mixed/mid-haul connectivity approaches
Figure 14: Backhaul connectivity approaches54
Figure 15: Comparison of maximum latency and traffic volume density constraints for the use cases
Figure 16: The concept of visibility regions and clusters in the COST 2100 channel model with its massive MIMO extension, from [JF2]. The x-axis constitute here the possible locations of the antennas building up the Radio Weave with a specific antenna element located at the point BS. The UE travels through the UE visibility regions, different clusters are active depending on the specific UE location

List of Tables

Table 1: Use cases list and their corresponding application domains4
Table 2: Use case 1. Description and KPIs6
Table 3: Use case 2. Description and KPIs8
Table 4: Use case 3. Description and KPIs9
Table 5: Use case 4. Description and KPIs11
Table 6: Use case 5. Description and KPIs13
Table 7: Use case 6. Description and KPIs15
Table 8: Use case 7. Description and KPIs16
Table 9: Use case 8. Description and KPIs 17
Table 10: Use case 9. Description and KPIs19
Table 11: Use case 10. Description and KPIs20
Table 12: Use case 11. Description and KPIs21
Table 13: Use case 12. Description and KPIs23
Table 14: Use case 13. Description and KPIs25
Table 15: Use cases application type classification 26
Table 16: Use cases. Challenges identified28
Table 17: Use cases challenges classification 28
Table 18: Key performance indicators for each use case
Table 19: System services list and their corresponding technical challenges and application domains
Table 20: System service 1 Description and KPIs 38
Table 21: System service 2. Description and KPIs
Table 22: System service 3. Description and KPIs 41
Table 23: System service 4. Description and KPIs 42
Table 24: Tennis arena, deployment scenario characteristics 44
Table 25: Production hall, deployment scenario characteristics 46
Table 26: Supermarket sales floor, deployment scenario characteristics 48
Table 27: Large apartment, deployment scenario characteristics 50
Table 28: Hospital floor, deployment scenario characteristics 52
Table 29: General latency constraints for different fields and use cases
Table 30: Latency constraint for the defined use cases 58

Chapter 1 Introduction

The REINDEER project develops a new wireless infrastructure, "RadioWeaves" (RW), consisting of a fabric of dispersed electronic circuits and electromagnetic surfaces that collectively function as a massive, distributed resource offering hyper-diverse connectivity, positioning, wireless power transfer (WPT) and computational capabilities. This architecture brings the capabilities of multi-antenna systems to a next level upon the foundations of cell-free massive MIMO systems and is based on large intelligent surfaces, which can be integrated into walls and furniture present in the different deployment scenarios meeting the challenges of new interactive, real-time and real-space applications.

Figure 1: RW infrastructure sketch with antennas integrated into the environment bringing them closer to the devices and increasing spatial diversity for higher capacity and reliability

Future applications in the field of industry, healthcare and entertainment will depend on wireless connectivity to provide resilient interactive experiences with uninterrupted availability both in time and location, with unnoticeable dislocation between virtual and real elements. We focus on four main application domains, where RW becomes more relevant to drive REINDEER innovation:

- (A) Adaptive robotized factories, warehouses, retail and logistics: In future factories, warehouses, and logistics, applications will critically rely on wireless connectivity, requiring zerooutage and imperceptible latency communication. Manufacturing and industrial settings are typically highly reflective and feature many blocking objects. Future interactive applications in these environments will hence face a combination of challenging requirements.
- (B) Immersive entertainment for crowds of people: The future connectivity infrastructure needs to offer a capacity that can be scaled up to support a very high number of individual video services and with enhanced user experiences, to be offered in places where crowds gather, far beyond the capabilities current and emerging wireless networks. This occurs in large and, typically, relatively open spaces such as stadiums, festival grounds, or large halls and auditoriums.
- (C) Human-machine interaction in care environments, hospitals and assisted living: Future human-oriented applications will need to provide intuitive experiences for people interacting with robots and objects in their environment. The people-friendliness of the experiences is therefore extremely important, including both the reliability of the application and the aesthetic of the integration of the infrastructure in the environment.

(D) Home automation and smart home systems: Our homes are becoming increasingly connected and automated and we foresee this trend reaching a new level of sophistication with the help of energy-neutral devices, which allow for extremely dense deployments of sensors and actuators with no maintenance. Entertainment options at home are also expanding with the advent of virtual reality. In this domain, we need to meet performance requirements while keeping costs low so that products are accessible to consumers.

On top of communication, RW will feature a new range of intelligent services through capabilities that are inherent to its architecture. Deploying large and distributed electromagnetic surfaces will lead to unforeseen spatial resolutions that will enable precise localization even with a limited bandwidth. In contrary to conventional beamforming, the emitted radio signals will be largely uncorrelated everywhere, except at desired focal points. This paves the way for WPT at unprecedented power levels, while keeping the overall electromagnetic exposure low in the vicinity. Both localization and WPT, offered as services from the infrastructure, will ultimately open the doors for novel location-aware applications and the operation of new generation of highly capable energy-neutral devices.

1.1 Objective of the document

This deliverable reports on the results of Task 1.1 (Analysis of interactive use case scenarios and detailed technical requirements and initial channel model) that aims to analyse the needs of the innovative interactive applications and representative use case scenarios, and translates the specifications of the use cases into detailed quantitative technical requirements to drive the R&D in the project.

In this way, this document defines the representative deployment scenarios, technical requirements, inventory of interactive use case specifications and key performance indicators (KPIs) for the main application domains of the project.

This analysis comprises thirteen representative future interactive use cases, enabling new services in the four focus application domains. The specifications characterise typical spatial characteristics of the environment and include both the nature and the amount of active and energy-neutral devices envisioned in the application. The technical requirements are detailed quantitatively and apply to both performance and complexity. The requirements include numbers of devices, links and simultaneous service levels to be supported.

The deliverable reports on the particular investigation of the latency requirements from wireless applications. It also includes the initial channel model based on existing measurements and models related with T1.2 (Characterization and modelling of propagation environments).

1.2 Structure of the document

The structure of the document can be summarized in the following way:

- Chapter 1, Introduction: contains an overview of the project and the objectives of this deliverable.
- Chapter 2, Use cases: describes the main use cases identified for the REINDEER project and their respective KPIs.
- Chapter 3, Technical requirements: describes the functional and quantitative requirements identified that the infrastructure shall meet.
- Chapter 4, Deployment scenarios: describes the main deployment opportunities for RW and use cases identified.
- Chapter 5, Latency in wireless applications: contains a study of latency requirements for emerging wireless applications.
- Chapter 6, Initial channel model: outlines a channel model framework for RadioWeaves based on the COST 2100 channel model and its massive MIMO extension.
- Chapter 7, Summary and conclusions: provides an overview of the main learnings and conclusions in this deliverable.

1.3 Terminology

This section describes the main definitions relating to the concepts exposed in the document.

1.3.1 Scenarios

The scenarios are the environments with specific characteristics where the RW technology is expected to be deployed and provide connectivity, under the framework of the REINDEER project, and the corresponding use cases identified.

The description of these scenarios involves sketching typical high-level ground plans for the environments, specifying dimensions and typical objects and materials encountered in these environments. In addition, this document describes the RW deployment opportunities within each scenario.

1.3.2 Technical requirements

Technical requirements must be considered to successfully implement the use cases and services. The technical requirements will be detailed not only with functional requirements describing functionalities and services, but also with the quantitative requirements which describe the specific values of RW performance coming from the KPIs imposed by use cases and services.

General functional and quantitative requirements that the system shall accomplish to have an adequate performance are further detailed in this document.

1.3.3 Use cases

The use cases describe the sequence of interaction and services provided to the users in a specific environment by means of the RW infrastructure. Thirteen specific use cases are analysed, identifying the needs for innovative interactive applications within the four defined applications domains.

1.3.4 Key Performance Indicators

Key performance indicators (KPI) are the relevant measurable values for evaluating RW performance. These values establish thresholds and optimal values that the infrastructure shall cover to support the use cases with adequate performance.

1.3.5 Services

A Service represents a specific functionality provided by the infrastructure to cover the functional requirements of use cases. These services can imply additional KPIs that the infrastructure shall meet to be considered successfully implemented.

Chapter 2 Use cases

This chapter presents an overview of the main use cases that have been defined. These selected use cases are those relevant for each of the application domains defined in Chapter 1, giving a wide variety of applications which have not only a considerable economic impact by improving and making industrial processes more efficient, but also a social impact by covering other scenarios related to health, people care and entertainment, both in massive environments and at home. For this, it is always important to identify the needs of society, taking into account the state of the art and covering those needs that can go one step further thanks to the technological advances which are achieved with RW. This infrastructure provides technological advantages such as greater availability, location accuracy and the ability to connect massive simultaneous devices.

Table 1 contains a list of the selected use cases as well as the application domains that they are covering. Each of the uses cases is described in detail together with the required system performance indicators (technical requirements). It will be listed the main functional requirements for each of the use cases and the main challenges that the use case impose to the system.

Use		Application domain			
case ID	Use case name	А	В	С	D
1	Augmented reality for sport events		Х		
2	Real-time digital twins in manufacturing	X			
3	Patient monitoring with in-body and wearable sensors			Х	
4	Human and robot co-working	Х		Х	
5	Tracking of goods and real-time inventory	Х			
6	Electronic labelling	Х			
7	Augmented reality for professional applications	Х		Х	
8	Wander detection and patient finding			Х	
9	Contact tracing and people tracking in large venues		Х	Х	
10	Position tracking of robots and UVs	Х			
11	Location-based information transfer		X	X	
12	Virtual reality home gaming			Х	Х
13	Smart home automation			Х	Х

Table 1: Use cases list and their corresponding application domains

The different use cases have been classified using two different approach. The first one considering the similarities in the functionalities that they are providing, and the second approach, making cluster of use cases with similar technical challenges that should be addressed to meet with the identified KPIs. These two classifications will be described at the end of the chapter.

2.1 Use cases description and KPIs

2.1.1 Augmented reality for sport events

General description				
Name/ Icon	Augmented reality for sport events			
Description	Augmented reality for sport events provides a new concept of providing real- time information to the users, creating a map of the surrounding area, localization of relevant players or objects, and real-time information. Players wear low power sensors which provide real-time data to a central server, multiple sensors input are combined and processed to offer different statistics to the user, e.g. position of users, speed, health constants, colour maps, tracking record, highlights replay etc. The users can consume this real- time information, interacting with their augmented reality devices, selecting the content or statistics that they want to see in each moment of the match. The augmented reality devices consist on the smartphones of the users, that using their camera and an app which connect to the central server, can visualise the most relevant content according to their interest. In addition to the sport-related information, the user will be able to access to information systems where they could visualise the location of different interest areas, e.g. restaurants, exits, bathrooms, stairs, etc.			
Scenario	Stadiums and sport	event locations		
Application domain	Immersive entertainment for crowds of people			
Geographic scope	Indoor and outdoor			
Technical requirer	nents			
Attribute	Description	KPI	Comments	
Spectrum	Carrier frequency	5GHz or 2.4GHz	Highest frequencies shall be more suitable for broadband communications	
Traffic model	Maximum number of simultaneous devices	100000 AR devices 50 low power sensors	The highest sport event has a capacity for up to 100.000 person.	
	User Experience data rate	Up to 5 Mbps	For video HD streaming, statistics information updates require lower data rates.	
	Uplink/Downlink ratio	Mostly DL		
UE	Mobility	Up to 10 m/s for sensors Walking speed for AR devices	High mobility for players. Spectators will move by walking speed.	
	Accuracy	<0.5 M		

Svstem	Reliability	99.9%		
	End to end Latency	<20 ms	[3GPP3]	
	Traffic volume density	10 Mbps/m ²	50000 m ² of stadium bleachers. Maximum traffic density considering all the users connected simultaneously downloading HD streaming video. Typical values will be less stringent.	
Functional require	ements			
Functional requirements	 The system shall process the data collected from the passive devices and provide it in a proper manner to the AR reality users. Gather information and statistics from the sensors Users will be able to see information and statistics in real-time with an augmented reality application using their mobile phones and the camera or any other compatible AR device The system can provide localisation service to show the relevant information according the position of the different players. 			
Technical challeng	nical challenges addressed			
Challenges	 Massive nur rate. Necessity to players are Deployment with pure ind Low latency 	ive number of simultaneous connections, high traffic volume/sum ssity to cover higher mobility speeds for sport events where the rs are usually reaching up to 10m/s byment in wide open areas. Larger coverage is needed compared bure indoor deployments atency required for a good VR quality experience		
Security	The main security requirements for this use case are confidentiality, authentication and user access control referring to the raw information shared by the sensors to the cloud where the data is processed. For the processed data that are accessed by the AR users, the security requirements are less stringent, being the most important: data integrity, non-repudiation and privacy.			

Table 2: Use case 1. Description and KPIs

2.1.2 Real-time digital twins in manufacturing

General description				
Name/ Icon	Real-time digital twins in manufacturing			
Description	Digital twins [MF1] are a new technology for Industry 4.0, in which processes, machines, or even entire factories are mirrored in the digital domain by creating a virtual copy of the physical entity and synchronising the state between the digital and physical twins. The digital twin is typically hosted in a			

D1.1 – Use case-drive	en specifications & tech	nnical requirements and init	ial channel model ග면 REINDEER
	cloud or edge data centre (private or public) and can be used to monitor manufacturing processes in real time, simulate potential changes before implementing them in the physical twin, and add enhanced functionality such as improved control [PS1], intrusion detection [FA1], and other security features [CG1].		
	In this use case we focus on digital twins used for monitoring and control of real-time processes. This requires bidirectional communication between the digital and physical twins, in order to replicate the physical twin's state in the digital domain, as well as to send control signals and other updates from the digital twin to the physical one. This requires extremely high reliability, as lost packets may affect the correct functioning of the physical machines and lead to damage or even threaten the safety of human operators. In cases where positioning is used, this should be very accurate in order to ensure multiple machines or robots can interact at high speed and with high precision. The latency requirements for this use case are also stringent. Control loop periods for industrial processes can in general be as low as hundreds of microseconds, however here we will target processes with a latency requirement of no lower than 1 ms. This nonetheless covers a wide range of factory and process automation instances.		
Scenario	Factories		
Application domain	Adaptive robotized factories, warehouses and logistics		
Geographic scope	Indoor		
Technical requirer	nents		
Attribute	Description	KPI	Comments
Spectrum	Carrier frequency	2.4 GHz or 3.8 GHz	ISM band if it is an unlicensed site, 3.8 GHz if operated by a provider with a license
Traffic model	Maximum number of simultaneous devices	20-100 / m ² [MG1]	Mixture of low power sensors and machines
	User Experience data rate	1 Mbps	
	Uplink/Downlink ratio	Both UL and DL	
UE	Mobility	Low/none for sensors Up to 10 m/s for robots	
	Accuracy	10 cm	
System	Reliability	>99.999%	Five nines for process automation, nine nines for factory automation [MG1]
	End to end Latency	1 ms – 50 ms	We focus on real-time control. Some processes require even lower latency but we target those that work with 1 ms or higher.

Functional requirements

Traffic

density

volume

20 Mbps / m²

High density devices tend to

have lower data rates (sensors and actuators), so we use the lower device density estimate

Functional requirements	 Mirroring of the state of individual machines up to the entire factory in the digital domain (local or remote cloud) in real time. Interaction between the digital and physical domains (digital twin acting on the physical twin). State of the plant and control signals synchronised between the physical and digital twins in real time. For safety purposes: (vehicle & person) Collision warnings; policy monitoring 		
Technical challenge	es addressed		
Challenges	Extremely high reliability and low latency High accuracy positioning		
	Massive number of simultaneous devices and high traffic volume		
	High mobility for some devices		
Security	This use case requires a high level of security in several aspects. Data integrity, authentication, and user access controls are the most important aspects as breaches in these can affect the safety of human operators in the worst case. Availability is critical for financial reasons as shutting down a production line even briefly is extremely expensive. Confidentiality is also needed to protect sensitive business information, and non-repudiation to provide confidence in quality assurance processes (may even be needed for certification depending on the particular industry). Privacy is less important for this use case.		

Table 3: Use case 2. Description and KPIs

2.1.3 Patient monitoring with in-body and wearable sensors

General description					
Name/ Icon	Patient/Resident mo body and wearable	onitoring with in- sensors			
Description	RW can offer the possibility to monitor patients in hospitals, retirement homes, care homes, etc. using in-body and wearable sensors from all device classes. This allows healthcare staff to collect and process monitoring data from a remote location, which can make healthcare more efficient and better. More information can be obtained about the health status of a patient and the work package of the staff is reduced ensuring that they can focus on the care itself. Patients can also be sent home more quickly with certain sensors, which ensures that the hospital occupancy can decrease more quickly, and means that there is more capacity in the hospital itself.				
Scenario	Hospitals, care homes				
Application domain	Human-machine interaction in care environments, hospitals and assisted living				
Geographic scope	Indoor				
Technical requirements					
Attribute	Description KPI Comments				

REINDEER D1.1

Spectrum	Carrier frequency	2.4 GHz, 868 MHz, 5 GHz	Depending on the sensor, 3.8 GHz possible with provider	
Traffic model	Maximum number of simultaneous devices	10s of devices per patient, max 2 patients per m ²		
	User Experience data rate	100 bps – 1 Mbps	Mostly single-variable signals (e.g. heartrate, oxygen level), sensing rate seconds to minutes	
	Uplink/Downlink ratio	Mostly UL		
UE	Mobility	1 m/s	Patients walking	
	Accuracy	< 1m		
System	Reliability	99.99 %	Reliable delivery of alarms	
	End to end Latency	< 200 ms	Most data delay-tolerant, even critical alarms on the order of seconds or more	
	Traffic volume density	kbps/m ² – 10 Mbps/m ²	(compared with Bluetooth values [SM1])	
		µW/m²- mW/m²	Power density highly dependent on used sensors and amount of sensors	
Functional require	ements			
Functional requirements	 Continuously collect data from sensors either worn by the patient or located inside their body, for monitoring by automated systems or medical staff Low-energy cost to maximise battery life Some devices may rely on energy harvesting to communicate Position accuracy high enough to support: 1) in/out bed; 2) in/out bathroom; 3) In front of door (wander prevention) Target cost < 10 eur/resident; < 10 eur/ m² (infrastructure) Remote sensing for respiration monitoring (potential extension) 			
Technical challenge	Technical challenges addressed			
Challenges	Low-energy communication, low-energy positioning, high traffic density volume			
Security	confidentiality, authentication, availability, privacy, user access controls			

Table 4: Use case 3. Description and KPIs

2.1.4 Human and robot co-working

General description	General description				
Name/ Icon	Human and robot co-working				

Description	Already today humans and robots cooperate on tasks in many settings, especially in industrial environments, and this trend is expected to continue and expand in the future. Examples of human and robot co-working include: a surgeon operating on a patient with the help of a high-precision robot operating lasers or other tools; therapeutic robots interacting with patients and carers in hospitals and care homes; autonomous vehicles transporting goods in warehouses and cooperating with human workers; and stand-alone robots or automated industrial machines working alongside human operators in smart factories. A key requirement is maintaining the safety of the human workers, especially in cases where the robots move at high speed and/or operate dangerous tools such as lasers, cutting blades, or welding torches. For this reason, reliability and accurate positioning are critical for this use case. Very low latency may also be needed for some cases, especially those in industrial settings. Since the operation of the robots typically needs to be backed by intelligent algorithms for image processing, navigation, and sensor fusion, this processing must be coordinated with the communication between the robots and the backend such that the needed information arrives at the right time. Relatively high traffic volumes can be needed in cases where complex sensor data such as video streams need to be processed.
Scenario	Factories, operating theatres
Application domain	Adaptive robotized factories, warehouses and logistics (manufacturing tasks), Human-machine interaction in care environments, hospitals and assisted living (robot-assisted and remote surgery)
Geographic scope	Indoor and outdoor
Technical requirer	nents

Attribute	Description	KPI	Comments	
Spectrum	Carrier frequency	2.4 GHz or 3.8 GHz	Depending on if it is licensed or unlicensed	
Traffic model	Maximum number of simultaneous devices	10 devices per task, 1 device / m ²		
	User Experience data rate	5 Mbps	Assuming multiple video streams. If other types of sensors are used, the needed data rate will be lower	
	Uplink/Downlink ratio	Both UL and DL		
UE	Mobility	Stationary		
	Accuracy			
System	Reliability	99.999%		
	End to end Latency	1 ms	Depends on the robot, needs to be fast enough to ensure safety of human workers and accuracy of surgery	
	Traffic volume density	5 Mbps / m²		
Functional requirements				

Functional requirements	 Collect sensor data from internal and external (to the robots) sensors, send it to a backend for processing, and return control data to allow robots and humans to cooperate in performing tasks Ensure safety of human workers in the event of errors or disturbances (e.g. shut down or stop the robots) Ensure accuracy in performing the task 		
Technical challenge	es addressed		
Challenges	High reliability, low latency, coordination of communication and processing, high accuracy positioning		
Security	The main security aspects for this use case concern safety of human workers. In particular, data integrity, authentication, and user access controls are needed. Availability can also be a safety concern if downtime is long enough: how long this is depends on the type of robot but in manufacturing even a brief downtime could be a safety issue as robots may operate at high speeds. In care settings, privacy and confidentiality may be important, depending on the specific data involved (whether it is possible to infer health or other private information about patients from the data).		

Table 5: Use case 4. Description and KPIs

2.1.5 Tracking of goods and real-time inventory

General descript	General description				
Name/ Icon	Tracking of good inventory	s and real time			
Description	RW technology enables evolution in the field of logistics and supply chain. Typically, the companies have manual control on the logistics and supply chain, creating inefficiencies and bottlenecks that can be further improved by new wireless access technology. With improved positioning accuracy and reliability across a massive number of devices, it is possible to have real-time information on the status of each single item of the supply chain, helping with inventory management with a precise location and identification status of the goods, which open new possibilities to make decisions with this information in a real- time basis according to the needs that arise when the users/robots interact with				
Scenario	Warehouses, sales floor, hospitals				
Application domain	Adaptive robotized factories, warehouses and logistics Human-machine interaction in care environments, hospitals and assisted living				
Geographic scope	Indoor				
Technical requirements					
		KPI			
Attribute	Description	Warehouses	Sales floor	Hospitals	Comments

Spectrum	Carrier frequency	868 MHz, 2.4 GHz, 3.8 GHz or 5 GHz		Preferably higher frequencies, which provide better positioning capabilities. Frequencies depends on the possibility to use licensed bands	
Traffic model	Maximum number of simultaneous devices	 1000s of passive or low-power tags (10s per m2) 10s of human or robot workers 	 10000s of passive or low- power tags (100s per m2)¹ 50s customers and store personnel 	100 per m2 ¹ of passive or low power tags	¹ Maximum density estimated for the most stringent areas, assuming that very small objects are bundled together in a box
	User Experience data rate	<1 Mbps			[3GPP3] Maximum data rates for process automation, typical location update messages have small payload
	Uplink/Downlink ratio	Mostly UL			
UE	Mobility	Up to 10 m/s for robots	Up to 2 m/s	Up to 3 m/s	Mostly stationary except for goods being moved by customers / users / personnel
	Accuracy	Better than 0.1 m			
System	Reliability	99.9%			Higher reliability could be required for critical applications in hospitals
	End to end Latency	< 1 s for static or low mobility scenarios < 100 ms for highest speed		[3GPP1]	
	Traffic volume density	10 Mbps/m ²	100 Mbps/m ²	100 Mbps/m ²	Maximum traffic density considering the densest areas and the maximum expected data rates for process automation
		μνν/Π ΠΙνν/Π2			highly dependent

	on the specific sensors and the sensors density in the scenario
Functional requi	rements
Functional requirements	 Determine and monitor the location of each individual item both in static position and in motion Allow users (humans or robots) to access and interact with item tracking data Low-power or passive tags for items, possibly using energy harvesting to communicate The dimensions of the tag must be correct to fit a small object
Technical challen	ges addressed
Challenges	 Massive number of devices for positioning, and low-energy communication Large amount of simultaneous connections Accurate positioning and high mobility support High reliability (for critical environment such an hospitals) Need to cover higher speed mobility (up to 10 m/s) (for warehouses with vehicles moving faster)
Security	The main security requirement for this use case are authentication and user access controls of the data, because most of the data can be related to sensitive information and should be accessed only by authorized staff.

Table 6: Use case 5. Description and KPIs

2.1.6 Electronic labelling

General description				
Name/ Icon	Electronic Labelling			
Description	Electronic labels are used to display of items on sales floors, in warehouses, et paper or LCDs, allowing current device years. RW offer the potential advanta allowing to get rid of the battery – and a a desired feature for location-based info This use case is an excellent example, are utilized by a huge number of ene design protocols and algorithms that sup i.e. power transfer, localization, and co may be less relevant, considering that th shelves, but a change of position should Alternatively to the electronic labels, er for a similar scenario.	dynamic information (e.g. pricing) for ic. Typical display technologies are e- es to operate on batteries for several ages of an energy-neutral design – accurate location information, which is ormation services. where WPT and accurate localization rgy-neutral devices. It is required to oport all three services simultaneously, ommunication. Real-time information e labels are typically attached to static d be detected within several seconds. hergy-neutral sensor nodes will make		

Scenario	Warehouses, manufacturing, workshops, sales floors		
Application domain	Adaptive robotized factories, warehouses and logistics		
Geographic scope	Indoor		
Technical requirer	nents		
Attribute	Description	KPI	Comments
Spectrum	Carrier frequency	ISM 2.4 GHz or 5 GHz	Due to the special protocol needs, this use case may rather use the ISM bands.
Traffic model	Maximum number of simultaneous devices	10000+passivelabels;peakdevicedensity50/m3;average density20/m2	Need to provide power for communications and display updates
	User Experience data rate	Low but could be extended towards video	
	Uplink/Downlink ratio	Mostly DL; uplink needed for ACK	
UE	Mobility	Mostly stationary, but mobile	
	Accuracy	Better than 0.5 m	Positioning to create 3D map of items for human interaction
System	Reliability	99.999% w.r.t. display updates 99% for accurate positioning	Dynamic pricing requires high reliability; not time critical; ARQ can be used
	End to end Latency	 > 10 mins. or more (for display updates) < 10 s for position updates 1 s for real-time human interaction 	
	Traffic volume density	23 kbps	Transmission of a 24bit, 1080p image to 20 devices per m ² with 2 updates per day.
		Estimated net power 12 µW/ESL □ mean net power density is 0.24 mW/ m ² ; peak net density 0.6 mW/ m ³	A small 2.9" e-paper display requires 400 mWs/update within 15" [WS1]; makes 1 Ws/ESL/day at 2 updates/day
Functional require	ments		
Functional requirements	 Passive design of labels to avoid use of batteries Accurate positioning for creating 3D map of scenario for human interaction Accurate positioning for WPT; reciprocity-based beamforming can be used for WPT 		
Technical challenge	es addressed		
Challenges	 Large amount of simultaneous connections Massive number of energy neutral devices 		

	Accurate positioningHigh reliability
Security	Encryption is needed to avoid unauthorized access to devices.

Table 7: Use case 6. Description and KPIs

2.1.7 Augmented reality for professional applications

General descript	ion			
Name/ Icon	Augmented Reality Applications	for Professional		
Description	Augmented reality empowered by energy-neutral display devices such as very light-weight AR-goggles or contact lenses for professional environments such as health care, maintenance, or manufacturing AR glasses need to implement a wide range of functionalities, including at least high-resolution displays, cameras for tracking the environment and the eye movement, and high performance processors for the image processing, while requiring light-weight und ultra-low-power designs for wearability and usability. Those requirements have been prohibiting mass-market adoption till date. This use case illustrates how RW can ease the implementation issues of such AR devices. In particular, it is envisioned (i) to off-load the demanding video-processing to the edge computing infrastructure of RW, exploiting its low-latency, high-data-rate communication links, (ii) to provide power for the AR device using WPT, and (iii) to exploit high-accuracy, real-time positioning to support the AR applications. The use of radio weaves may therefore reduce the cost and complexity of AR devices. However, the initial high cost of the RW infrastructure hints at initial use cases within professional sectors rather than			
Scenario	Manufacturing, workshops, hospitals, care environments			
Application domain	Adaptive robotized interaction in care	Adaptive robotized factories, warehouses and logistics; Human-machine interaction in care environments, hospitals and assisted living		
Geographic scope	Indoor	Indoor		
Technical require	ements			
Attribute	Description	KPI	Comments	
Spectrum	Carrier frequency	ISM 2.4 GHz or 5 GHz; 3.5 GHz		
Traffic model	Maximum number of simultaneous devices	< 10 per 100 m²		
	User Experience data rate	Video streams for uplink and downlink 45 Mbps compressed	Uplink video for environment and eye tracking; compressed data rate is for <i>perceptually transparent</i> 1080p@50fps streams	

		< 3 Gbps uncompressed	
	Uplink/Downlink ratio	Both need cons. rate; estimated 80% for downlink video	
UE	Mobility	< 2 m/s	
	Accuracy	Better than 0.1 m	Positioning and orientation estimation for video augmentation
System	Reliability	99%	Occasional, short outages are tolerable
	End to end Latency	< 10 ms for real-time human interaction	
	Traffic volume density	4.5 Mbps/m ²	Compressed data for <i>perceptually transparent</i> 1080p@50fps streams
Functional requirements			
Functional requirements	 High-rate uplink and downlink to off-load video processing to the infra- structure WPT for energy-neutral design of devices Accurate positioning for video-information augmentation 		
Challenges addressed	 WPT Accurate, re Real-time p Low-power 	eal-time positioning rocessing at edge com / energy-neutral design	puting resources with high UL/DL rates
Security	Security requirements non-repudiation an	ents are less stringent; d privacy.	comparable to UC1: data integrity,

Table 8: Use case 7. Description and KPIs

2.1.8 Wander detection and patient finding

General description		
Name/ Icon	Wander Detection and Patient Finding	
Description	In health and care environments position to focus on care by enabling wander of finding. This gives patients or residents lower risk of accidents. A typical case dementia is wandering off which coull person. Receiving an alert, closing door position of this person can completely se person must still be guaranteed, which applicable in every room (e.g. personal	oning technology can assist providers detection and prevention and patient is more freedom of movement with a se is when someone suffering from d be a dangerous situation for this rs remotely and the knowledge of the solve this problem. The privacy of this means that this system may not be room).
Scenario	hospitals, care environments	

Application domain	Human-machine interaction in care environments, hospitals and assisted living			
Geographic scope	Indoor	Indoor		
Technical requirer	nents			
Attribute	Description	KPI	Comments	
Spectrum	Carrier frequency	2.4 GHz, 868 MHz,	Depending on the used technology	
Traffic model	Maximum number of simultaneous devices	1 device per patient, maximum 2 patients per m ²		
	User Experience data rate	< kbps	Small messages, low data rate, update rates every several seconds, also depending on used technique	
	Uplink/Downlink ratio	Mostly UL		
UE	Mobility	< 7 m/s	Sprinting speed	
	Accuracy	1 m		
System	Reliability	99.9 %		
	End to end Latency	<1s		
	Traffic volume density	< 2 kbps/m² 100 µW/m²	Traffic density [DD1], same comment as above (difficult to define)	
			Power density: [BC1, DD1]	
Functional require	ements			
Functional requirements	 Determine and monitor the location of each patient both in static position and in motion Allow staff to access and interact with the tracking data Low-power or passive tags needed that can easily be worn by a patient without being bothered by it 			
Technical challenge	es addressed			
Challenges	 Low-energy positioning Higher speed mobility (up to 7 m/s) Large environment with many individual rooms 			
Security	confidentiality, authentication, availability, privacy, user access controls			

Table 9: Use case 8. Description and KPIs

General description	n		
Name/ Icon	Contact Tracing and in Large Venues	d People Tracking	
Description	With the recent outbreak of the Covid-19 virus and maybe other illnesses in the future, precise contact tracing could enable companies or events to log unsafe contacts within the company walls and give insights for optimized measures and employee safety. This system can also be used to track people in large venues such as airports, exhibition centres, shopping malls, museums, etc. For example, it is possible to monitor how busy it is in certain places, which offers the opportunity for crowd management. Other options are visitor profiling and search and navigate applications. In this application, the privacy of the individual must also be taken into account, as not everyone wants to be tracked. To do this, for example, passive tags can be used, as these are also economically more interesting. RW offers the possibility to address a large		
Scenario	factories, events, so	chools, hospitals, care e	nvironments, large (public) venues
Application domain	Immersive entertainment for crowds of people; Human-machine interaction in care environments, hospitals and assisted living		
Geographic scope	Indoor and outdoor		
Technical requirer	nents		
Attribute	Description	KPI	Comments
Spectrum	Carrier frequency	2.4 GHz, 868 MHz,	Depending on the used technology
Traffic model	Maximum number of simultaneous devices	< 2 per m ²	
	User Experience data rate	< kbps only for positioning > 1 Mbps for navigation	 Low data rate possible (small messages), update rates every several seconds, also depending on used technique
	Uplink/Downlink ratio	Mostly UL	
UE	Mobility	< 2 m/s, very exceptional up to 10 m/s	Walking (2 m/s) Sprinting (10 m/s)
	Accuracy	< 1 m	
System	Reliability	99.9 %	
	End to end Latency	< 1 s	

2.1.9 Contact tracing and people tracking in large venues

	Traffic volume density	< 2 kbps/m ² only for positioning, otherwise > 2 Mbps/m ² 100 µW/m ² (only positioning)	If the device is also used for navigation, there is a good chance that a battery is present
Functional require	ements		
Functional requirements	 Provide the position and Real-time u If necessary after contant Low-power without beint Privacy must the user equadata is only 	option to record contacts I in motion pdates; more than 1 upda v, it must be possible to u nination or passive tags needed th g bothered by it st be taken into account, uipment (UE) device for p by user choice	s between persons, both in static ate every 2 seconds se the data to avoid more spread hat can easily be worn by a person positioning is preferably done on privacy reasons; Sharing location
Technical challenge	es addressed		
Challenges	 Situations p and simulta Low-energy Large enviro Many fast m Privacy con 	ossible with the need for neous connections positioning and commur onment with many individ noving people cerns	a large amount of (passive) tags nication ual rooms
Security	confidentiality, auth	entication, availability, pr	ivacy, user access controls

Table 10: Use case 9. Description and KPIs

2.1.10 Position tracking of robots and UVs

General description	General description		
Name/ Icon	Position Tracking of Robots and UVs		
Description	In adaptive robotized factories and Industry 4.0 more and more robots and Unmanned Vehicles (UVs) are entering the factory floor and warehouses. The knowledge of the position of these nodes can improve plant floor productivity, increase warehouse visibility and optimize field and supply chain operations. On reconfigurable factory floors tracking the position of equipment will be essential. Typically robots and UVs, or even Unmanned Aerial Vehicles (UAVs) are equipped with a battery implying that these devices can be used as a class 4 and 5 device. This application requires a low latency if both the location must be known and, if necessary, control signals must be sent in real time to moving objects.		
Scenario	factories, hospitals, care environments		
Application domain	Adaptive robotized factories, warehouse	es and logistics	

Geographic scope	Indoor		
Technical requirements			
Attribute	Description	KPI	Comments
Spectrum	Carrier frequency	2.4 GHz, 868 MHz 3.8 GHz	Depending on the used technology
Traffic model	Maximum number of simultaneous devices	< 100 per m ³	
	User Experience data rate	Up to 10 Mbps	Defined by 3GPP (controls included) [FA2] [TA1]
	Uplink/Downlink ratio	Both, more UL	Control signals can be applied via the downlink
UE	Mobility	< 10 m/s	
	Accuracy	Better than 0.1 m	
System	Reliability	99.9999 %	Defined by 3GPP [FA2]
	End to end Latency	< 10 ms	
	Traffic volume density	50 Mbps/m ²	
Functional requirements			
Functional requirements	 Determine and monitor the location of the robots or UVs both in static position and in motion Offer the possibility to derive optimizations from the data Low-power devices needed for small robots or UVs 		
Technical challenges addressed			
Challenges	 High positioning accuracy Higher speed mobility than expected High density of devices possible and traffic volume Low latency desired High reliability 		
Security	authentication, avai	lability, user access conf	rols, non-repudiation

Table 11: Use case 10. Description and KPIs

2.1.11 Location-based information transfer

General description		
Name/ Icon	Location-based Information Transfer	
Description	Information can be given to people depe or events people can get information ab are standing in front of, the nearest toile	nding on where they are. In museums out the road to follow, the object they t, the best evacuation route in case of

	emergency etc. For example, visitors can receive a bracelet that monitors their position in relation to an object. Once in the presence of the object, they can get information (sound, video), whether or not via a smartphone or other device. Everything could also be done from a smartphone with additional electronics.
	Other commercial applications can be found, for example in retail to give information of certain products, where position tracking tags are attached to products as they can change places. For example, active information can be provided in connection with allergies and food products. With this application, devices from all classes can be used depending of economic reasons or availabilities (such as a smartphone). Furthermore, the privacy of the user must also be taken into account.
Scenario	hospitals, care environments, museums, schools, events, public places, retail
Application	Immersive entertainment for crowds of people; Human-machine interaction in

care environments, hospitals and assisted living

Geographic scope Indoor and outdoor

domain

Technical requirements									
Attribute	Description	KPI	Comments						
Spectrum	Carrier frequency	2.4 GHz, 5 GHz	868 MHz and , 3.8 GHz also possible						
Traffic model	Maximum number of simultaneous devices	< 10 per m ³	Assuming to put a tag on both the object and the person/smartphone						
	User Experience data rate	Video streams for downlink possible (10 Mbps)							
	Uplink/Downlink ratio	Mostly DL							
UE	Mobility	< 2 m/s	walking						
	Accuracy	Better than 0.5 m							
System	Reliability	99 %	Reliability may be lower for some use cases						
	End to end Latency	<1s	In emergency situations						
	Traffic volume density	50 Mbps/m ²							
Functional require	ements								
Functional requirements	 High-rate downlink for video streaming Low-power or passive tags needed that can be put on an object to get information from Accurate Positioning and tracking of the person or smartphone must be possible 								
Technical challenge	es addressed								
Challenges	 Situations possible with the need for a large amount of tags Low-energy positioning and communication Possibility for high data rate video streaming 								
Security	confidentiality, auth	entication, availability, pr	ivacy, user access controls						

Table 12: Use case 11. Description and KPIs

2.1.12 Virtual reality home gaming

General description	on		
Name/ Icon	Virtual Reality Hom	e Gaming	
Description	In recent years, vi gaming, both in priv that provide VR gam Virtual reality gamin made by Oculus, controllers. Other treadmills to provide various parts of the Because of the pos concern in VR gam teleportation, that instantaneously tele even with the use of sickness if there is movements, for exa game performance for certain genres of other requirements, is connected wirele graphics processing	rtual reality has bee rate homes on consol- ning experiences. In the ng typically makes under HTC, and Sony (for accessories are a e a sense of moveme body. The player is state of such techniques, port too much delay or jitte apple moving their he can also be affected of games such as sho high data rates may be part then streams high	come a growing trend within video les and PC, and in dedicated venues this use case we focus on home use. ise of a headset, for example those r Playstation), along with handheld available, such as omnidirectional ent, and motion sensors that attach to ng motion sickness, latency is a key ement paradigm in current games is atic (within a small area) but can ace within the game world. However, players can still experience simulator ter in seeing the response to smaller ead, or moving their body in place. In- by too much delay or jitter, especially poters or fighting games. In terms of be needed if the virtual reality headset gaming console or PC that performs igh definition video to the headset.
Scenario Application	Home (standalone) Smart home	villa, townhouse, or a	partment).
domain			
Geographic scope			
Technical requirer	nents		
Attribute	Description	KPI	Comments
Spectrum	Carrier frequency	ISM bands, preferal 5 GHz	bly
Traffic model	Maximum number of simultaneous devices	1 device / m ²	This includes VR headset(s), gaming console or PC, controllers etc. One player with 3-4 connected devices per 4 sqm.
	User Experience data rate	150 Mbps	Several UHD video streams (one per eye, so two per player) plus game data. Video streams could be over the internet or local (from console/PC to VR device)

	Uplink/Downlink ratio	Both, mostly DL						
UE	Mobility	< 2 m/s	User may move around within a small area, but not move from place to place					
	Accuracy	Better than 0.1 m	Accuracy depends on if we include gesture recognition, and if so what kind (e.g. gestures with fingers vs. entire arm)					
System	Reliability	99%						
	End to end Latency	< 1 ms for VR and haptic controls, < 100 ms for other game data	VR needs low latency to avoid motion sickness					
	Traffic volume density	50 Mbps / m ²	Only headset and console/PC require high data rate, so it is not data rate x number of devices.					
Functional require	ments							
Functional requirements	 Smooth stree trol data, wit Several play Online play sion (of cont Hardware cont 	 Smooth streaming of ultra-high definition video alongside haptic control data, with minimal or no motion sickness Several players supported at once Online play supported, including for game types requiring high precision (of control) and low latency, such as FPS and fighting games. 						
Technical challenge	es addressed							
Challenges	 High traffic v High peak ra Low latency Real-time pr High position 	volume/sum rate ate / processing, edge computing support pring accuracy						
Security	Security is not a major concern for this use case, however players' privacy should be protected and confidentiality of players' personal and payment data should be ensured. Authentication and user access controls may be needed to provide parental controls to keep inappropriate content from children. Breaches in availability may lead to negative user experiences but are otherwise not critical for this use case.							

Table 13: Use case 12. Description and KPIs

2.1.13 Smart home automation

General description								
Name/ Icon	Smart Home Automation	(((.						

Description	A proliferation of products have appeared on the market in recent years, offering to automate all aspects of users' homes, including lighting, security cameras, locks, fire alarms, vacuum cleaners, watering systems for the garden, heating and cooling, and entertainment in the form of connected speakers and TVs. Home assistants such as Google Nest and Amazon Alexa have also been developed that are able to control this proliferation of home automation devices via voice commands. Current devices use a range of IoT protocols, most notably WiFi, ZigBee and Z-Wave, and Bluetooth, including Bluetooth low energy (BLE). For home automation sensors and actuators, data rates and latency are generally not major obstacles, however for battery powered devices energy usage can be of concern. While covering the existing types of devices is not overall a challenging use case for RW, doing so at a price point attractive to home users may be more difficult. In addition to this, the use of energy neutral devices coupled with RW opens up new opportunities for home automation. An array of small, cheap sensors and actuators that do not require a power source but can instead harvest energy wirelessly from a RW array allows for home sensors to be deployed at a new scale. For example, relatively dense arrays of energy neutral sensors could be deployed throughout the home to provide a three-dimensional map of quantities such as temperature, light, sound, and air quality, thus opening the possibility for smarter and more seamless actuation. This also relies on the localisation and high accuracy positioning capabilities of RW, possibly also coupled with an environment learning backend.
Scenario	Home (standalone villa, townhouse, or apartment).
Application	Smart home
domain	

Geographic scope Mostly indoor, some outdoor

Technical requirements

Attribute	Description	KPI	Comments								
Spectrum	Carrier frequency	ISM bands: 5 GHz (maybe 2.4 GHz)	Higher frequencies will positively impact the positioning accuracy as well and may help to reduce the size of passive (i.e., energy- neutral) nodes.								
Traffic model	Maximum number of simultaneous devices	5 device / sqm (non- energy-neutral) Up to 100 / sqm (energy-neutral)	20 square metres for a studio apartment up to say 200 square metres for a family villa								
	User Experience data rate	50 kbps	50kbps for the highest data rate devices, e.g. security cameras. Most will use less, i.e. infrequent sensor updates and commands to actuators								
	Uplink/Downlink ratio	Mostly UL for data	For positioning and WPT the DL energy may be bigger.								
UE	Mobility	0 m/s	For tracking a person and adjusting lights and/or music volume, walking speed (<2m/s) may be sufficient.								

	Accuracy	Better than 0.1 m for 3D mapping of a sensed quantity.	The required positioning accuracy depends on the chosen frequency.						
System	Reliability	99%							
	End to end Latency	100 ms	Most home sensors can tolerate more than this but some, e.g security cameras, may need a lower delay at times (wher actively streaming)						
			Adaptive scheduling of energy transfer may be implemented for devices requiring much energy at certain times.						
	Traffic volume density	< 1 kbps / m²	Depends on the device mix.						
Functional require	ments								
Functional requirements	 Connection of smart home sensors and actuators, e.g. security systems, fire alarms, smart lights, smart appliances, watering systems and monitors for gardens 3D mapping of a sensed quantity (e.g., temperature, light, sound volume, humidity, air quality) through a combination of positioning and sensing with a large deployment of energy-neutral sensor nodes Low energy usage Hardware cost reasonable for home users Environment learning 								
Technical challenge	es addressed								
Challenges	 Low-energy Low-energy Energy-neut WPT "Massive" nu High position 	gy communication gy positioning eutral devices ' number of devices ition accuracy							
Security	The most important concern for this use case is privacy as it concerns the operation of people's homes. Tied to this, confidentiality of sensor and actuator data should be provided. Authentication and user access controls should be implemented to prevent unauthorised operation of home appliances, security systems, etc.								

Table 14: Use case 13. Description and KPIs

2.2 Use cases classification

Analysing the thirteen use cases listed before, it was detected that some use cases show similarities, considering the technical challenges the system has to overcome to implement the use cases and also considering the intrinsic functionalities of the applications that the use cases are based on.

Therefore, use cases have been classified into functional families, providing an overview of the whole range of applications we are covering, as well as by technical challenges which give us a quick insight about the main clusters of use cases which are dealing with similar technical challenges.

2.2.1 Functional classification

Three main families have been identified among the thirteen uses cases:

- Location-based information applications: this family of use cases include applications whose main functionality is relying on positioning and tracking position of connected devices. This functionality provides the infrastructure the capability to provide relevant information to users according to their position in space.
- **Monitoring and real-time applications**: the use cases gathered in this family are relying on real-time operation and the possibility of monitoring different processes or states that are collected, most likely, with low energy or zero energy devices.
- **AR/VR applications**: extended reality applications have been growing in the last years, becoming an important trend for social and economic applications. This family gathers use cases where VR/AR functionality is in focus, connecting unnoticeably virtual elements with the real world.

Each use case have been classified in one of the categories, according to its main functionality, Table 15 shows which use cases pertain to each category:

Location-based information systems and services	Monitoring and interaction in real time	AR/VR services
 Tracking of goods and real-time inventory (5) Electronic labelling (6) Wander detection and patient finding (8) Contact tracing and people tracking in large venues (9) Position tracking of robots and UVs (10) Location-based information transfer (11) 	 Real-time digital twins in manufacturing (2) Patient monitoring with inbody and wearable sensors (3) Human and robot coworking (4) Smart home automation (13) 	 Augmented reality for sport events (1) Augmented reality for professional applica- tions (7) Virtual reality home gaming (12)

Table 15: Use cases application type classification

It is important to note that although the use cases have been classified into one of the families, they can share similarities with any of the other families. This concept is illustrated in Figure 2, which shows the three use cases families by means of three hexagons and the intersections of the hexagons show use cases which have similarities not only with the family it belongs to, but also with any of the other families, depending on the functional requirements that it has.

Figure 2: Use cases application type classification

2.2.2 Challenges classification

From the use cases KPIs several representative technical challenges have been identified. The list contains all the technical requirements which are more demanding for each use case considering its KPIs:

- A. Massive number of devices/connections
- B. High traffic volume/sum rate
- C. High peak rate
- D. Higher mobility speeds (up to 7-10 m/s)
- E. Deployment in open or complex environments
- F. High reliability
- G. Low latency
- H. High positioning accuracy
- I. Low-energy communication
- J. Low-energy positioning
- K. Energy-neutral devices and WPT
- L. Real-time processing, edge computing support

Use case ID	Use case name	Technical challenges											
		A	В	C	D	E	F	G	H		J	K	L
1	Augmented reality for sport events	Х	Х		Х	Х		Х					
2	Real-time digital twins in manufacturing	x	х		x		x	x	x				

D1.1 – Use case-driven specifications & technical requirements and initial channel model

Use Use case name		Technical challenges											
Case ID		Α	A B C I		D	Ε	F	G	Η		J	Κ	L
3	Patient monitoring with in-body and wearable sensors		х							х	x		
4	Human and robot co-working						Х	Х	Х				
5	Tracking of goods and real-time inventory	x			х		x		х	х	x	х	
6	Electronic Labelling	X				Х	Х					Х	
7	Augmented Reality for Professional Applications			х				х	х	х		Х	х
8	Wander Detection and Patient Finding				x	x					x		
9	Contact Tracing and People Tracking in Large Venues	X				х				х	x		
10	Position Tracking of Robots and UVs	X	X	X	X		Х	X	X				
11	Location-based Information Transfer	X	Х	Х						Х	X		
12	Virtual Reality Home Gaming		X	Х				Х	Х				Х
13	Smart home automation	X							X	X	X	Х	

Table 16: Use cases. Challenges identified

From the previous list it is possible to locate several of the technical challenges to each of the use cases. This can be depicted in the next table:

Cluster 1	Cluster 2	Cluster 3	Cluster 4
High traffic volume, low latency	High reliability, low latency, high mobility	Low energy devices, massive number of devices, high accuracy positioning	Mobility, complex f environments, positioning, low energy
 Augmented reality for sport events (1) Augmented reality for professional applications (7) Virtual reality gaming (12) 	 Real-time digital twins in manufacturing (2) Human and robot co-working (4) Position tracking of robots and UVs (10) 	 Tracking of goods and real time inventory (5) Electronic labelling (6) Smart home automation (13) 	 Patient monitoring with in-body and wearable sensors (3) Wander detection and patient finding (8) Contact tracing and people tracking in large venues (9) Location-based infor- mation transfer (11)

Table 17: Use cases challenges classification

This part of the study shows similarities that use cases may have, making it possible to create clusters of use cases sharing technical challenges. Thereby providing input to WP2 when dimensioning the network depending on the characteristics of the use cases which are intended to be covered. Not all the challenges would be present at the same time, so it is possible to adapt the infrastructure depending on the use cases intended to be implemented.

Cluster 1: Augmented and Virtual Reality:

The first cluster contains the AR and VR use cases, sharing as their primary requirements the large traffic volume and high sensitivity to delay or latency which are essential for an adequate user experience quality.

Figure 3: Challenges cluster 1. Augmented and virtual reality

Cluster 2: Robots and Industrial Systems

The second cluster largely corresponds to the ultra-reliable and low-latency communication application class in 5G, with an emphasis on reliability and delay sensitivity. However, for the new 6G use cases, we also see a demand for mobility support and positioning accuracy which makes the cluster more complex, gathering many challenges into the same group of use cases.

Figure 4: Challenges cluster 2. Robots and industrial systems

Cluster 3: Massive Positioning and Sensing

The third cluster concerns massive positioning and sensing, with use cases that make heavy use of large numbers of energy-neutral devices and their accompanying need for a high degree of energy-efficiency, consisting mainly of class 1 and class 2 devices.

Figure 5: Challenges cluster 3. Massive positioning and sensing

Cluster 4: Tracking and Location Based Services

Finally, the fourth cluster is related with those use cases where there is a high degree of mobility, often in complex environments with a strict requirement on positioning accuracy to provide location-based services.

Figure 6: Challenges cluster 4. Tracking and location-based services

Chapter 3 Technical requirements

The RW infrastructure needs to meet a set of technical requirements in order to serve future interactive applications. We classify devices used in the foreseen applications into five classes based on their functional capabilities and power needs. Furthermore, we divide the technical requirements into functional requirements, explaining the general technical features demanded by those applications, and quantitative requirements, that cast those demands into KPIs and ultimately specify the necessary physical structure of RW.

3.1 Device classification

This section defines different device classes that are expected to be encountered when investigating requirements for different use cases and the targeted device classes with their specific computational capabilities. The five classes range from energy-neutral devices without any computation capabilities in (Class 1) to externally powered devices with substantial computation capabilities (Class 5) with a grading in between.

<u>Class 1:</u>

Energy-neutral devices, e.g., tags for tracking objects, that are supplied with RF energy through WPT. In the uplink, information is transmitted via backscatter communication only.

<u> Class 2:</u>

Energy-neutral devices, with the capability of energy-storage and low power needs that only use backscatter communication in the uplink. A typical example could be an in-body sensor.

<u> Class 3:</u>

Battery-powered devices charged through mains-power or energy-neutral devices with energy storage charged wirelessly via WPT, with moderate functional capabilities, capable of actively transmitting radio signals. Energy-neutral AR glasses are a representative example of this device class.

Class 4:

Battery-powered, mobile end-user devices with significant energy-storage, computation, and communication capabilities (e.g., smartphones, VR goggles, etc.).

<u> Class 5:</u>

Mains-powered devices that are effectively not limited by energy constraints and have substantial computation and communication capabilities. Big machines and (stationary) production robots are typical examples.

3.2 Functional requirements

The RW infrastructure will meet a range of functional requirements that are demanded through various use cases.

RW enables **wireless connectivity** with high throughput and ultra-reliable low latency through its distributed infrastructure, where a paradigm-shift is made towards cell-free, user-centric system architectures. Massive machine type communications (mMTC) will be achieved through wirelessly powered energy-neutral devices capable of backscatter modulation in the uplink.

Various use-case scenarios will leverage on the important feature of **localization and tracking**, enabling interactive and more immersive user-experiences, tracking of people and goods in realtime and the reliable, autonomous navigation of UAVs. The respective localization and tracking requirements vary among the different device classes: Devices of classes 1 and 2 need to be located via backscattered signals. Class 2 devices will mostly be static, while Class 1 devices may potentially be mobile (e.g., tags attached to people or goods). Devices of classes 3 through 5 may use active communication, potentially dedicated to localization uses. Class 3 and Class 5 devices will mainly be static, nevertheless, localization is desired for mapping the device locations, while Class 4 devices are typically mobile. Class 4 and Class 5 devices will possibly feature on-device localization processing.

The technical specifications of RW will enable unprecedented **WPT** capabilities: The distributed architecture and operation of RW panels in the array near-field allows to coherently focus radiated power at desired focal points, reaching high power levels at the positions of remote devices, while being largely uncorrelated elsewhere. This allows to keep the overall exposure to electromagnetic radiation low in the environment of the RW panels while enabling the operation of energy-neutral devices at exceptionally high power levels. This will eventually allow operation of massive amounts of battery-less devices with a virtually unconstrained lifespan as well as enabling a new generation of energy-neutral devices with high computational and functional capabilities.

The RW infrastructure will also implement powerful **sensing** capabilities: Environmental awareness is achieved through mapping the environment and its channel properties. Objects and people can be localized and tracked passively (i.e., without being tagged by a dedicated device), which can be exploited for detecting intruders or distance bounding for secure access.

Edge processing will be leveraged by the distributed architecture to off-load the computational burden from individual devices and supply them with storage resources, while achieving ultra-low latencies. Eventually, it allows the realization of a range of services through RW, e.g., video processing for low power AR/VR devices, serving as infrastructure for federated learning, position estimation and tracking, as well as environment mapping.

3.3 Quantitative requirements

The use cases defined in Chapter 2 impose different technical requirements on the RW infrastructure. The individually defined use cases show a range of KPIs that not only define the needs of RW, but can be seen as ultimate requirements that have to be met by any 6G infrastructure in order to serve the defined use cases.

As **carrier frequencies**, the ISM bands around 900 MHz, 2.4 GHz and 5 GHz will be targeted primarily. For several indoor use cases, the licensed bands around 3.5 GHz are considered, if they are available for use.

The **device density**, i.e., the number of devices per unit area in 1/m², is predicted to range up to 100 for use cases where a massive number of devices are deployed. This is the case in the field of logistics, where large numbers of goods are tracked, or in Industry 4.0 environments where many processes and machines are digitally monitored and unmanned vehicles (UVs) or robots have to be tracked and orchestrated. A massive deployment of energy-neutral sensors, combined with the positioning abilities of the RW infrastructure, will enable simultaneous acquisition and three-dimensional mapping of a sensed quantity (e.g., temperature or humidity). This enables cost-effective, battery-less and, therefore, sustainable monitoring of a sensing quantity and its spatial distribution, which may be of interest for future smart homes.

A high **maximum number of devices** that have to be served simultaneously is demanded by those use cases having either a high device density or a large coverage area as, for instance, use cases 1 and 9, where large venues have to be covered.

For many use cases, the **user experience data rate** lies below 10 Mbps, where a massive number of devices may be served, but individual devices (e.g., sensors or electronic shelf labels) have no need to communicate large amounts of data. The situation is different for use cases where one (see use case 11) or several (see use case 12) video streams to a single user device have to be accomplished simultaneously. Use case 7 may need the highest user experience data rate by far: The proposed infrastructure will enable the operation of energy-neutral AR glasses by shifting the energy-hungry computations associated with AR to the RW infrastructure. This leaves AR glasses at a very low energy consumption, but also limits their computational capabilities, such that the

captured video has to be streamed either uncompressed (3000 Mbps) or compressed at a low compression rate (45 Mbps) to the infrastructure.

Use cases with either a few devices communicating at a high data rate (see use cases 11 and 12) or use cases communicating at a low data rate with a massive amount of devices (see use cases 5, 6, 10 and 2) exhibit a high **traffic volume density**, i.e., a high data rate provided per unit area in Mbps/m². The former of these dominantly show download traffic, while upload traffic is dominant among the use cases of the latter group, involving tracking of people and goods.

Two KPIs address the positioning capabilities of RW: The **mobility** of any device is largely divided among the use cases into walking speed (2 m/s) and driving speed (10 m/s). Furthermore, we target a **positioning accuracy** of 0.1 m for many of the defined use cases which will be achieved through exploiting both the available bandwidth and the ultra-large aperture of the RW panels.

To supply energy-neutral devices with power wirelessly imposes requirements on the WPT capabilities of the infrastructure. Being battery-less, massive numbers of these devices may be permanently integrated in the environment (see use cases 6 and 13) without maintenance costs, but a high **power density**, i.e., RF power available to harvest per unit area in mW/m², has to be provided to power them up.

The operation of UVs in Industry 4.0 environments (see use case 10 and use case 5) demands the highest **reliability**, or lowest packet loss rate, respectively, of the envisioned use case scenarios [FA2]. Use cases involving process automation demand a packet loss rate smaller than 10^{-5} (see use cases 2 and 4) [MG1]. Furthermore, these use cases may demand maximum latencies as low as 1 ms.

The KPIs for each use case are outlined in Table 18, where the numbering of the use cases is defined as in Chapter 2:

- 1. Augmented reality for sport events
- 2. Real-time digital twins in manufacturing
- 3. Patient monitoring with in-body and wearable sensors
- 4. Human and robot co-working
- 5. Tracking of goods and real-time inventory
- 6. Electronic labelling
- 7. Augmented reality for professional applications
- 8. Wander detection and patient finding
- 9. Contact tracing and people tracking in large venues
- 10. Position tracking of robots and UVs
- 11. Location-based information transfer
- 12. Virtual reality home gaming
- 13. Smart home automation

Key	Use Case												
Indicator	1	2	3	4	5	6	7	8	9	10	11	12	13
Carrier frequency (GHz)	2.4 5+	2.4 3.8	0.9 2.4 5+	2.4 3.8	0.9 2.4 3.8 5+	2.4 5+	2.4 3.8 5+	0.9 2.4 3.8 5+	0.9 2.4 3.8 5+	0.9 2.4 3.8 5+	2.4 5+	5+	2.4 5+
Device density (per m ²)	2	100	2	1	100	20	0.1	2	2	100	10	1	100
Maximum number of simultaneous devices	10k	100 0	20	10	50k	10k	10	50	10k	500	100	2	10k

Key						U	se Cas	se					
Performance Indicator	1	2	3	4	5	6	7	8	9	10	11	12	13
User experience data rate (Mbps)	5	1	1	5	<1	≪1	45 / 300 0	<1	1	10	10	150	0.5
Dominant traffic direction	DL	Bot h	UL	Bot h	UL	DL	DL	UL	UL	UL	DL	DL	UL
Mobility (m/s)	10	10	1	0	10	2	2	7	2	10	2	2	0
Positioning Accuracy (m)	0.5	0.1	1	-	0.1	0.5	0.1	1	1	0.1	0.5	0.1	0.1
Reliability (packet loss)	10 ⁻³	10 ⁻⁵	10-4	10 ⁻⁵	10 ⁻³	10 ⁻⁵	10 ⁻²	10 ⁻³	10 ⁻³	10 ⁻⁶	10 ⁻²	10 ⁻²	10 ⁻²
End to end latency (ms)	20	1	200	1	100	100 0	10	100 0	100 0	10	100 0	10	100
Traffic volume density (Mbps/m ²)	10	20	10	5	<10 0	<0.1	4.5	<1	2	50	50	50	0.1
Power density (mW/m ²)	-	-	<1	-	-	0.25	>10	0.1	0.1	-	-	-	0.25

Table 18: Key performance indicators for each use case.

3.4 System Services

The system services that provide the corresponding backbone for the use cases are the **infrastructure for federated learning** allowing for cooperation between different devices and the distribution of computation resources. **Environment mapping** and **localisation and tracking** provide the background for all position related use cases and applications, while **edge processing and storage** is essential to achieve a low latency where required and save bandwidth by storing data close to the sources without unnecessary transmissions. Each service needs to tackle specific technical challenges detailed in Chapter 2 which is highlighted in the table below. The services are analysed in terms of the importance of performance characteristics such as delay sensitivity and energy efficiency shown in Figure 7.

Table 19 lists the services and their affiliation with the respective application domains defined in Chapter 1 as well as the technical challenges that were already defined in Chapter 2:

- M. Massive number of devices/connections
- N. High traffic volume/sum rate
- O. High peak rate
- P. Higher mobility speeds (up to 7-10 m/s)
- Q. Deployment in open or complex environments
- R. High reliability
- S. Low latency
- T. High positioning accuracy
- U. Low-energy communication
- V. Low-energy positioning
- W. Energy-neutral devices and WPT
- X. Real-time processing, edge computing support

D1.1 – Use case-driven specifications & technical requirements and initial channel model

Service	Service name		ppli don	catio nain	n				Те	chni	ical d	hall	enge	s			
		А	В	С	D	A	В	С	D	E	F	G	Н	I	J	K	L
1	Infrastructure for Federated Learning Over Wireless Communications	x		x		x	x		x					x			x
2	Environment Mapping	Х	Х	Х	X				X	Х			Х				Х
3	Localisation and tracking	x	x	x	x	х			x	x		х	x		х		Х
4	Edge Processing and Storage	x	x	x	x	x	x	x			x	x					х

Table 19: System services list and their corresponding technical challenges and application domains

Figure 7: System services and corresponding importance of performance characteristics.

3.4.1 Infrastructure for federated learning over wireless communications:

General description								
Name	Infrastructure for federated learning over wireless communications							
Description	Federated learning is a form of distributed learning where multiple agents collaborate in training a global model that is stored at a central parameter server. The agents have access to private training data, but these data are not shared with the server: only the gradient updates computed based on the local data are shared. Federated learning enables applications such as face detection/recognition and next-word prediction without compromising the user privacy or consuming bandwidth/battery power. Information from different sensors can be processed without communicating the real data. Developing infrastructure to support federated learning is essential.							

Scenario	Privacy-sensitive data traffic. Consider for example, a network of camera- equipped devices that have access to video streams or recordings (e.g., in a public area), and where these streams must not be shared with anyone, yet the network should be able to use them to learn a global model. Another example is in text prediction, where a network of devices wants to jointly learn a language model with each device having access to text written by its user; however, these texts themselves must not be shared with anyone. Further examples are natural language processing (including language modeling and sentiment learning), autonomous vehicles that adapt to their environment (i.e., traffic models can be learnt without receiving the actual movement of the vehicles), health risk management with wearable devices (i.e., learning behavior models without knowing data from specific patients), smart homes learning models based on local training by sensors located at homes or surveillance applications.						
Application domain	A, C						
Geographic scope	Indoor and outdoor						
Technical requirer	nents						
Attribute	Description	KPI	Comments				
Spectrum	Carrier frequency	< 6 GHz					
Traffic model	Maximum number of simultaneous devices	~100	rough estimate, emerging applications may have much higher requirements				
	User Experience data rate	-	the connection between rate and user experience is very indirect for this use case				
	Uplink/Downlink ratio	0.5	potentially higher if multicasting is used on downlink (all agents receive the same model)				
UE	Mobility	Indoor: < 2 m/s Outdoor: up to 110 km/h					
	Accuracy	-					
System	Reliability	99 %	not critical				
	End to end Latency	-	not critical				
	Traffic volume density	 125 kbits/s/m² for low end scenario 1 Mbit/s/m² for high demand scenarios 	These numbers correspond to 1/8 device per m ² , 1 million parameters per sec for low end scenario and 8 million parameters for high demand scenarios				
Functional require	ments						
Functional requirements	 Each UE should be capable of doing local learning. It should be able perform required computations within predetermined time limits. Battery should be capable to support the power requirements. Servers/APs should be able to update the model quickly by processing the updated information received from distributed nodes. 						
Technical ch	allenges addressed						
Challenges	Real-time processing and edge computing support						

	 Support large number of devices. Higher mobility speeds to support vehicular networks. Low-energy communication at the UEs to save battery
Security	Privacy and confidentiality are main issues, as eavesdropping could facilitate deep gradient leakage techniques, compromising the confidentiality of agent's private training data.

Table 20: System service 1. Description and KPIs

3.4.2 Environment mapping

General description	n					
Name	Environment mappi	ing				
Description	Many of the use cases and possibly also the radio infrastructure itself rely on having a map of the physical environment. This includes features such as the dimensions of the room(s), objects and fixtures that can affect the channel quality (e.g., through shadowing) and the locations of the service points ¹ (SP). This information can be complemented by a map of channel quality learned over time which can be combined with user mobility patterns to give a prediction of future channel quality to each SP. For applications with mobile users, the environment map allows the system to determine where the user is in relation to important environment features. Environment mapping is especially useful in combination with localisation and tracking, as this gives a complete mobility model for the user devices.					
Scenario	Improved proactive coverage. Consider the scenario of a channel in non-line- of-sight (NLOS) condition. By employing a learned environment model proactive resource allocation is possible for dynamic scenarios where devices move in and out of NLOS. Making use of multipath propagation to reach the device is expected to allow keeping a basic level of connectivity. Base stations that are known to allow no coverage in specific regions can make all of their resources available elsewhere					
Application domain	All					
Geographic scope	Indoor and outdoor					
Technical requirer	nents					
Attribute	Description	KPI	Comments			
Spectrum	Carrier frequency	3.8 GHz, 5 GHz	Higher frequencies can give a more accurate map, but it may be useful to map at each frequency if the environment is combined with learned channel information, as this will differ by frequency band.			
Traffic model	Maximum number of simultaneous devices	-	Not relevant, since the map is of the environment itself, not the users.			
	User Experience data rate	-	While we do not have a data rate as such, we will instead need some signals to be sent and			

¹ Service point is a distributed node capable of serving one or multiple user equipment and applications. RW infrastructure terminology will be further elaborated in deliverable D2.1.

			received by the SPs, similar to positioning for users. How often this needs to be done depends on how quickly the environment changes, e.g. with mobile objects such as vehicles.		
	Uplink/Downlink ratio	Both			
UE	Mobility	10 m/s	If there are moving elements in the environment, such as vehicles, the map needs to update as they move.		
	Accuracy	0.1 m	Depending on the employed environment model the accuracy might be defined differently compared to agent localisation.		
System	Reliability	99%			
	End to end Latency	0.5 s	For moving environments. For static environments this can be much longer.		
	Traffic volume density	-			
Functional require	ements				
Functional requirements	 Create a manual physical spatial mobility and 	ap with the locations of S ace, and objects and othe channel quality.	SPs, dimensions and shape of the er fixtures that are relevant for use		
Technical ch	allenges addressed				
Challenges	 High mobility speeds Deployment in open or complex environments High positioning accuracy Real-time processing and edge computing support 				
Security	Security is not a ma application data. T where the layout o information, such a	ajor concern for this serv he main concern is pri f the physical environm s in a home, factory, or c	ice as it does not handle sensitive vacy and confidentiality in cases ent may be personal or sensitive are environment.		

Table 21: System service 2. Description and KPIs

3.4.3 Localisation and tracking

General description									
Name	Localisation and tracking								
Description	An important wireless application complementing communications is localisation and tracking of radio devices. Depending on the device class and possibly the environment model, signal models and motion models for the tracking case, the employed algorithms need to be able to cope with adverse and diverse environment conditions. While localisation generally deals with static devices or at least snapshot-level processing, a change in the environment can lead to strong channel variations and the necessity to exploit NLOS propagation paths or temporarily switch to a different base station. For tracking the device movement introduces changes in the channel requiring								

D1.1 – Use case-drive	en specifications & tech	nical requirements and init					
	highly flexible algo specific use cases (highly flexible algorithms to ensure that the required quality constraints for specific use cases can be met.					
Scenario	Location-aware tran either static or dy transmission. For the to power the device WPT by exploiting prediction of motio emptive switching c	Location-aware transmission of power. Consider an arbitrary environment with either static or dynamic devices requiring data transmission or power transmission. For the static case knowledge of the device location is necessary to power the device, where combination with environment map can improve WPT by exploiting multiple propagation paths. Assuming device movement prediction of motion can enable continuous level of service, e.g., by pre- emptive switching of base stations					
Application domain	All						
Geographic scope	Indoor						
Technical requirer	nents						
Attribute	Description	KPI	Comments				
Spectrum	Carrier frequency	3.8 GHz, 5 GHz	Higher frequencies can give more accurate positions as for the case of environment mapping.				
Traffic model	Maximum number of simultaneous devices	1 - 100 per m ³	Depends on the scenario and mobility of the devices. Possible upper limit given by strongly varying channel conditions due to the devices.				
	User Experience data rate	-	No actual data rate but rather the number of pilot signals needed for estimation and the frequency of resending these pilots is the key aspect.				
	Uplink/Downlink ratio	1	Both are equally important.				
UE	Mobility	0 m/s - 10 m/s	Devices can be static or dynamic, depending on device class and environment.				
	Accuracy	< 0.1 m					
System	Reliability	99%					
	End to end Latency	1 ms - 1 s	A low latency is required in location critic applications such as automatic access and for UVs.				
	Traffic volume density	-					
Functional require	ments						
Functional requirements	• Create a map containing mobile device positions relative to the SPs, possibly also including map related quantities that can be estimated without the map such as channel quality.						
Technical ch	nallenges addressed						
Challenges	 Massive nur High mobility Deployment High positio High trackin 	 Massive number of devices High mobility speeds Deployment in complex scenarios High positioning accuracy High tracking accuracy 					

	Low latency for tracking applicationsLow-energy positioning
Security	Security could be a concern regarding broadcasting and storage of user data as well of movement profiles for specific users. Especially devices from Class 1, 2 and 3 will not have computation capabilities. The localisation task needs to be performed at the infrastructure.

Table 22: System service 3. Description and KPIs

3.4.4 Edge Processing and Storage

General description	on					
Name	Edge processing ar	nd storage				
Description	Diverse requirements are expected for latency as well as throughput and bandwidth. Edge processing brings processing elements closer to the data sources allowing to reduce the latency for specific tasks that are vital for a continuous user experience and for other latency critical applications such as UV navigation where latency has a strong influence on safety. With a large number of devices having processing power available, distributed computing allows to further speed up essential computations, allowing highly efficient algorithms for, e.g., environment learning, positioning and tracking. With the requirement for more bandwidth for data transmission, pre-processing can help reduce the actual amount of data that needs to be transmitted. Data storage at the network edge has the advantage of added security and faster access, allowing to keep sensitive data close to the user without storage at a shared data centre or in a cloud storage.					
Scenario	Low Latency Cooperation. Industrial environments that employ coordination in production profit from latency reduction by either sharing computation tasks or allowing network members to perform computations that are only vital to that member on a local level. By collecting pre-processed data system bandwidth can be freed to allow transmission of auxiliary data. Local cooperation between adjacent or directly interacting devices further reduces latency and allows to streamline production by allowing cooperation partners to directly react to					
Application domain	All					
Geographic scope	Indoor and Outdoor					
Technical requirer	nents		-			
Attribute	Description	KPI	Comments			
Spectrum	Carrier frequency	-	Not critical in general. Reduced bandwidth need allows for less stringent requirements on the used spectrum.			
Traffic model	Maximum number of simultaneous devices	1 - 100 per m ²	Devices perform tasks on their own or in small local networks. Rough estimate, can vary depending on the number of EPUs per SP.			
	User Experience data rate	-	Not applicable.			

	Uplink/Downlink ratio	<1	Not critical.
UE	Mobility	Indoor: < 2 m/s Outdoor: > 10 m/s	
	Accuracy	-	
System	Reliability	99%	
	End to end Latency	< 10 ms	Lower latency can be possible depending on device class.
	Traffic volume density	0.1 – 100 Mbps/m ²	Strongly varies with application
Functional require	ments		-
Functional requirements	 UEs are required to provide processing power to perform local computations within the required time limits. APs need to quickly distribute information received from the UEs if not already transmitted locally between neighbouring UEs. 		
Technical ch	Technical challenges addressed		
Challenges	 Support for large number of devices High traffic volume/sum rate High peak rate Real-time processing and edge computing support Low latency support High reliability Real-time processing, edge computing support 		
Security	Privacy issues can be countered due to local computation of sensitive information without processing in the cloud, or by data encryption performed on the edge.		

Table 23: System service 4. Description and KPIs

Chapter 4 Deployment scenarios

4.1 Deployment characteristics

In this chapter, we describe environments and RW deployment opportunities relevant to use cases presented in Chapter 2 and to technical solutions to be developed in the course of the project. The environments and deployment descriptions are intended to serve as context examples when referring to the different use cases, and illustrations of expected surroundings and conditions encountered. The descriptions may also be used as input to defining environments for technical study scenarios and simulation configurations, but the provided examples are not to be seen as limiting; other environments or specific setups may be invoked in studies, as appropriate.

We present five environment types to support various use case groups and technical challenge clusters. For each environment, the following description components are provided:

- General overview of the environment type
 - High-level description of the setting and distance/areas covered
 - Main device types to be served by RW
 - Typical surfaces for RW mounting
 - Environment-specific deployment aspects
- One representative example with a floor plan figure and details of the surroundings
 - People, machines, and other objects in the environment, including materials, distances, and dimensions
 - Expected device distribution
 - RW deployment opportunities, at least fabric placement and power supply access

A common principle for all presented deployments is that RW is intended to be complementary to a traditional coverage layer (e.g. 4G/5G). In other words, RW does not replace traditional coverage layers and provide area coverage; it provides additional functionality and/or performance boost in areas where such improvements are prioritized. Depending on the scenario, e.g. involving conventional handsets or consumer products with additional functionality, traditional cellular network services may also be provided via RW, where installed.

In all venue types, RW/SP placement choices will generally be selected to minimize blocking probability towards any anticipated device locations, simultaneously subject to esthetic and practical mounting constraints and power availability.

4.2 Environment descriptions

4.2.1 Venue

This environment type refers to contiguous structured areas constituting a large venue, covering distance scales of several tens to hundreds of meters and areas of ~1 000 - 100 000 square meters. Walls, columns, partial ceilings, furniture etc. of diverse materials may be encountered.

Typical to the venue environment is a presence of a large number of people, whereby the RW deployment should support many traditional users using both smartphones and more advanced (e.g. XR) devices, possibly for simultaneous high data rate applications. Additionally, equipment pertaining to the venue (screen or jumbotrons, lighting and automation, etc.) may be served by the RW deployment.

The RW deployment in the venue environment relies on surfaces or fixed supports (walls, ceilings, floors, regularly placed objects) for distributed RW placement.

Examples of venue environments may include sports hall, stadium with open or closed roof, concert hall, convention hall, airport, crowded outdoor area (square), etc.

The venue scenarios may differ significantly in terms of size and the number of devices. For the purposes of technology analysis, we may limit the area scope to mid-sized venues, for example as the example below. If necessary, and to manage complexity, multiple venue installations (e.g. multiple convention halls) may be concatenated to cover a geographically extended area (e.g. a multi-hall convention center). As previously said, there is no ambition for wide-area (network-wide) coverage using RW; such coverage may be ensured by traditional (e.g. centralized macro) coverage layers.

Example: Tennis arena

Characteristic	Description
Layout	Bowl-shaped, not ceiling-covered, may have multiple bleacher levels
Size	90 x 60 m (court area 35 x 20 m)
Device types	Smartphones, XR devices, modems for venue equipment
Number of devices	15 000
Number of people	15 000 (40 rows, avg ~350 persons per row)
Materials	Mix of reflective and absorptive
RW mounting opportunities	Seat backs (~0.5-5 m to devices), bleacher ceilings (~3-10 m)
Power supply availability	External power available at some, but not all, SP locations (not e.g. at all seat backs)

Table 24: Tennis arena, deployment scenario characteristics

Example 1: Tennis arena

Figure 8: Venue deployment scenario example. Tennis arena

4.2.2 Manufacturing

This environment type covers industrial sites, e.g. with automatic production lines or other machinery controlled over cellular/wireless links, including moving machines and unmanned vehicles in environments where people and machines may share same physical space. The distance and area scale are 10s to 100s of meters and 1000s of square meters, respectively. It is typically a highly reflective environment due to a large number of metal objects. Many blockers are present so that quality of traditional site coverage from any central location is poor.

RW deployment in the environment relies on availability of surfaces or fixed supports (walls, ceilings, floors, regularly placed objects) for distributed RW placement.

The RW deployment should support industrial machines, robots, UVs, etc., moving at speeds 3-15 km/h. It need not be designed/dimensioned for e.g. smartphone traffic, which can be provided by e.g. coverage layers from other networks.

Coverage should be limited to the designated area; it may in fact be desirable to avoid wider coverage for security, safety, and reliability reasons.

Examples of industrial environments include: Automated production facility, automated central storage.

Example: Production hall

Characteristic	Description
Layout	Rectangular, hundreds of static and moving objects
Size	140 m x 70 m, height 15 m
Device types	Modems for industrial equipment, robots, UVs
Number of devices	1 000, ~20 on UVs
Number of people	20
Materials	Reflective
RW mounting opportunities	Ceilings, walls, support columns (~10 m to devices)
Power supply availability	External power available at most RW/SP locations

Table 25: Production hall, deployment scenario characteristics

Example 2: Production hall

Figure 9: Industrial deployment scenario example. Production hall

4.2.3 Goods and logistics

This environment type covers commercial sites for goods handling where a large number of articles (packages, loose articles, or labeling accessories) are packed densely and need to be located or tracked. The distance and area scale are 10s to ~100s of meters, and a few 1000s of square meters, respectively. Large number of metal shelves are mounted for storing goods. Other equipment and people may be present in the vicinity.

RW deployment in the environment relies on availability of surfaces or fixed supports (walls, ceilings, floors, shelves themselves) for distributed RW placement.

The RW deployment should support equipment for sales support (e.g. electronic price labels), item tracking (e.g. passive RFID-style tags), and/or equipment used for storage management. It need not be designed/dimensioned for e.g. smartphone traffic, which can be provided by e.g. coverage layers from other networks.

Examples of goods storage environment include: warehouse, retail sales floor, distribution center, port. The characteristics may vary, for example, the warehousing environment includes fast moving objects like forklifts, while a retail setting may instead contain a large number of people.

Characteristic	Description
Layout	Rectangular, mixture of shelves, equipment, and people
Size	60 m x 30 m, 5 m high
Device types	Modems for electronic labels
Number of devices	10 000
Number of people	200
Materials	Mix of reflective and absorptive
RW mounting opportunities	Ceilings, walls, support columns (~1-10 m to devices)
Power supply availability	External power available at some RW/SP locations

Example: Supermarket sales floor

Table 26: Supermarket sales floor, deployment scenario characteristics

Example 3: Supermarket layout

Top view

Figure 10: Goods and logistics deployment scenario example. Production hall

4.2.4 Residential

This environment type covers residences configured for home automation and advanced teleservices and entertainment. The distance and area scale are a few 10s of meters and 100s of square meters, respectively. Multiple floors in a house or duplex architecture may be covered. People are present in the environment. Many blockers may exist so that quality of traditional site coverage from any central location is poor.

RW deployment in the residential environment relies on available surfaces (typically walls and ceilings) for distributed RW placement.

The RW deployment should support home automation, entertainment, and other high-performance applications (XR, gaming, etc.) in low mobility scenarios. RW coverage may be limited to a designated area since simultaneous wide area coverage is typically present. High-performance RW

coverage should be ensured in most of the residence; it may be permissible to rely on conventional cellular coverage in a low percentage of the area. Traditional smartphone traffic may also be supported by RW, or it may be handled using traditional wide-area coverage layers.

Examples of residential environments include: House, townhouse, apartment.

Example: Large apartment

Characteristic	Description
Layout	Rectangular, single-floor
Size	15 m x 10 m, 2.5 m high
Device types	Embedded home automation devices, high-performance entertainment devices (smartphone, XR glasses, gaming console)
Number of devices	100 automation +10 personal
Number of people	4
Materials	Mix of reflective and absorptive
RW mounting opportunities	Ceilings, walls
Power supply availability	External power available at a few RW/SP locations

Table 27: Large apartment, deployment scenario characteristics

Figure 11: Residential deployment scenario example. Large apartment

4.2.5 Patient care

The last environment type covers medical or supervised care facilities with hallway-style or other regularly structured floor plans. The distance and area scale are a few 10s to 50 meters and few 10s to ~1000 square meters, respectively. The environment includes a wide variety of objects, reflective and absorptive, as well as possibly a large number of people. Walls may have high RF isolation and blockers may exist so that quality of traditional site coverage from any central location is poor.

RW deployment in this environment relies on available surfaces (typically walls and ceilings) for distributed RW placement.

The RW deployment should support patient monitoring, patient tracking, and equipment tracking in low mobility conditions. Traditional smartphone traffic via the deployment may also be supported.

RW coverage may be limited to the designated area, however, seamless integration with wide area coverage should be ensured. High-performance and reliable RW coverage should be ensured in the entire area.

Examples of patient care environments include: Hospital, elder care, or other special care facilities.

Note that some individual patient care environments may resemble residential environments, in which case Environment 4 may be invoked.

· ·	
Characteristic	Description
Layout	Rectangular, hallway-style
Size	20 m x 75 m, 3.5 m high
Device types	Personal medical equipment, embedded sensors, general medical equipment, smartphones
Number of devices	~300
Number of people	50
Materials	Mix of reflective and absorptive
RW mounting opportunities	Ceilings, walls
Power supply availability	External power available at a most RW/SP locations

Example: Hospital floor

Table 28: Hospital floor, deployment scenario characteristics

Example 5: Patient care

Top view

Figure 12: Patient care deployment scenario example. Hospital floor

4.3 RadioWeaves connectivity and transport

While not the main focus of the project, transport and connectivity choices are important in practical deployments. For completeness, some possibilities, not necessarily unique to the RW-based solutions, are exemplified below. These examples do not cover the full range of possible RW deployments, intended to be highly flexible and amenable to mixing different levels of back-, mid-, and front-haul concepts.

4.3.1 Mixed/mid-haul

Various approaches exist to connect RW fabric sections/EPUs to site backhaul location:

Figure 13: Mixed/mid-haul connectivity approaches

Different fabric sections in a deployment may mix different approaches, including in-band/out-ofband wireless connectivity, etc.

4.3.2 Backhaul

Similarly, various ways exist to provide transport connections to a RW site. We depict some options for providing a backhaul entry point for the site, from which further connections can be provided to EPUs/federations. We note that the backhaul provision topic is not unique to RW deployments.

Wired backhaul
 Wireless backhaul (dedicated spectrum)
 Wireless backhaul over cellular coverage layer (IAB-like)
 BH (IAB-like)

Figure 14: Backhaul connectivity approaches

4.4 Additional considerations

4.4.1 Multi-operator operation

Advanced cellular network deployments, as anticipated for RW, often require both special equipment investments and optimized placement of infrastructure components, utilizing the available space and features of the architecture and interior design of the environment. It is therefore often not practical to duplicate such a deployment on a per-operator basis. In particular, this is the case for indoor-installations that are provided by one selected operator or by a private network provider.

This situation is not unique to prospective RW deployments but pertains to many advanced installations aimed to be <u>generally accessible by the public</u> (as opposed to dedicated commercial applications like e.g. industrial production or goods tracking). For completeness of deployment discussions, at least two implications of such aspects should be clarified, along with typical solutions.

Network access

Preferably, the RW deployment should be accessible/available to users irrespective of their regular operator. The deployment can be integrated with a certain operator's core network, or with a private network provider, but access may be permitted to customers of any operator that has a direct or indirect sharing agreement with the operator managing the deployment. Such access may be enabled for example through proper configuration of the access barring mechanism.

Legacy service access

When a user is connected to the RW deployment, provision of home operator services is preferably maintained. In a basic configuration, the user only obtains services via the managing operator's backhaul stream, whereby e.g. conventional voice calls and SMS/MMS traffic from the home operator cannot be terminated. Delivery of such functions may be enabled by e.g. registering the RW operator as a roaming network, operating in dual-SIM mode whereby a connection to both operators is maintained, or by reverting to over-the top services for voice and messaging.

Chapter 5 Latency in wireless applications

The discussed use cases pose challenging technical requirements in terms of combinations of huge data throughputs, large numbers of devices, low latency, high reliability, accurate positioning and, on top of that, good user experience for all device classes where energy transfer may have to be provided. This chapter focuses on the different latency requirements for the use cases. Within 5G, the use cases and their corresponding latencies can be classified as Ultra-Reliable Low-Latency Communications (URLLC) or even enhanced URLLC (eURLLC), massive Machine Type Communications (mMTC) and Enhanced Mobile Broadband (eMBB). For novel 6G services to be supported by RadioWeaves other classifications are proposed based on functionality and challenges as discussed in Section 0. As a result, the latency requirement is not defined per classification family and needs to be considered for each individual use case.

A general overview of latency requirements for emerging applications in the entertainment, Industry 4.0, automotive, IoT and healthcare sectors is shown in Table 29. Depending on use case, latency is defined as end-to-end (E2E) or round-trip time (RTT), where the E2E latency describes the communication latency between the application layers of two devices and the RTT latency is equal to the E2E delay with an additional response from the device. Here a difference occurs with 5G, where URLLC latency is defined as the latency between MAC layers.

Field	Sub-field	Latency (ms)	Туре	Reference	
	VR entertainment	< 20		[RY1, TA1]	
XR	Professional AR/MR usage	< 10	RTT and E2E	[3GPP1, MAS1]	
Gaming	Pro gaming (not XR)	< 50	E2E	[TA1, AT1]	
Cooperative robots		< 1	RTT		
Ind. 4.0	Process remote control and monitoring	< 50	EDE		
	Human machine interface (HMI)	< 200	LZE	[TA1]	
V2X and UVs	Remote and cooperative driving, position sharing	< 10	E2E except cooperative driving (BTT)	[3GPP1, MAS1,AK1]	
	Platooning	< 50		[3GPP1, AK1]	
	Collective information sharing	< 100	unving (itt i)	[AK1]	
	Traffic management, racing drone control	< 10	RTT	[CK1]	
UAVS	Aerial command and control, UAV logistics	< 50	E2E	[CK1, 3GPP2]	
loT	Safety-critical event monitoring	< 10	EDE		
	General monitoring	< 1000			
Healthcare	Exoskeletons and Prosthetic hands	< 20	RTT	[T A 4]	
	Telediagnosis and monitoring	< 200	E2E		

Table 29: General latency constraints for different fields and use cases

Interactive and immersive applications such as extended reality (XR) and gaming require high throughputs in combination with low latencies. Since there is human involvement within these applications, certain latency conditions based on human reactions and human mobility must be ensured. To meet a display error of less than 5 mrad, a latency of 10 ms or 20 ms is determined for fast and slow movements, respectively [REB1, PL1]. Furthermore physiological parameters reinforce these values as the human mind needs 13 ms to extract conceptual meaning from a picture, without

advance knowledge [MCP1]. Latency values below 13 ms will therefore not contribute to a better user experience. This reasoning is also useful in gaming where the frame rate, e.g. 60 fps corresponding with 16.7 ms per frame, or the physiological parameters are decisive [TA1]. A negative impact on gaming performance is noticeable for latencies above 75 ms. A latency value of 50 ms can be seen as sufficient, meeting the physiological parameters and the technological possibilities for gaming not XR related [TA1, AT1].

Industry 4.0 is a more extensive domain with many diverse applications, leading to latency requirements ranging from 1 ms for cooperative robots whereby very fast-working robots must be able to respond quickly to each other, to 200 ms for human machine interfaces (HMIs) [5GACIA1, TA1]. An assignment for this value is the human response time, which is approximately 200 ms [DRL1]. Process remote control and monitoring satisfies with 50 ms latency [5GACIA1].

Assisted and autonomous vehicles, with the advent of Vehicle-to-everything (V2X), Unmanned Vehicles (UVs) and Unmanned Aerial Vehicles (UAVs), are increasingly important and interesting in economic, technological and environmental terms. Defined latency requirements for these diverse applications range from 10 to 100 ms as shown in Table 29. The 3 GPP defines a latency requirement of 10 ms for autonomous driving logistics solutions with 5G and a UE mobility of less than 30 km/h. The targeted horizontal positioning accuracy is less than 30 cm [3GPP1]. RadioWeaves targets similar values, with the exception of more accurate positioning, denser environments and different and more autonomous vehicles.

IoT applications are furthermore, experiencing a strong growth in industrial, commercial and residential environments. These applications are typically not severely latency limiting (< 1000 ms) with the exception of safety-critical applications (< 10 ms) [3GPP1]. However, these latency requirement values can be challenging as the IoT devices within RadioWeaves can also be energy neutral devices that can be found in large quantities in a limited space.

Healthcare is a final domain discussed where latency-critical applications can be found for prosthetics and exoskeletons (< 20 ms) [TA1]. Non latency-critical applications, with a given latency requirement value of less than 200 ms, such as telediagnosis and monitoring, can also pose a challenge in terms of latency, just like with IoT devices, because of the type and number of devices.

Based on these general latency specifications, the latency requirements of the described use cases within the REINDEER project are determined and summarized in Table 30. A wide scene can be retrieved with latencies ranging from 1 ms to 1 s. These latencies are defined as E2E latencies which makes comparison between applications more clear.

Use case ID	Use case name	E2E latency (ms)
1	Augmented reality for sport events	< 20
2	Real-time digital twins in manufacturing	1 - 50
3	Patient monitoring with in-body and wearable sensors	< 200
4	Human and robot co-working	< 1
5	Tracking of goods and real-time inventory	< 1000
6	Electronic labelling	< 1000
7	Augmented reality for professional applications	< 10
8	Wander detection and patient finding	< 1000
9	Contact tracing and people tracking in large venues	< 1000
10	Position tracing of robots and UVs	< 10
11	Location-based information transfer	< 1000
12	Virtual reality home gaming	10 - 100
13	Smart home automation	< 100

Table 30: Latency constraint for the defined use cases

To get an idea of the deployment complexity of the use cases, these are brought together in Figure 15, in which the maximum traffic volume density in Mbps/m² is compared with E2E latency constraints per UE in ms. By using the traffic volume density instead of the necessary data rate per UE, the complexity of the amount of devices per m² is also included. The use cases have their own deployment challenges to meet all properties and an approach to ordering by complexity can be found in this figure. Implying a deterministic E2E latency across the protocol stack and provide cost-efficient services will be needed for a successful deployment. The latency services will also depend on the type of UE since e.g. backscattered devices (Class 1) behave differently than battery-powered communicative devices (Class 4).

Figure 15: Comparison of maximum latency and traffic volume density constraints for the use cases

Chapter 6 Initial channel model

From a communication perspective, it is essential to model the extreme diversity that the RW offers. In the development of the RW infrastructure and architectural and algorithmic approaches to support diverse services, we introduce the concept of federations in the REINDEER project. A federation represent an ad-hoc sub-set of resources in the RW cooperating to support a certain service/class of devices (Deliverable D2.1 will clarify the concept further). The many antennas in the RW enable ultra-reliable communication, but for a particular user only a subset of them is active. Hence, to investigate the concept of federations it is necessary to model the relative powers of the different channels in a proper way. Similarly, in the case of communication with passive devices using back scattering it is of high importance to capture the variations in link gains to the different antenna elements of the RW in order to determine a suitable federation. For any kind of communication, it is also crucial to have a spatially consistent model at the user side as the use cases include tracking in time and over space. At the RW it is crucial that the model is consistent over space to enable realistic assessment of the MIMO and multiuser MIMO performance.

From a positioning perspective, it is not just the direction of the line-of-sight, but also the position of scatterers that is of interest. As the RW often will operate in the near-field, i.e. at a distance being smaller than the Rayleigh distance, both the direction and the distance to scatterers are of interest. The direction only will not suffice, as it differs depending which part of the RW that is considered. Ideally, it should be possible to do mapping between the radio environment and the physical environment and extract contextual information from the extracted radio based information.

From a learning perspective, it is also essential that the channel model can provide long time consistency and spatial consistency. Dynamic events and blocking have to be represented in a realistic manner both in the time domain and over space.

In all environments, there is some kind of blocking, from humans as well as from objects and machinery. Some blockers are static and belong to the environment, whereas both human and robot like blocking is dynamic in nature. Both static and dynamic blocking are essential to model from a reliability point of view and form a positioning point of view.

The important environments listed in previous chapters are limited to a maximum space of 140x70x15 m, mostly indoor, with the smallest rooms in patient care and residential environments limited to 3x4x3 m. In some cases, like logistics and retail, there are also longer corridors that may have a width of down to 2 m.

The requirements above call for some kind of geometry-based model. It will be hard to model all dependencies and correlations mentioned above with a purely stochastic approach. If a purely stochastic approach anyway is needed for initial evaluations, a simple Ricean model is advised, where for each antenna pair a distance-dependent K-factor, distance-dependent link gain and a stochastic on/off function for the availability of the LOS component is used.

For more realistic simulations we suggest to use either a full ray tracing approach or a geometry based stochastic channel model (GSCM). Ray tracing can provide realistic samples of channel snapshots given that the details of the environment - including furniture, machinery and other objects that can act as blockers - are modelled properly.

There are to date no extensive measurement-based investigations of the RW-channels in the literature. Cell-free massive MIMO has similarities to the concepts of distributed MIMO, cooperative MIMO, coordinated multipoint and network MIMO and hence there are some relevant results with respect to correlations of large scale fading, delay spreads, and clusters for different base station locations in this domain, see, e.g., [GD1][TC1] and the references therein. [APG1] reports measurement from a co-located massive MIMO, distributed massive MIMO in form of a radio stripe and distributed RW scenario in a smaller room, with emphasis on the spatial distribution of the field strengths with the various setups. [JF1] analyse the impact of closely spaced users in an indoor and outdoor massive MIMO setup and concludes that it is possible to spatially separate a group of closely

D1.1 – Use case-driven specifications & technical requirements and initial channel model

located users even in the case of LOS and co-located massive MIMO. One explanation for this is the limited area over which a particular multipath component can be seen [JF2], i.e. the limited lifetime of multipath components. The concept of gain functions for individual multipath components (MPCs) is an important extension of the COST 2100 channel model for massive MIMO reflecting this phenomenon. This, together with the concept of a base station-side visibility region (BS-visibility region) to model the appearance and disappearance of clusters when using a physically-large array and the support for polarimetric channels makes the COST 2100 channel model with its massive MIMO extension a suitable initial framework for RW. We aim to further adapt this framework and make it suitable for RW channel modelling. The original COST 2100 channel model is described in [LL1]. There is an open source MATLAB implementation of this and its massive MIMO extension, available at [Git21]. The simulation starts by defining a simulation area, the considered carrier frequency, the locations of the RW antennas and the types of antennas used for the RW as well as for the UE. In a second step, clusters and their corresponding visibility regions (RW antenna visibility region, UE visibility region) are randomly positioned in the simulation area. Finally, after defining the route of the UE or several UEs, the channel between each and every antenna is represented as a sum of multipath components from each of the active clusters. The complex gain of each multipath component is determined by the exact propagation distance between antennas, and hence a spatially consistent and frequency consistent channel model is achieved. Once a channel realization (a "drop") is performed, it can be saved and the particular realization can be used for environment learning, multipath aided positioning, communication, for any UE position in the simulation area.

The concept of clusters, RW antenna visibility region, the UE visibility region, and the MPC gain function are shown in Figure 16. Consider in this case the x-axis in (a) as the possible locations of the antennas building up the Radio Weave, with a specific RW antenna located at the point BS. This antenna is within the RW antenna visibility region of the cluster also connected to the UE visibility region "B". So when the UE is within the area "B" it will see the RW antenna element at point BS through the cluster of multipath components connected to those visibility regions. (b) When the UE is inside the UE visibility region "D" it will also see the antennas in the red circle of the Radio Weave, through the cluster of MPCs connected to those visibility regions. (c) illustrates the gain functions. Each MPC is connected to a gain function in the UE visibility region. For a specific position of the UE inside the UE visibility region, the gains of the different MPCs are given by the distances from the UE to the center points of the gain functions inside the visibility region. This ensures a smooth death and birth process of individual MPCs and thereby a limited but spatially consistent lifetime of individual MPCs.

Figure 16: The concept of visibility regions and clusters in the COST 2100 channel model with its massive MIMO extension, from [JF2]. The x-axis constitute here the possible locations of the antennas building up the Radio Weave with a specific antenna element located at the point BS. The UE travels through the UE visibility regions, different clusters are active depending on the specific UE location.

Occasional blocking can also be considered by simply introducing blockers in the simulation environment. Any multipath component travelling through a blocker is deemed dead and hence does not contribute to the overall impulse response.

Another recent interesting development of the COST 2100 channel model concept is the extension to vehicular intersections [CG1]. There the clusters are constrained to be located along walls of buildings in the geometry. This approach makes it possible to use a stochastic approach but still enforcing realism and similarities to typical geometries of vehicular intersections. Such an approach is also preferred for RadioWeaves and is to be evaluated, since it can be interesting for specific geometries of the environments in the use cases considered.

The implementation in [Git21] results in a transfer function matrix for each UE location, i.e. a large MIMO channel matrix from each UE antenna to each RW antenna. Conceptually we aim to use a similar approach for RadioWeaves, maybe also with a specification of which RW antennas that should be considered active for the particular user.

Chapter 7 Summary and Conclusion

This deliverable reports on the work performed in task T1.1, focusing on the analysis of interactive use case scenarios and detailed technical requirements, and also provides an update on the progress in task T1.2 by providing an initial channel model.

A rich diversity of future interactive use cases in different application domains have been considered, based on contributions from all partners and the viewpoints brought by them from different perspectives. Through the analysis it became clear that structuring and classification is needed. In this deliverable this structuring is presented for uses cases, that have been clustered in three main categories according to applications, and devices, for which we identified five classes. Furthermore, the technical requirements have been derived and, importantly, also quantified. These demonstrate that not only are the expectations inflated according to the three axes of the "5G triangle" [ITU1] — higher mobile throughput, ultra-reliable and low-latency communication, and support for low-energy devices, — moreover many pose extra challenges, such as the need for position information and wireless network infrastructure, far beyond what is possible in emerging 5G deployments. For example, end-to-end latency down to 1 ms will need to be supported, indoor location accuracy of 0,1 m is expected, and the reliability requirements less than 10⁻⁵ for process automation.

Furthermore, in task T1.1 a number of systems services, ranging from edge processing and federated learning to environment mapping and device tracking, have been identified that could be offered on, and by, the RW infrastructure.

This analysis of future use cases is key for driving the further innovative development of RW technology in the REINDEER project. Moreover, we noticed that technical requirements are largely missing today in literature for envisioned 6G applications, and this deliverable may therefore be of interest to a broad community.

We have also outlined a channel model framework for RW based on the COST 2100 channel model and its massive MIMO extension. We believe this framework is flexible enough and fulfils the requirements to give a spatially consistent and frequency consistent channel model that can be used for learning, positioning as well as communication.

Chapter 8 List of Abbreviations

Abbreviation	Translation
AR	Augmented reality
BH	Backhaul
BLE	Bluetooth Low Energy
E2E	End-to-end
eMBB	Enhanced Mobile Broadband
EPU	Edge Processing Unit
HMIs	Human Machine Interfaces
IoT	Internet of Things
ISM	Industrial, Scientific and Medical Band
KPI	Key performance indicator
LCD	Liquid Crystal Display
ΜΙΜΟ	Multiple-input and multiple-output
MMS	Multimedia Messaging Service
mMTC	Massive Machine Type Communications
MPC	Multi Path Component
NLOS	Non-line-of-sight
RF	Radio Frequency
RFID	Radio-frequency identification
RTT	Round-trip time
RW	RadioWeaves
SMS	Short Message Service
SP	Service Point
UAV	Unmanned Aerial Vehicle
UE	User Equipment
UL/DL	Upload/Download ratio
URLLC	Ultra-Reliable Low-Latency Communications
UV	Unmanned Vehicle
VR	Virtual reality
WPT	Wireless power transfer
XR	Extended Reality

Chapter 9 Bibliography

[3GPP1] 3GPP. Study on Communication for Automation in Vertical Domains. Technical Report (TR) 22.804, 3rd Generation Partnership Project (3GPP), 2020. Version 16.3.0.

[3GPP2] 3GPP. Study on Enhanced LTE Support for Aerial Vehicles. Technical Report (TR) 36.777, 3rd Generation Partnership Project (3GPP), 2017. Version 15.0.0.

[3GPP3] 3GPP, Service requirements for the 5G system. Technical specification (TS) 22.261, 3rd Generation Partnership Project (3GPP), Version 16.14.0

[5GACIA1] 5GACIA. 5G for Connected Industries and Automation. Technical report, 5G Alliance for Connected Industries and Automation (5GACIA), 2019.

[AK1] Kanavos, A.; Fragkos, D.; Kaloxylos, A. V2X Communication over Cellular Networks: Capabilities and Challenges.Telecom2021,2, 1–26. doi:10.3390/telecom2010001.

[APG1] A. P. Guevara, S. De Bast and S. Pollin, "Weave and Conquer: A Measurement-based Analysis of Dense Antenna Deployments," ICC 2021 - IEEE International Conference on Communications, 2021, pp. 1-6, doi: 10.1109/ICC42927.2021.9500612.

Α. Testing 5G RC [AT1] Takacs. latency on а hobby racetrack Ericsson. https://www.ericsson.com/en/blog/2020/12/5g-latency-test-rc-hobby, 2020. (Accessed on 05/14/2021)

[BC1] Cox, B., Van der Perre, L., Wielandt, S. *et al.* High precision hybrid RF and ultrasonic chirpbased ranging for low-power IoT nodes. *J Wireless Com Network* 2020, 187 (2020).

[CG1] Christian Gehrmann and Martin Gunnarsson, A digital twin based industrial automation and control system security architecture, IEEE Transactions on Industrial Informatics, vol 16 issue 1, pp 669-680, 2019

[CG1] C. Gustafson, K. Mahler, D. Bolin and F. Tufvesson, "The COST IRACON Geometry-Based Stochastic Channel Model for Vehicle-to-Vehicle Communication in Intersections," in IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 2365-2375, March 2020, doi: 10.1109/TVT.2020.2964277.

[DRL1] Laming, D. R. J. 1968. Information Theory of Choice-Reaction Times. Academic Press, London.

[GD1] G. Dahman, J. Flordelis and F. Tufvesson, "Cross-Correlation of Large-Scale Parameters in Multi-Link Systems: Analysis Using the Box-Cox Transformation," in IEEE Access, vol. 6, pp. 13555-13564, 2018, doi: 10.1109/ACCESS.2018.2797418

[Git21] Online: https://github.com/cost2100/cost2100, accessed Sept 27, 2021.

[CK1] Kim Clement, Tomas Gareau, N.M. 5G for Drone-based Vertical Applications - D1.1 Use case specifications92and requirements. Technical report, 5G!Drones, 2019. Version 1.0.

[DD1] D. Dardari et al., "An Ultra-Low Power Ultra-Wide Bandwidth Positioning System," in *IEEE Journal of Radio Frequency Identification*, vol. 4, no. 4, pp. 353-364, Dec. 2020, doi: 10.1109/JRFID.2020.3008200.

[FA1] F. Akbarian, E. Fitzgerald, and M. Kihl, Intrusion Detection in Digital Twins for Industrial Control Systems, International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp 1-6, 2020

[FA2] A. Fellan, C. Schellenberger, M. Zimmermann and H. D. Schotten, "Enabling Communication Technologies for Automated Unmanned Vehicles in Industry 4.0," *2018 International Conference on Information and Communication Technology Convergence (ICTC)*, 2018, pp. 171-176, doi: 10.1109/ICTC.2018.8539695.

[ITU1] ITU. (2015) ITU vision on 5G usage scenarios. Visited on 2021-07-14. [Online]. Available: https://www.itu.int/dms.pubrec/itu-r/rec/m/R-RECM.2083-0-201509-I!!PDF-E.pdf

[JF1] J. Flordelis, F. Rusek, X. Gao, G. Dahman, O. Edfors and F. Tufvesson, "Spatial Separation of Closely-Located Users in Measured Massive MIMO Channels," in IEEE Access, vol. 6, pp. 40253-40266, 2018, doi: 10.1109/ACCESS.2018.2854307.

[JF2] J. Flordelis, X. Li, O. Edfors and F. Tufvesson, "Massive MIMO Extensions to the COST 2100 Channel Model: Modeling and Validation," in IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 380-394, Jan. 2020, doi: 10.1109/TWC.2019.2945531.

[LL1] L. Liu et al., "The COST 2100 MIMO channel model," in IEEE Wireless Communications, vol. 19, no. 6, pp. 92-99, December 2012, doi: 10.1109/MWC.2012.6393523.

[MAS1] Siddiqi, M.A.; Yu, H.; Joung, J. 5G Ultra-Reliable Low-Latency Communication Implementation Challenges and Operational Issues with IoT Devices.Electronics2019,8. doi:10.3390/electronics8090981.

[MCP1] Potter, M.C., Wyble, B., Hagmann, C.E. et al. Detecting meaning in RSVP at 13 ms per picture. Atten Percept Psychophys 76, 270–279 (2014).

[MG1] M. Gidlund,, T. Lennvall, and J. Åkerberg. "Will 5G become yet another wireless technology for industrial automation?." 2017 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2017.

[MG2] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang and D. Niyato, "Federated learning for 6G communications: Challenges, methods, and future directions," in *China Communications*, vol. 17, no. 9, pp. 105-118, Sep. 2020.

[MF1] M. Farsi, A. Daneshkhah, A. Hosseinian-Far, and H. Jahankhani, Digital Twin Technologies and Smart Cities. Springer, 2020.

[PL1] Lincoln, Peter. "Low Latency Displays for Augmented Reality." (2017).

[PS1] P.r Skarin, W. Tärneberg, K.-E. Årzen, and M. Kihl, Towards Mission-Critical Control at the Edge and Over 5G, IEEE international conference on edge computing (EDGE), pp. 50-57, 2018

[REB1] Bailey, R.E.; Parrish, R.V.; Arthur III, J.J.; Norman, R.M. Latency Requirements for Head-Worn Display S/EVS Applications. Enhanced and Synthetic Vision; Verly, J.G., Ed.; , 2004; Vol. 5424, pp. 98 – 109 doi:10.1117/12.554462.

[RY1] Yao, R.; Heath, T.; Davies, A.; Forsyth, T.; Mitchell, N.; Hoberman, P. Oculus VR Best Practices Guide Technical Report 36.777, Oculus VR Inc., 2014. Version 0.008.

[SM1] Majumder, S., Mondal, T., & Deen, M. J. (2017). Wearable Sensors for Remote Health Monitoring. *Sensors (Basel, Switzerland)*, *17*(1), 130.

[TA1] Adame, T., Carrascosa, M., & Bellalta, B. (2019). Time-Sensitive Networking in IEEE 802.11be: On the Way to Low-latency WiFi 7. *ArXiv, abs/1912.06086*.

[TC1] T. Choi, P. Luo, A. Ramesh and A. F. Molisch, "Co-Located vs Distributed vs Semi-Distributed MIMO: Measurement-Based Evaluation," 2020 54th Asilomar Conference on Signals, Systems, and Computers, 2020, pp. 836-841, doi: 10.1109/IEEECONF51394.2020.9443568.

[WS1] waveshare.com, "2.9inch E-Paper (B) E-Ink Raw Display, 296×128, Red / Black / White," [Online]. Available: waveshare.com/2.9inch-e-Paper-B.htm. Last accessed: 26-5-2021.