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Figure 1: General overview of our data augmentation pipelines; Original and Synthetic datasets get augmented and combined
in different ways to provide different training sets, see Tab.1 for experimental results.

ABSTRACT
In this paper we propose a novel data augmentation approach for
visual content domains that have scarce training datasets, composit-
ing synthetic 3D objects within real scenes. We show the perfor-
mance of the proposed system in the context of object detection in
thermal videos, a domain where i) training datasets are very limited
compared to visible spectrum datasets and ii) creating full realistic
synthetic scenes is extremely cumbersome and expensive due to
the difficulty in modeling the thermal properties of the materials of
the scene. We compare different augmentation strategies, including
state of the art approaches obtained through RL techniques, the
injection of simulated data and the employment of a generative
model, and study how to best combine our proposed augmentation
with these other techniques. Experimental results demonstrate the
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effectiveness of our approach, and our single-modality detector
achieves state-of-the-art results on the FLIR ADAS dataset.
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1 INTRODUCTION
Object detection is a core problem for the perception capabilities
of an autonomous vehicle, the identification of its surroundings
and of nearby objects is essential to ensure a safe deployment of
autonomous cars on the road. In autonomous driving the object
detection task is required to be particularly robust across a range
of illumination and environmental conditions, including daytime,

https://doi.org/10.1145/3474085.3475679
https://doi.org/10.1145/3474085.3475679
https://doi.org/10.1145/3474085.3475679


nighttime, rain, fog, etc. In such conditions, detectors based solely
on visible spectrum imagery can easily fail [36, 42], as shown in
Fig. 2.

The use of thermal detectors has recently increased as a mean
to mitigate the sensitivity of visible spectrum imagery to scene-
incidental imaging conditions [4, 29, 36]. A growing number of
works have also investigated multispectral detectors combining
visible and thermal images for robust pedestrian detection [2, 9, 26,
39, 42, 43, 61, 64].

Figure 2: Top row. Left) The lights of the car headlights daz-
zle the RGB camera; right) cars and persons can be recog-
nized in the same view obtained through a thermal camera.
Bottom row. Left) Lack of lighting may cause dangerous sit-
uations, no pedestrian is observable in the scene. Right) the
thermal camera does not depend from the intensity of the
light and allows to detect the person.

The cost of multiple aligned sensors however is a limiting fac-
tor due to cost, camera size or availability of lighting to operate
the visible spectrum camera, and multispectral models can have
limited applicability in real-world applications. Moreover, using
visible spectrum sensors does not offer the same privacy-preserving
affordances as systems employing only thermal sensors [36].

When compared to multispectral detectors, thermal-only ones
typically reach lower performances, and besides the lack of the
information coming from the visible spectrum there are other chal-
lenges for robust object detection using only thermal data. A key
performance-limiting factor is the relative lack of annotated ther-
mal imagery available for training state-of-the-art models. Thermal
pedestrian datasets are few, and – compared to visible-spectrum
datasets – have orders of magnitude fewer annotated instances.
As an example the Caltech Pedestrian Dataset [18] has 350,000
annotations in the visible domain, while in thermal domain KAIST
Multispectral Pedestrian dataset [33] has ∼ 51, 000 annotations
and FLIR ADAS Dataset [1] has ∼ 28, 000. Bringing thermal-only
detection to the robustness and accuracy demanded by real-world
applications is thus extremely difficult due to the scarcity of anno-
tated data.

Creating realistic training data from 3D models has become a
common practice in several domains, e.g. for Advanced Driver
Assistance Systems (ADAS). An example is the CARLA simulator
[19] that can create RGB, LiDAR, depth, etc. views of a simulated
scene. However, thermal imagery is not yet automatically generated,
since the 3D engine should account for a very large number of
simulation parameters associated to different materials and heat
sources.

In this work we propose to simplify the creation of training data
adding only a subset of objects of interest to a real scene, thus
reducing the cost of modeling a whole environment. In order to
improve the quality and visual likelihood of the objects we use
a GAN, to further adapt the appearance of the 3D models and to
better simulate the output of the shaders used in the 3D animation
engine.

The contributions of this paper are:
• Compositing of 3d fake thermal objects in a real ther-
mal scene: to the best of our knowledge we are the first
to propose this approach, addressing the thermal spectrum
domain, in which creating full virtual scenes is not practical.
We further propose to use a GAN-based approach to adapt
the appearance of the composited objects in the scene.

• Extensive comparison of data augmentation techniques:
we provide an extensive comparison of recent augmentation
techniques that have been originally proposed and evalu-
ated on RGB datasets, like RandAugment [15] and BBAug
[70], on thermal data; we evaluate their combinations, either
between them and with our 3D compositing approach.

• State-of-the-art results: we compare the best thermal aug-
mentations, either alone or in combination, with a large num-
ber of multispectral and thermal object detectors. Our pro-
posed augmentation technique outperform all the thermal-
only approaches and all the multispectral methods but one.

2 RELATEDWORK
2.1 Object detection in thermal imagery
Thanks to the reduction of costs and availability of multispectral
cameras over the past few years, there are numerous recent works
exploiting thermal images in combination with visible images for
robust pedestrian detections [10, 20, 39, 41–43, 46, 62, 64, 65, 67, 68].
One of the key issues with thermal imagery is the image resolution
and quality is typically far lower compared to RGB images, and the
application of RGB detectors on this low-quality data yields lower
performances. More recently works as MMTOD-UNIT [16] use a
multi-spectral detector that aims to borrow the knowledge from the
data-rich domains such as visual (RGB) without the explicit need for
a paired multimodal dataset. In fact, the model introduces pseudo-
visible images generated from the thermal spectrum ones using the
CycleGAN [69], promoting more information to the training set.
The multi-modal Faster-RCNN detector is then trained. Another
recent multi spectral detector is CFRM_3 [66] that instead cyclically
fuse and refine more spectra. The idea is to use a novel cycle fuse-
and-refine module to predict the segmentation mask features of
both visible and thermal spectrum. This allows to complementary
get important features from different spectra. Note that this method
uses only aligned pictures so this is not directly comparable with



the other models, although multispectral cameras typically do not
provide aligned frames due to differences in the focal length of the
two lenses. In particular, 4,129 well-aligned image pairs have been
used for training and 1,013 image pairs for test.

In contrast, many recent works have investigated pedestrian
detection in the thermal (IR) domain only. For example, authors
in [34] used Adaptive fuzzy C-means for IR image segmentation
and a CNN for pedestrian detection. In [4] the authors proposed a
combination of Thermal Position Intensity Histogram of Oriented
Gradients (TPIHOG) and the additive kernel SVM (AKSVM) for
nighttime-only detection in thermal imagery. Thermal images aug-
mented with saliency maps, used as attention mechanism, have
been used in [24].

The idea of performing several video preprocessing steps tomake
thermal images look more similar to grayscale images converted
from RGB was investigated in [29], who then applied a pretrained
and fine-tuned SSD detector. Recently, authors in [11] designed dual-
pass fusion block (DFB) and channel-wise enhance module (CEM)
to improve the one-stage detector RefineDet, and proposed their
ThermalDet detector for pedestrian detection in thermal imagery.
Another recent single-modality work was the Bottom-up Domain
Adaptation approach proposed in [35, 36] for pedestrian detection
in thermal imagery. Task-conditioned training has been recently
proposed in [37], adding the auxiliary task of classifying night and
day thermal images and obtaining state-of-the-art results. Also in
this work, we focus on the thermal-only detection problem.

2.2 Data augmentation from 3D models
Creation of virtual images, typically using 3D graphic engines, to
improve object detection and pose estimation in visual spectrum
domain has received a lot of attention from the research community.
In the autonomous driving field in particular countless synthethic
datasets and virtual environments [21, 49, 56, 57] are used, espe-
cially for reinforcement learning models. The advantages of using
a virtual environment are multiple such as the ease of collection,
the control over the generated data and the possibility to extract
information from multiple, perfectly aligned, virtual sensors i.e. in
a 3d videogame the RGB image, its segmentation map and depth
map come for free from the render program. Specific tools have
been developed to ease the creation of these scenarios, like CARLA
[19], that is specialized for the creation of scenarios for ADAS ap-
plications, and VIVID [40], that can be used for indoor navigation,
action recognition and event detection, and provides an advanced
human skeleton system to simulate complex human actions. Most
of the effort for realism in these tools, as well as in the industry of
3d videogame engines, is focused on the visible spectrum, and the
simulated thermal views of a scene usually lack the nuances of its
visible counterpart.

Because of this, works that have explored the use of tools to
create augmented datasets with 3D data have addressed only the
visible spectrum context. Some works have used 3D data to estimate
hand [54] or body poses [13, 63]. 3D avatars have been recently
used to enhance human action recognition in [5, 48]. Object de-
tectors have been trained using 3D syntethic data in [7] and [17].
The former considered classes like person, vehicles and animals

in outdoor city scenes, evaluating the trained detector on surveil-
lance videos. The latter investigates the effectiveness of rendering
engines in generating realistic scenes for scenarios where no or
insufficient annotated data is available, considering the detection
of protective equipment in construction sites.

To the best of our knowledge we are the first to address com-
positing of 3D objects within real scenes in the thermal domain.

2.3 Data augmentation from synthetic images
The exploiting of synthetic data from a simulator to obtain a larger,
more diverse, dataset has been explored inmanyworks. This presents
a domain adaptation challenge in which the source domain that
needs to be adapted is partially controllable. One approach to this
problem focuses on the model i.e. by adding to it a domain clas-
sifier and using gradient reversal to close the gap between the
two distributions [22] or by freezing the feature extraction sec-
tion of the model when training it on synthetic data [35]. Another
technique works on closing the domain shift by having a shared
representation space [31, 47, 58]. Another possible approach instead
separately preprocesses the input data using a learned generative
model, trained to perform a translation between the two domains.
[6, 30, 32, 59]. Also in [16] the authors used a CycleGAN [69] for
image-to-image translation of thermal to pseudo-RGB data. The
use of these frameworks to perform data augmentation in order to
improve the performance of a separate classifier has been studied
in multiple previous works such as [3] in which they focus on im-
proving one-shot learning, in [8] where segmentation of medical
images is enhanced by GAN augmented data. In [55] synthetic data
coming from a simulator is adapted and used to train an RL agent
for autonomous driving. Similar to our approach are [30] in which
a much more elaborate cycle consistent framework is developed to
perform domain adaptation and [50] that improves the CycleGAN
approach by adding per instance masks. In [38], a GAN is used
to produce fake thermal images to increase the training data; the
authors study the best approach on how to mix these additional
data to real thermal images, showing how adding 10%-20% percent
of fake images improves the performance of the object detection.

2.4 Data augmentation from RGB images
AutoAugment [14] is a augmentation framework for vision models
that casts the search of parameters for data augmentation as an
optimization problem and solve it using reinforcement learning.
RandAugment [15] improves on AutoAugment [14] by both con-
siderably reducing the parameters search space from 1032 to 102
and matching or exceeding performances of [14]. Both this models
are tailored to image classification tasks, more recently a number
of works focused on data augmentation specifically developed for
detection problems, such as [53] with a neural rendering approach
and [70] using a similar technique to [15] the authors train a RNN
model in a RL setting to learn optimal augmentation policies in-
cluding in this transformations translating, zooming or distorting
both the image and the bounding boxes.



3 THE PROPOSED METHOD
3.1 Mixing real and fake thermal imagery
The Unity game engine [60] is a powerful framework used to de-
velop modern 3D games. With the help of a 3D artist we exploit
this tool to get synthetic data by rendering sequences of realistic
3D characters and cars superimposed over a real thermal spectrum
image as background. Fig. 3 shows an example of the process: a
real scene from FLIR dataset is used to composite and animate 3D
objects, creating a virtual video sequence. The game engine allowed
the use of a raw thermal shader that simulates the thermal signa-
ture of different objects. The 3D artist needs to concentrate only on
creating the raw thermal appearance of these objects, without need
to design the whole scene. This would have required to compute
the thermal properties of all the objects in the background.

Figure 3: Left) Original thermal image from FLIR dataset [1],
Right) Image with composited fake thermal objects.

We automatically annotated the objects and collected over 10K
samples used to augment the training set. In order to better analyze
the synthetic data effect on the training we produced different sets
of simulated scenes changing parameters such as the source of the
background and the number of instances of the different detected
categories (Person, Car, Bicycle).

3.2 Improving fake thermal imagery
appearance through GAN

We use a Generative Adversarial Network to improve the realism
of the data coming from the simulator. In our approach we rely
on an LSGAN objective trained in a cycle-consistent regime as in
[69]. In order to achieve this we trained the generative model in a
cycle-consistent setting between the source domain, the synthetic
data, and the target domain, the data from FLIR dataset. The model
architecture is taken from [38] as it proved to be successful in the
thermal images augmentation setting and it is built using the Resid-
ual in Residual Dense Block (RRDB) as the fundamental unit. As in
[44], we remove the batch normalization layer from the traditional
Conv-BN-LReLU triplet. Similarly to [50] the model is fed both the
input image and the segmentation mask (see Fig. 4) as to provide
guidance to the model for the different thermal signatures of each
category. Fig. 5 provides a sample of the synthetic to real thermal
translation; it is interesting to note how the GAN has created the
thermal reflection of the heat of the engine on the concrete of the
road, that was not part of the 3D model. This physical property has
been learned by the GAN from the FLIR thermal dataset. Differently
from [50] we do not want our segmentation mask to be modified

by the generative model as this would change its bounding box and
be detrimental to the detector performances.

Figure 4: GAN Input data sample: left) composited 3D fake
thermal objects in a scene; right) segmentationmasks of the
3D objects (𝑖𝑚𝑔, 𝑠𝑒𝑔)

Figure 5: GAN translation synth to real sample (zoomed in
and cropped). Left: Original synthethic image from the sim-
ulator; Right: GAN translated version. The GAN learns to
transfer the heat emitted from the bottom of a car, a feature
missing from the simulator.

3.3 Other data augmentations
We have also evaluated the applicability of data augmentation tech-
niques developed for RGB images in the thermal spectrum.

3.3.1 RandAugment. We searched the best combinations and strengths
of augmentations over a subset of the FLIR training dataset com-
posed of 5,000 images. However, we noticed that some of the trans-
formations used are not suitable for the thermal domain, as shown
in Fig. 6.

3.3.2 BBox Augmentation. While data augmentation methods like
RandAug are often used for image classification models, Boundary-
Box Augmentation [70] (BBAug) focuses on object detection. In the
FLIR dataset the annotations refer to objects like bikes, pedestrians
and cars; the bounding box annotations of these objects open up the



Figure 6: Examples of augmentations obtained with Ran-
dAugment [15]. Left) translateX and autocontrast have been
applied to a picture of the FLIR dataset; Right) in this case
the pedestrians, bicycles and cars are not detectable at the
all due to the solarization transformation.

possibility to modify the content of the boxes. The transformations
include, for example, to keep the same image while translating or
zooming the content of the boxes. Starting from an original picture
of the FLIR data set in figure 7, the content of the bounding box in
the middle is modified by this technique.

BBAug [70] is based on the concept of policy, an unordered set
of K sub-policies. Each sub-policy is a set of transformations to be
applied to the image, similarly to the AutoAugment method origi-
nally proposed in [14]. The authors provide the best sub-policies
using a Reinforcement Learning search space algorithm. The mod-
els are trained on COCO data set with ResNet-50 backbone [28]
and RetinaNet detector [45]. For each picture we want to augment,
a sub-policy is randomly selected. This method allows us to skip
the very expensive search space phase.

Figure 7: Left) An image fromFLIRdataset; Right) BBoxAug-
mented version. The content of the box’s car in themiddle is
translated downwards and a cutout square has been added.

3.4 Object detector
We used the layer-wise thermal adaptation of YOLOv3 originally
proposed in [36] as object detector, as a baseline for the experiments
and to evaluate the data augmentation technique proposed in this
paper.

4 EXPERIMENTAL RESULTS
4.1 Dataset and experimental setup
All of our experiments were conducted on the FLIR ADAS dataset
[1]. The dataset consists of over 10K images, collected using the

FLIR Tau2 camera, both during the day (60%) and the night (40%)
driving on Santa Barbara, CA with clear to overcast weather. We
used the three most common classes offered by the FLIR-ADAS
dataset, composed by Person (28,151), Car (46,692), and Bicycle
(4,457), as this is the commonly used experimental setup and allows
us to compare the proposed method with other state-of-the-art
approaches.

The training set contains 8,862 frames, while the test set contains
1,366 images taken on different streets from the training set ones.
Several detectors have been compared using the mAP score. For the
GAN training we used a subset of the FLIR-ADAS data from [66]
which provides pixel-aligned couples of RGB and thermal frames.
We then used the RGB frames to extract segmentation masks for
pedestrians and vehicles from the scene, using a pretrained on
MSCOCO MaskRCNN [27] from Detectron2 [25].

We devise and test multiple augmentation strategies by combin-
ing the different source of data augmentation previously discussed.
From here on we will refer to BBox Augmentation [70] as “BBAug"
and to we will keep the name RandAugment for the method of [15].

As previously noted, we added synthetic data to the training set.
This data is split into multiple sets in order to perform ablation
studies:

• Synth𝑎 : Composed of pedestrians walking on a railroad
scene; No cars and no roads. About 4K samples.

• Synth𝑏 : Composed of both cars and pedestrians over FLIR-
ADAS training set scenes. About 10K samples.

• Synth𝑐 : Composed of both cars and pedestrian over a rail-
road scene; no roads. About 4K samples.

We will use the following notation: GAN𝑥 → 𝑦 to refer to an
experiment in which a generative model is trained over the subset
Synth𝑥 , performs inference over Synth𝑦 and finally this translated
Synth𝑦 data is added to the detector training set. We also tested
the generative model from [38] which performs RGB→ Thermal
translation, and refer to it as GAN𝑟𝑔𝑏 → 𝑡ℎ .

4.2 Ablation studies
In the first experiment, we investigated several data augmentation
strategies to improve the performances of our detector. In Table 1
we compare the results of different augmentation techniques and
the baseline from [36] in terms of mean average precision (mAP)
for all the detected classes. In the second and third experiment,
we tested RandAugment [15] and BBAug [70], by picking the best
policy for each (see Tab. 2) and the best amount of augmented data
(see. Tab. 3).

Analyzing the results of Tab. 1 we can observe that BBAug [70]
performed better than Randaugment, bringing the base detector
mAP to 75%. Employing Randaugment [15] instead does not show
much improvement, probably due to the fact that its transforma-
tions are not developed for object detection as shown in Fig.6. The
combination of the aforementioned does note give better results
than BBAug [70] alone.

The augmentation strategy using the generative model from [38]
provides some improvements compared to the baseline method but
only by a 0.3% mAP.



The injection of synthetic data, through compositing of fake 3D
objects in a thermal scene, instead, both directly from the simu-
lator (Synth𝑎 , Synth𝑏 , Synth𝑐 ) and after the domain translation
(GAN𝑏 → 𝑎 , GAN𝑏 → 𝑐 ), raises the detection performances across
all the classes. The best pipeline we found working uses the trans-
lated synthetic data from our Synth𝑎 subset, reaching a 76.4% mAP.
Also using the same subset followed by BBAug [70] improved the
detector mAP performances to 75.6% which is the second best re-
sult. The combination of these two last techniques does not yield
better results. In general, the proposed idea of compositing fake
3D thermal objects in a thermal scene is an effective augmenta-
tion technique. This is further improved adding BBAug or GAN-
based augmentation that improves the appearance of the 3D objects.
Instead, combining both GAN and BBAug does not improve the
results.

Table 1: Comparison of different augmentation strategies in
terms of mAP. Best in bold, second best underlined.

Augmentation Strategy Person Bicycle Car mAP
None (Baseline) [36] 75.6 57.4 86.5 73.2
RandAugment [15] 74.4 60.2 85.4 73.3
BBAug [70] 79.4 58.4 87.2 75.0
RandAugment [15] + BBAug [70] 74.6 61.6 86.0 73.9
GAN𝑟𝑔𝑏 → 𝑡ℎ [38] 77.1 56.9 86.4 73.5
Synth𝑎 79.3 60.1 86.2 75.2
Synth𝑎 + BBAug [70] 77.1 64.2 85.6 75.6
Synth𝑏 77.2 60.0 86.2 74.5
Synth𝑐 75.9 60.5 85.2 73.9
GAN𝑏 → 𝑐 77.6 59.1 85.6 74.1
GAN𝑏 → 𝑎 78.5 64.0 86.9 76.4
GAN𝑏 → 𝑎 + BBAug [70] 74.7 64.1 86.5 75.1

As previously explained, Boundary Box augmentation [70] in-
troduces 4 policies 1 each composed of subpolicies (i.e. TranslateX
𝑝 = 0.6,𝑚 = 4, Equalize 𝑝 = 0.8,𝑚 = 10), which are defined as 2
possible transformations that can be applied to an image. We tested
all of them and present them in Tab. 2, concluding that the policy
v0 is preferable in FLIR-ADAS. All the experiments in Tab. 1, Tab. 3,
Tab. 4 use this policy.

Table 2: mAP for the 4 policies of the BBAug [70] over a sub-
set of the synthetic data.

Policies v0 v1 v2 v3
Person 77.1 73.4 72.2 72.9
Bicycle 64.2 53.7 54.3 54.5
Car 85.6 84.9 82.6 84.6
mAP 75.6 70.7 69.7 70.7

We have also explored the effect of different quantities of aug-
mented data w.r.t the original train set size. In Table 3 a non ex-
haustive analysis of the percentage of fake w.r.t real suggests, as
previously noted in [38], that the optimal amount of generated data
to add is between 10% and 20%, for the tested strategies increasing
the amount of augmented data becomes detrimental to learning.
1https://github.com/tensorflow/tpu/blob/master/models/official/detection
/utils/autoaugment_utils.py#L15

Table 3: Ablation study on varying quantities of augmented
images. The percentage indicates the relative size of the
added augmented data.

Technique @10% @20% @50%
BBAug [70] 74.8 75.0 74.4
RandAugment [15] 72.9 73.3 66.5
RandAugment [15] + BBAug [70] 73.9 73.7 73.6
GAN𝑟𝑔𝑏 → 𝑡ℎ [38] 73.5 72.6 72.7
Synth𝑎 74.2 74.1 74.0

4.3 Comparison with state-of-the-art
approaches

In this experiment we compare the best augmentation techniques
evaluated in the previous section, comprising our proposed compo-
sition of fake thermal 3D objects with and without GAN processing,
with state-of-the-art approaches. All the following experiments are
evaluated in terms of Mean Average Precision (mAP).

Table 4: Comparison of the proposed method with state-
of-the-art multispectral and thermal-only methods. Best in
bold, second best underlined.

Technique Spectra Person Bicycle Car mAP
MMTOD-UNIT [16] Multi 64.5 49.4 70.8 61.5
ABiFN [12] Multi 66.1 48.5 71.8 62.1
SSD512 VGG16 [52] Multi 71.0 55.5 82.3 69.6
CFRM_3 [66] Multi 74.5 57.8 84.9 72.4
SSTN101 [51] Multi - - - 77.6
YoloV3 Transfer[23] Thermal 33.2 34.5 55.4 41.0
SSD VGG-16 Transfer [23] Thermal 61.9 46.1 85.1 64.4
Layer-Wise [36] Thermal 75.6 57.4 86.5 73.2
RefineDetect512 [1] Thermal 79.4 58.0 85.6 74.3
ThermalDet [11] Thermal 78.2 60.0 85.2 74.6
BBAug [70] Thermal 79.4 58.4 87.2 75.0
Synth𝑎 Thermal 79.3 60.1 86.2 75.2
Synth𝑎 + BBAug[70] Thermal 77.1 64.2 85.6 75.6
GAN𝑏 → 𝑎 Thermal 78.5 64.0 86.9 76.4

Table 4 compares our results with the state-of-the-art single and
multi-spectral approaches. We distinguish multi-spectral detectors,
i.e. models which at test time detect objects using both visible and
thermal spectrum images, and thermal only detectors, i.e. models
that use only the thermal spectrum images. Models which used
visible images for transfer learning only during training fall under
the Thermal category.

YoloV3 Transfer[23] and SSD VGG-16 Transfer [23] are both
pretrained models on Coco and ImageNet data sets and tested on
FLIR-ADAS. As shown in the Tab.4, our thermal only detector using
different augmentations outperform all but one of themulti-spectral
detectors. Only Self-Supervised Thermal Network (SSTN101) [51]
got better results with 77.57% mAP. Instead, considering thermal-
only detectors, our proposed method outperforms all the competing
approaches.

Fig. 8 compares the detections obtained using the layer-wise
YOLOv3 baseline presented in [35], the results obtained adding the
BBAug augmentation technique [70] and the results obtained using
our proposed approach, i.e. adding 3D models and improving their



appearance with a GAN. The examples on row 2 show that the kid
crossing the street was not detected by the method proposed in [35],
but both augmentation approaches are now capable of correctly
detecting him. Row 3 shows how adding 3D models, as proposed in
our method, help to distinguish persons from bicycles, that are not
detected with the two other approaches. Another example of correct
detection of a bicycle, is shown in row 4, were both augmentations
are able to recognize it.

5 CONCLUSIONS
In this paper we compared several data augmentation strategies
to improve a YOLOv3 detector working in a thermal-only domain.
Given the challenges of the task, such as its data scarcity, we pre-
sented an augmentation pipeline that combines simulated data
within a real scene, followed by domain adaptation using a genera-
tive model. This approach is particularly suitable for domains, such
as thermal imagery, where the creation of completely synthetic
scenes is unfeasible or extremely expensive due to the difficulty of
modeling all the physical properties of the entities of the scene. Our
best combination of strategies reaches states of the art performance
in the thermal only domain, and reaches similar or better results
with respect to multi-spectral detectors.
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