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Abstract: Salmon processing commonly involves the skinning of fish, generating by-products that
need to be handled. Such skin residues may represent valuable raw materials from a valorization
perspective, mainly due to their collagen content. With this approach, we propose in the present
work the extraction of gelatin from farmed salmon and further valorization of the remaining residue
through hydrolysis. Use of different chemical treatments prior to thermal extraction of gelatin
results in a consistent yield of around 5%, but considerable differences in rheological properties.
As expected from a cold-water species, salmon gelatin produces rather weak gels, ranging from 0
to 98 g Bloom. Nevertheless, the best performing gelatins show considerable structural integrity,
assessed by gel permeation chromatography with light scattering detection for the first time on
salmon gelatin. Finally, proteolysis of skin residues with Alcalase for 4 h maximizes digestibility and
antihypertensive activity of the resulting hydrolysates, accompanied by the sharpest reduction in
molecular weight and higher content of essential amino acids. These results indicate the possibility of
tuning salmon gelatin properties through changes in chemical treatment conditions, and completing
the valorization cycle through production of bioactive and nutritious hydrolysates.

Keywords: salmon (Salmo salar); gelatin; valorization; aquaculture by-products; gel strength; rheo-
logical properties; protein hydrolysates; absolute molecular weight

1. Introduction

Gelatin is a peptide mixture resulting from the denaturation of collagen, the main
structural protein in connective tissue. Collagen consists of a triple helix of peptides of
around 100 kDa (α-chains), assembled in the extracellular matrix into aggregates form-
ing fibrils [1]. Disruption of the triple helix structure turns very insoluble collagen into
soluble gelatin, a more tractable material that has found many applications in the food,
pharmaceutical, and biomedical industries [2–4].

Sources of commercial gelatin comprise mostly pig and cattle bones, skins, and hides,
but growing interest exists in fish gelatin. On the one hand, as a substitute of terrestrial
animals for cultural reasons, but also as properties of fish gelatins, different to those of
mammalian counterparts, may better suit particular applications [2,3]. As a result, many
works have dealt with the extraction and properties of gelatin from a wide range of fish
species [5,6].
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By-products of the fishing industry rich in collagen may turn into raw materials
for gelatin extraction, especially skins which may contain four-fold more collagen than
heads or bones [7]. This biomass is currently discarded or used to produce low-value fish
feed, and may pose environmental problems as its volume expands along with growing
consumption of fish, increasingly processed as modern societies demand convenience
food, such as fish fillets. In this line, valorization of processing by-products from highly
demanded species, such as salmon, is particularly relevant.

A number of previous studies have focused on the isolation of gelatin from salmon
skin, looking at the effect of different pretreatments and thermal extraction conditions on
yield and properties of the resulting gelatin. The treatments commonly applied involve
an alkaline step followed by acid [8–12], although some authors have tried initial saline
treatment [7], sometimes followed by alkaline medium and trypsin [13,14], or trypsin
alone [14]. Generally, harsher treatments and high extraction temperatures increase yield
but result in gelatin with weaker rheological properties, which seem to be influenced by
the content of imino acids, hydrophopic amino acids, and molecular weight. Despite the
importance of the latter, studies to date have only used relative methods to assess the Mw
of each gelatin fraction, commonly electrophoresis, or capillary viscometry, techniques that
only provide a mean value for the whole material.

In the present work, we have extracted gelatin from farmed salmon skin using different
methods, and studied for the first time the molecular weight distributions of each material
by gel permeation chromatography (GPC) with light scattering detection, allowing for ab-
solute molecular weight measurements. The rheological properties of gelatin are discussed
in light of this information, along with amino acid profiling. Furthermore, we propose to
complete the valorization of salmon skin with the production protein hydrolysates from
the solids remaining from gelatin extraction.

2. Materials and Methods
2.1. Skin By-Products from Farmed Salmon

Fresh skin from farmed Atlantic salmon (Salmo salar) resulting from the industrial
filleting of this species was kindly provided by Dr. Johan Johansen (Norwegian Institute
of Bioeconomy Research, NIBIO, Bodø, Norway). Frozen salmon skins were sent from
Norway to Spain and stored at −20 ◦C until use. Skins were cut in portions less than
5 × 5 cm, and 500 g of these fragments were processed per batch. In all cases, the first
step was a water wash step for 30 min under orbital agitation (50 rpm) to eliminate the
impurities present in the skin fragments.

2.2. Production of Salmon Gelatin

Different protocols for gelatin extraction were evaluated (Table 1, Figure S1, Supple-
mentary Materials). The first two protocols (P1 and P2) included in the first stage three
sequential chemical treatments [15], repeating alkaline extraction twice to extract as much
fat as possible). Protocol 3 (P3) followed the recommendations previously reported [16,17],
repeating the alkaline extraction three times. Protocols 4 and 5 (P4 and P5) were based
on the thermal extraction of gelatin in acidic conditions [18]. In all protocols, agitation
was carried out in an orbital shaker and water wash for 30 min (1:4 ratio) applied in
between steps.
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Table 1. Chemical treatments applied for gelatin extraction in each protocol. S:L solid to liquid ratio.

Protocol Treatment 1 Treatment 2 Treatment 3

P1

0.05 M NaOH 0.02 M H2SO4 0.052 M citric acid
S:L 1:4 S:L 1:4 S:L 1:4
30 min 30 min 30 min
50 rpm 50 rpm 50 rpm
22 ◦C 22 ◦C 22 ◦C

P2

0.05 M NaOH 0.02 M H2SO4 0.052 M citric acid
S:L 1:4 S:L 1:4 S:L 1:4
30 min 30 min 30 min
50 rpm 50 rpm 50 rpm

4 ◦C 4 ◦C 4 ◦C

P3

0.8 M NaCl 0.2 M NaOH 0.05 M acetic acid
S:L 1:4 S:L 1:6 S:L 1:10
30 min 30 min 3 h
50 rpm 50 rpm 50 rpm

4 ◦C 4 ◦C 22 ◦C

P4

0.1 M NaOH H3PO4 until pH 5–5.2
S:L 1:2 S:L 1:2
30 min 3 h
50 rpm 50 rpm
22◦C 22 ◦C

P5

0.1 M NaOH H3PO4 until pH5–5.2
S:L 1:2 S:L 1:2
30 min 3 h
50 rpm 50 rpm
22 ◦C 22 ◦C

The elimination of chemical effluents in each procedure (alkaline and acidic effluents)
was carried out by filtration (1000 µm). At completion of the different chemical processing
steps, the gelatin solution was then thermally extracted at 45 ◦C on aqueous medium (1:2
ratio) for 16 h in protocols P1–P3. Purification of the gelatin solutions was carried out in
all protocols by filtration (500 µm), active charcoal adsorption (at 1.5% w/v for 2 h), and
centrifugation (15,000× g/20 min). The clean supernatants derived from this last procedure
were finally oven-dried for 48–72 h to obtain solid gelatin. In all cases each protocol (P1–P5)
was executed in duplicate.

2.3. Production of Collagen Hydrolysates

The skin remains generated after the thermal extraction of gelatins (SR) were mixed,
separated into aliquots of 0.8 kg, ground, and then hydrolyzed by two commercial pro-
teases: Alcalase 2.4 L (Novozymes, Nordisk, Bagsvaerd, Denmark), and Papain 6000
(Gygyc Biocon, Barcelona, Spain). Experiments of hydrolysis were performed following
the optimal conditions previously defined [19,20] (Table 2). All hydrolyses were performed
in a 5 L glass-reactor (pH-Stat system equipped with additional temperature, agitation,
and reagents-addition control), mixing 0.8 kg of skin remains in 1 L of distilled water
employing 5 M NaOH for pH-control and maintaining continuous agitation at 200 rpm.
At the end of the enzymatic digestion process, non-hydrolyzed materials were removed
by filtration, and the liquid fraction was centrifuged (15,000× g for 20 min) to separate
oil and hydrolysates. These hydrolysates were immediately warmed (90 ◦C/15 min) for
protease inactivation. The hydrolysis degree (H, as %) was calculated according to the
pH-Stat method and mathematical equations previously described [21,22]. The Weibull
equation was applied to predict the experimental kinetics of H [23]:

H = Hm

{
1− exp

[
− ln 2

(
t
τ

)β
]}

with vm =
βHm ln 2

2τ
(1)
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where H is the hydrolysis degree (%), t is the hydrolysis time (min), Hm is the maximum
hydrolysis degree (%), β is a dimensionless parameter associated with the slope of the
hydrolysis process, vm is the maximum hydrolysis rate (% min−1), and τ is the time needed
to reach the semi-maximum hydrolysis degree (min). The yield of digestion (Ydig) of raw
material to the liquid phase was also calculated (in %) [23].

Table 2. Experimental conditions for hydrolysis of skin remains after thermal extraction of gelatin.

Protocol Enzyme Temperature (◦C) pH Time (h)

CH1 Alcalase 0.2% (v/w) 56.2 8.27 2
CH2 Alcalase 0.2% (v/w) 60.3 8.82 4
CH3 Papain 0.2% (v/w) 65 7.00 2
CH4 Papain 0.2% (v/w) 65 7.00 4

2.4. Chemical and Rheological Characterization
2.4.1. Production Yields

Yields were calculated as the dry weight of gelatin extracted ×100 per wet weight of
fresh skins before processing.

2.4.2. Chemical Composition and Bioactive Properties

The chemical composition of salmon skin and gelatin was obtained by quantify-
ing: (1) moisture, organic matter, and ash percentage [24], (2) total protein as total
nitrogen × 6.11 [15,25], (3) total lipids [26], and (4) amino acid content by ninhydrin
reaction [27] employing an amino acid analyzer (Biochrom 30 series, Biochrom Ltd.,
Cambridge, UK) and norleucin as internal standard. Regarding characterization of skin
waste hydrolysates, the following was determined: (1) total soluble protein by the Lowry
method [28], (2) in vitro digestibility by the Association of Official Agricultural Chemists
(AOAC) official method according to the reformulations suggested by [25], and (3) in vitro
antihypertensive activity Angiotensin I-converting enzyme (ACE) inhibitory activity (IACE)
calculating IC50 values (protein-hydrolysate concentration that generates a 50% of IACE) by
dose-response modeling [29,30]. All analyses were performed in at least duplicate.

2.4.3. Molecular Weight

The molecular weight profiles of salmon gelatins were analyzed by gel permeation
chromatography with an Agilent 1260 liquid chromatography (LC) system consisting of
quaternary pump (G1311B), injector (G1329B), column oven (G1316A), DAD (G1315C)
refractive index (G1362A), and dual angle static light scattering (G7800A) detectors. Pro-
teema precolumn (5 µm, 8 × 50 mm), Proteema 100 Å (5 µm, 8 × 300 mm), Proteema 300 Å
(5 µm, 8× 300 mm), and Proteema 1000 Å (5 µm, 8× 300 mm) (PSS, Mainz, Germany) were
used for polymer separation. The system was kept at 20 ◦C and 0.15 M sodium acetate:
0.2 M acetic acid, pH 4.5 was used as mobile phase, at a rate of 0.5 mL/min. Samples
were dissolved at 1.8–2.2 g/L in the GPC mobile phase. To avoid errors due to incomplete
dissolution of samples, a refractive index increment (dn/dc) of 0.190 [31] was used to
estimate the molecular weight of gelatin, and a dn/dc of 0.185 for the hydrolysates [32].

2.4.4. Gel Strength

The strength of salmon gelatin was measured by the method detailed in [33]. Briefly,
solutions of gelatin were prepared at a concentration of 6.67% (w/v), completely dissolved at
45 ◦C and cooled at 4 ◦C for 16–18 h [16]. Gel strength was measured using a Stevens-LFRA
Texture Analyzer (Hucoa Erlöss S.A., Madrid, Spain) with a 1000 g load cell equipped
with a 0.5 inch of diameter Teflon probe. A trigger force of 5 g and a penetration speed of
1 mm/s were used, and gel strength was expressed as maximum force (in g), taken when the
plunger had penetrated 3 mm into the gelatin gels, as an average of three determinations.
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2.4.5. Infrared Spectroscopy

Fourier transformed infrared spectroscopy by attenuated total reflectance (ATR-FTIR,
Thermo Fisher Scientific, Waltham, MA, USA) was obtained using a Spectrometer Nicolet
6700, equipped with a source IR-Turbo fitted with a detector based on deuterated triglycine
sulfate (DTGS) in a beamsplitter of KBr. Background scans were 34 with a spectral res-
olution of 4 cm−1 at ambient temperature, using an Attenuated Total Reflectance (ATR)
accessory. Gelatin was deposited in a gold support in a humid chamber to avoid evapora-
tion during measurements. A study of the second derivative of the spectra of Amide I was
carried out, using the first difference derivative (FDD) method.

2.4.6. Thermogravimetric Analysis

Thermogravimetric Analysis (TGA) measurements were performed with a Setsys
Evolution 1750 Simultaneous Thermogravimetric Analysis (TGA)/Differential Scanning
Calorimetry (DSC) instrument (Setaram), presented in previous publications [34]. About
8.5 mg of samples were introduced in a sealed capsule, undergoing temperature sweeps
from room temperature to 800 ◦C at a heating rate of 5 ◦C/min−1 under an inert nitrogen
atmosphere to avoid oxidation.

2.4.7. Rheological Properties

Rheological properties of the gelatin hydrogels were determined using a Physica
MCR 101 Rheometer (Anton Paar, Graz, Austria), equipped with a cone-plate geometry
(CP50-1), with a constant gap of 0.048 mm, used for strain sweep and frequency sweep
measurements, and rugged plate-plate (PP50/S) with a gap of 0.1 mm, for measurements
of temperature ramps, allowing to control torques between 0.5 mN·m and 125 mN·m [35].
The linear viscoelastic range was determined by performing a strain sweep from 0.001
to 1000% at a constant angular frequency of 10 rad/s for 30% by weight of the gelatin
hydrogel. The storage modulus G′ and loss modulus G′′ were determined in the range of
linear deformation. Frequency sweep measurements were also made from 0.05 to 600 rad/s
applying a constant 0.1% strain. All experiments were carried out at 20 ◦C.

2.5. Numerical Fittings and Statistical Analyses

Fitting procedures and parametric estimations calculated from the hydrolysis kinetics
were carried out by minimizing the sum of quadratic differences between the observed
and model-predicted values, using the non-linear least-squares (quasi-Newton) method
provided by the macro ‘Solver’ of the Microsoft Excel software. Confidence intervals
from the parametric estimates (Student’s t test) and consistence of mathematical models
(Fisher’s F test) were evaluated by “SolverAid” macro (Levie’s Excellaneous website:
http://www.bowdoin.edu/~rdelevie/excellaneous). The significance of comparisons
between protocols were analyzed by analysis of variance (ANOVA) with a significance
level of p < 0.05.

3. Results
3.1. Gelatin Extraction by Different Procedures

In the present work, we evaluated different chemical protocols performed at two
temperatures, for the recovery of gelatin from the skin of Atlantic salmon. The yields of
production were similar in all cases (around 5% w/w), not finding significant differences
between protocols (p > 0.05) (Table 3). However, gel strengths were significantly higher
employing P1 and P5, without differences between them, in comparison with the rest of
protocols (p < 0.05). In fact, gelatins in P3 did not form gels.

http://www.bowdoin.edu/~rdelevie/excellaneous
http://www.bowdoin.edu/~rdelevie/excellaneous
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Table 3. Yield and gel strength for gelatin extracted from salmon fresh skins under the various
protocols of production tested. Values are average ± intervals of confidence for n = 2 (replicates of
independent batches) and α = 0.05. Different letters (a, b and c) in each file (as superscript) mean
significant difference between protocols (p < 0.05).

Protocol Yield (%, w of Gelatin/w of Skin) Gel Strength (Bloom, g)

P1 4.73 ± 0.81 a 98.0 ± 9.8 a

P2 4.60 ± 0.66 a 53.5 ± 1.0 b

P3 5.07 ± 0.40 a 0.0
P4 4.55 ± 0.36 a 44.5 ± 2.9 c

P5 4.79 ± 1.05 a 92.5 ± 4.9 a

The content of amino acids was also determined for all gelatins (Table 4). The ma-
jor components were, in this order, glycine, glutamic acid and proline (in similar levels),
alanine, arginine, and hydroxyproline. Regarding imino acids, hydroxyproline concentra-
tion was similar in all gelatins, except in P3 in which it was lower, whereas proline was
significantly higher in P2 and P5. Taking into consideration the sum of both amino acids,
gelatins from P1, P2, and P5 contain more than 18% (18.89% in P2) and around 17.5% in P3
and P4. The values of total protein present in dry gelatin from P1 and P2 were superior to
90%, without significant differences with P5 (p > 0.05). The presence of fat in P3 and P4
was higher than 10% (data not shown). In nutritional terms, the content in essential amino
acids was similar for all chemical treatments of skins (ranging 26–28%).

Table 4. Amino acid (AA) content of gelatins recovered from fresh salmon skins (% or g/100 g total
amino acids) with each protocol of production. OHPro: hydroxyproline. Pr: % of protein present, as
the sum of amino acids, in the extracted gelatin sample, and TE/TA: ratio total essential amino acids
for human/total amino acids. Errors are the confidence intervals for n = 2 (replicates of independent
batches) and α = 0.05. Different letters (a, b, c, and d) in each column (as superscript) mean significant
difference between hydrolysates (p < 0.05).

AA P1 P2 P3 P4 P5

Asp 6.61 ± 0.09 6.84 ± 0.21 6.81 ± 0.08 6.71 ± 0.29 6.79 ± 0.04
Thr 2.87 ± 0.01 2.84 ± 0.03 2.73 ± 0.03 2.93 ± 0.19 2.74 ± 0.09
Ser 4.80 ± 0.13 4.92 ± 0.10 4.82 ± 0.31 4.85 ± 0.12 4.83 ± 0.04
Glu 10.44 ± 0.17 11.01 ± 0.04 10.61 ± 0.03 10.95 ± 0.09 10.40 ± 0.04
Gly 21.74 ± 0.10 21.27 ± 1.66 22.58 ± 0.12 21.49 ± 1.18 22.46 ± 0.25
Ala 9.12 ± 0.12 9.54 ± 0.38 9.43 ± 0.02 9.63 ± 0.09 9.41 ± 0.03
Cys 0.41 ± 0.23 0.25 ± 0.10 0.39 ± 0.10 0.27 ± 0.02 0.31 ± 0.02
Val 2.02 ± 0.29 1.83 ± 0.07 1.98 ± 0.05 1.80 ± 0.09 1.77 ± 0.04
Met 2.86 ± 0.34 2.46 ± 0.10 2.72 ± 0.13 2.47 ± 0.01 2.43 ± 0.02
Ile 1.51 ± 0.25 1.22 ± 0.08 1.40 ± 0.01 1.22 ± 0.01 1.32 ± 0.03

Leu 2.55 ± 0.05 2.54 ± 0.01 2.50 ± 0.01 2.69 ± 0.30 2.45 ± 0.01
Tyr 0.60 ± 0.02 0.51 ± 0.01 0.56 ± 0.09 0.53 ± 0.03 0.60 ± 0.09
Phe 2.20 ± 0.06 2.11 ± 0.13 2.25 ± 0.05 2.09 ± 0.08 2.35 ± 0.03
His 1.40 ± 0.04 1.43 ± 0.07 1.44 ± 0.07 1.42 ± 0.04 1.45 ± 0.02
Lys 3.52 ± 0.02 3.83 ± 0.30 3.92 ± 0.24 3.77 ± 0.18 3.58 ± 0.03
Arg 8.67 ± 0.16 8.50 ± 0.47 8.34 ± 0.17 8.84 ± 0.57 8.36 ± 0.11

OHPro 8.19 ± 1.11 a 7.50 ± 0.17 a 7.29 ± 0.25 a 7.57 ± 0.18 a 7.75 ± 0.21 a

Pro 10.53 ± 0.07 a 11.39 ± 0.22 b 10.20 ± 0.09 c 10.75 ± 0.31 ad 11.01 ± 0.04 d

Pr (%) 91.0 ± 3.5 a 91.5 ± 2.7 a 82.2 ± 2.9 b 88.9 ± 3.3 a 89.3 ± 2.6 a

TE/TA (%) 27.6 ± 1.2 a 26.8 ± 1.0 a 26.4 ± 0.5 a 27.2 ± 0.7 a 26.6 ± 0.3 a

3.2. Molecular Weight

Profiles of gelatin samples analyzed by GPC (Figure 1) show two distinct patterns. In
all samples except P3, the bulk of the polymeric material elutes early, approximately up to
49 min. Characteristic peaks appear at 43–44, 45–46, and 48–49 min in all three samples,
corresponding to molecular weights of 312–352, 188–220, and 110–122 kDa (Table 5). The
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molecular weight of larger species could not be accurately determined, except for a small
fraction in P5 of 482 kDa. These high Mw species account for 10.5% in P1, 1.5% in P4, and
16.4% in P5 of the total area, measured by the refractive index detector (RID).
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Figure 1. GPC eluograms of gelatin extracted from the skin of salmon by different methods: P1 (a),
P2 (b), P3 (c), P4 (d), and P5 (e). Blue line: right angle light scattering; green line: low angle light
scattering; red line: refractive index; and black line: ultraviolet (232 nm). Details of the numbered
peaks/regions can be found in Table 5.



Polymers 2021, 13, 2828 8 of 18

Table 5. Molecular weight (kDa) of the distributions of gelatin from salmon shown in Figure 1. Et:
elution time; Mw: weight average molecular weight; Mn: number average molecular weight; and PDI:
polydispersity index. Peak area (%) corresponds to refractive index detector. Values are represented
as the mean ± standard deviations (n = 2).

Procedure Peak Number Et (min) Mw (kDa) PDI Peak Area (%)

P1 1-High Mw 36.1–42.2 - - 5.0 ± 1.1
2 43.4 ± 0.6 346.5 ± 2.3 1.008 6.5 ± 0.6
3 44.6 ± 0.0 214.0 ± 5.2 1.020 23.0 ± 1.7
4 48.0 ± 0.0 119.0 ± 1.6 1.005 28.0 ± 0.1

5-Low Mw 49.1–68.3 - - 37.5 ± 3.2
P2 1 40.6–44.2 312.1 ± 10.7 1.034 1.3 ± 0.4

2 44.2–46.9 187.8 ± 6.8 1.018 7.2 ± 0.9
3 48.3 ± 0.1 110.4 ± 3.2 1.008 24.3 ± 0.8

4-Low Mw 49.1–65.0 - - 67.3 ± 6.3
P3 1 45.8–48.9 111.6 ± 28.0 1.045 6.0 ± 5.7

2-Low Mw 48.9–70.5 - - 94.0 ± 5.7
P4 1-High Mw 39.4–42.9 - - 1.5 ± 1.0

2 44.4 ± 0.7 328.3 ± 21.6 1.004 4.2 ± 2.9
3 45.5 ± 0.3 212.5 ± 9.8 1.016 23.7 ± 5.5
4 48.7 ± 0.3 119.3 ± 5.3 1.011 37.9 ± 3.7

5-Low Mw 49.8–65.0 - - 32.7 ± 5.7
P5 1-High Mw 34.2–41.1 - - 10.4 ± 0.2

2 41.1–42.3 482.3 ± 12.5 1.006 6.0 ± 0.5
3 43.1 ± 0.0 351.7 ± 10.5 1.008 9.9 ± 0.8
4 44.8 ± 0.0 221.8 ± 8.5 1.017 24.0 ± 1.2
5 48.1 ± 0.0 121.8 ± 3.5 1.006 27.7 ± 0.1

6-Low Mw 49.4–65.1 - - 22.0 ± 2.2

Peptides of molecular weight below 100 kDa represent only 35.7%, 32.7%, and 22.0%
of the polymeric material (RID area) in P1, P4, and P5, respectively, but account for more
than 60% in P2 and 90% in P3. This is a heterogeneous fraction composed of multitude
of overlapping peaks. In P3, elution starts before 49 min, and therefore we integrated a
small fraction of 6.0% of the total area. Even though no clear peak appears, the tentatively
estimated molecular weight reaches 105–112 kDa, close to the values obtained for the rest
of the samples at equivalent elution times.

3.3. Thermal Stability

We selected sample P1 for further study, based on the results of gel strength and
molecular integrity determined by GPC. Thermogravimetric analyses were conducted
in the range of room temperature to 800 ◦C to estimate the thermal stability of gelatin
P1. The TGA thermogram in Figure 2a shows a profile of weight loss with increasing
temperature that can be divided into two separate regions. First, a slight degradation step
with onset at around 100 ◦C, this first stage leads to a weight variation of around −8%,
due to loss of absorbed water (Table S1, Supplementary Materials) [36]. Second, a much
more pronounced decline in mass close to 300 ◦C, carrying a 60% weight reduction. This
stage corresponds to the degradation of the low molecular weight protein fraction, as well
as structurally bound water [37]. The weight derivative confirms these observations as it
shows a sharp peak with a maximum at around 100 ◦C, and a much more pronounced
peak, with a maximum of 300 ◦C, as shown in Figure 2.
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Figure 2. TGA thermogram (solid line, weight loss), and dTGA thermogram (dashed line, differential
weight loss) obtained from TG curves (a); and DSC thermogram (b) of salmon gelatin P1.

The DSC thermogram obtained from the analysis of gelatin P1 is displayed in Figure 2b.
The thermogram shows an endothermic peak corresponding to the glass transition tem-
perature (Tg) at approximately 87 ◦C, followed by an endothermic with a heat of fusion
reaching 286.97 J/kg (Table S2, Supplementary Materials).

3.4. Infrared Spectroscopy

The infrared spectrum of gelatin as a protein is characterized by the presence of
several major absorption bands corresponding to vibrational transitions in the peptide
chain. The FTIR spectrum shown in Figure 3a shows the characteristic gelatin bands. At
high wave numbers, a broad and intense band appears with maxima at 3277 cm−1, due to
the N–H bond tension modes of protein and O–H groups of carbohydrates and water. The
signals between 2850 and 3000 cm−1 correspond to the tension modes of the C–H bonds
of aliphatic chains, with bending modes emerging at 1334 and 1444 cm−1. The 1632, 1520,
and 1237 cm−1 bands are due to the Amide I, II, and III bands, respectively. Other less
intense bands emerging between 518, 600, and 700 cm−1 are due to Amide bands IV, V and
VI, respectively. The rounded and broad shape of the band around 600 cm−1 is due to the
presence of water in the sample. At 973 cm−1, a weak band appears corresponding to the
symmetric tension mode of the CNC bond.
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Figure 3. FTIR spectra of salmon gelatin P1 (a), and spectra of the second derivative (differential
FTIR spectra, with FDD method) in the absorption region of Amide I (b).

The Amide I was resolved into six components clearly seen on the second deriva-
tive spectra (Figure 3b), and compared with data from the reference literature [38]. The
components’ peaks of the band span from 1620 to 1680 cm−1. The Amide I component at
1658 cm−1 is characteristic of a three-fold α-helix collagen [39]; components at 1633 cm−1

and 1643 cm−1 are often attributed to a CO group of imine type involved in hydrogen-
bonding with H2O with some contribution from the β-sheets; and a –COOH band at
1680 cm−1 is assigned to the β-sheets with some contribution from the β-turn absorbance
(Table 6).

Table 6. Assignments to secondary structure (β-sheet, triple α-helix) for salmon gelatin.

Secundary Structure Elements WaveNumber (cm−1)

β-Turn/β-Sheet 1633
Random Coil 1643, 1650
Triple α-Helix 1658

β-Turn/ β-Sheet 1680

3.5. Viscoelastic Properties

Initial strain sweeps were carried out at a frequency of 10 Hz to determine a suitable
strain within the linear viscoelastic region for frequency sweeps. The strain sweeps allow
the evaluation of the viscoelastic behavior of gelatins by determining the range where
their rheological properties are independent of the applied deformation. Strain sweeps
of a hydrogel prepared at 30% (w/v) with salmon gelatin P1 (Figure 4a) show broadly
typical gel behavior, with a small plateau region in the moduli values with low strain value,
and finally, significant drops in the moduli values and a transition to viscous dominant
behavior.

The frequency sweep (Figure 4b) of salmon gelatin at a constant 0.1% strain shows
that the elastic modulus G′ is greater than the viscous modulus G′′ in the entire frequency
range accessed [12] and both modules show a dependence of similar frequency [40]. A
parallel storage and loss modulus profile of the frequency sweep from 0.05 rad/s to 10,
flowing homogeneously confirming the gel network. At high frequencies there is a large
increase in G′′, which indicates a greater resistance of the gel [41].
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Figure 4. Strain and frequency sweeps for 30% solution (w/v) of salmon gelatin P1. Store (G′; filled
symbol) and loss moduli (G′′; hollow symbol) depicted versus strain (a) and angular frequency (b).

Rheological measurements of gelatin solution upon heating and cooling provide
information about gelling kinetics, namely complex viscosity, storage, and loss moduli
(Figure 5). As can be seen in (Figure 5a), a transition occurs around 14 ◦C in the complex
viscosity of P1 (Figure 5a,b) [12]. In the heating ramp, a rapid decrease in complex viscosity,
having less pronounced cooling, is followed by linear behavior, suggesting that the network
structure formed during gelatinization was disrupted upon temperature increase.
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Figure 5. Variation with temperature of complex viscosity (a,b); and storage modulus (G′, filled circle)
and loss modulus (G′′, empty circle) (c,d) for a 30% solution (w/v) of salmon gelatin P1. Heating
ramp (left column) from 5 to 40 ◦C, cooling ramp (right column) from 40 to 5 ◦C.

The values of the storage modulus G′ were found higher than the loss modulus G′′

(Figure 5c,d) for P1 gelatin, indicating that the elastic behavior of the system is greater than
the viscous behavior, forming of a large elastic network. Storage modulus with temperature
follows the same pattern as complex viscosity. On the heating ramp, it shows a decrease
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in both modules to 14 ◦C (Figure 5c), which represents the transition from the gel state to
the solution. On the cooling ramp, it produces a rather less pronounced peak for G′/G′′

(Figure 5d). The increase in G′ in the cooling process is related to the transition from
solution to gel state caused by triple helix formation.

3.6. Production of Hydrolysates from Gelatin Extraction Skin-Waste

The rests of skin remaining from the thermal extraction of gelatin were hydrolyzed by
two commercial endoproteases (alcalase and papain) at two times of proteolysis in both
cases. The composition of those rests of skin was: 78.9 ± 6.8%, 19.5 ± 2.1%, 1.6 ± 0.4%,
29.4 ± 3.8%, and 68.5 ± 3.2%, for wet, organic matter, ash, total lipids, and total protein,
respectively. Experimental data of hydrolysis degree, together with the trends modelled
by Weibull equation, are represented in Figure 6. The statistical agreement between
experimental and theoretical data was high (correlation coefficients ranging 0.979–0.987)
and the consistency of fittings was recognized by means of Fisher’s F test (p < 0.005, data
not shown).
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Figure 6. Proteolysis kinetics of salmon skins residues by alcalase (CH1 and CH2) and papain (CH3
and CH4). Experimental data of hydrolysis degree (H, symbols) were fitted to the Weibull equation
(continuous line).

At longer skin proteolysis, the maximum degrees of hydrolysis (Hm) were significantly
larger (p < 0.05) and alcalase was clearly more efficient (values of Hm and vm) than papain
to digest skin residues (Table 7). Other parameters confirmed these results, namely higher
yields of digestion, lower non-digestible skins recovered, and larger total protein content in
the hydrolysates. As in gelatins, the most abundant amino acids in these materials were Gly
and Glu (Table 7); however, glycine content in gelatin was higher than in the hydrolysates.

Furthermore, the percentage of imino acids (proline and hydroxyproline) was, in all
situations, inferior to those showed in gelatins, i.e., CH3, the hydrolysate with the highest
values of both compounds. The content in essential amino acids was higher for CH2
and CH1 and, in the four hydrolysates, these ratios were higher than those previously
reported in salmon gelatins. On the other hand, the in vitro bioactivities of hydrolysates
were influenced by the protease employed and by the time of hydrolysis. CH2 (alcalase for
4 h) showed significant improvements in both bioactivities, that is, the largest digestibility
percentage, highest ACE-inhibition percentage and lowest IC50 value. The other alcalase
hydrolysate, CH1, was the second most bioactive product at significant distance from the
results found for papain hydrolysates. It was evident that the bioactive capacity of peptides
from hydrolysates was directly dependent on the degree of hydrolysis (Table 7).
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Table 7. Mass balance, chemical, and bioactive properties of hydrolysates from salmon skin residues
applying alcalase (CH1 and CH2) and papain (CH3 and CH4). Ydig: yield of digestion process. Yoil:
percentage of oil recovered. Yskin: percentage of final solid produced (non-digestible skin). Pr: soluble
protein by Lowry method. Hm: maximum hydrolysis degree from Weibull equation. vm: maximum
rate of hydrolysis from Weibull equation. IACE: maximum ACE activity. IC50: protein-hydrolysate
concentration that generates a 50% of IACE. Different letters (a, b, c, and d) in each column (as
superscript) mean significant difference between hydrolysates (p < 0.05).

CH1 CH2 CH3 CH4

Mass balance and hydrolysates characteristics
Ydig (%) 72.0 ± 2.5 a 79.3 ± 1.6 b 60.3 ± 2.1 c 63.8 ± 1.1 d

Yoil (%) 15.8 ± 0.8 a 14.0 ± 0.7 b 14.6 ± 0.8 b 14.3 ± 0.5 b

Yskin (%) 6.6 ± 0.5 a 4.5 ± 0.7 b 32.4 ± 1.6 c 29.2 ± 0.8 d

Pr (g/L) 48.1 ± 0.5 a 47.6 ± 1.2 a 16.2 ± 0.5 b 26.6 ± 0.9 c

Hm (%) 14.3 ± 0.3 a 20.0 ± 0.4 b 4.3 ± 0.1 c 6.8 ± 0.1 d

vm (% min−1) 0.20 ± 0.03 a 0.18 ± 0.01 a 0.09 ± 0.01 c 0.05 ± 0.01 d

Amino acid composition of hydrolysates
Gly (%) 12.1 ± 0.3 a 11.0 ± 0.3 b 11.0 ± 0.4 b 12.2 ± 0.3 a

Glu (%) 12.6 ± 0.2 a 12.3 ± 0.4 a 18.3 ± 0.7 b 15.6 ± 0.5 c

Pro (%) 7.4 ± 0.1 a 6.4 ± 0.0 b 9.0 ± 0.9 c 7.9 ± 0.1 d

OHPro (%) 3.9 ± 0.0 a 3.8 ± 0.1 a 6.8 ± 0.3 b 5.2 ± 0.4 c

TE/TA (%) 38.7 ± 0.2 a 41.3 ± 0.1 b 32.3 ± 1.0 c 36.0 ± 1.0 d

Antihypertensive and digestibility properties
Dig (%) 82.4 ± 1.4 a 85.9 ± 1.8 b 74.9 ± 1.2 c 77.2 ± 2.5 c

IACE (%) 74.3 ± 7.1 a 82.3 ± 4.3 a 41.3 ± 3.5 b 49.5 ± 2.6 c

IC50 (µg Pr/mL) 189.3 ± 10.3 a 71.2 ± 6.9 b 732.2 ± 32.6 c 562.2 ± 9.9 d

The molecular weight of hydrolysates produced with alcalase clearly differ from those
digested with papain, as shown by the different elution profiles depicted in Figure S2
(Supplementary Materials). In the first case, elution starts around 60 min, while this occurs
10 min earlier in papain samples, indicating a significant difference in Mw. Furthermore, the
profile is more complex in CH3 and CH4, with a number of overlapping peaks, especially
at shorter retention times.

The estimated molecular weights reflect the differences seen in elution profiles (Table 8).
Samples hydrolyzed with alcalase resulted in a 4-fold reduction in Mw compared to those
treated with papain, around 2 kDa in the first case and 8 kDa in the second. This was
accompanied by more polydisperse distributions in papain hydroysates. Longer reaction
times led to a reduction in Mw for both enzymes, although the effect was larger in alcalase
hydrolysates.

Table 8. Molecular weight (kDa) of hydrolysates of salmon skin after gelatin extraction shown in
Figure S2; Mw: weight average molecular weight; Mn: number average molecular weight; and PDI:
polydispersity index. Values are represented as the mean ± standard deviations (n = 2).

Enzyme Time Mn (kDa) Mw (kDa) PDI

Alcalase
2 h 1157 ± 156 2068 ± 49 1.788
4 h 883 ± 121 1810 ± 44 1.938

Papain 2 h 2749 ± 137 8054 ± 137 2.930
4 h 2721 ± 209 7567 ± 454 2.781

4. Discussion

All protocols yield comparable amounts of gelatin (4.51–5.07%, Table 3), despite the
differences in the chemical treatments and associated temperatures. This is unexpected,
as previous studies have found significant effects of acid concentration, pretreatment
temperature, and extraction temperature on gelatin yield from salmon skin [9,13]. The
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yield values obtained here agree well with a previous work reporting 5.5% yield (estimated
based on a 15.3% yield in the skin separated from the muscle remaining in the salmon
filleting by-product, with 35.7% skin and 64.3% muscle) [8]. Other works calculate yield
based on hydroxyproline content, making comparison with the present data difficult.
Furthermore, yield figures vary widely from 22.4% to 74% [7,9,13,14].

On the other hand, differences in chemical treatment do affect the gel strength of the
resulting gelatins, to the point that P3 does not gel at all, while P1 and P5 reach similar
values (98 and 92.5, respectively, Table 3). These results align with others previously
reported [8,11,12]. Of note, treatment temperature shows opposite effects in P1 and P2
compared to P4 and P5. The latter only differ in the temperature of the alkaline treatment,
which may indicate that low temperature enhances gel strength. If this holds true for
P1 and P2, then the positive effect of risen temperature in the acidic treatments possibly
compensates for the deleterious effect on NaOH treatment, as temperature remains constant
throughout all three steps (NaOH, H2SO4, and citric acid). However, the higher gel strength
seen after alkaline treatment at 4 ◦C, and acidic treatments at 22 ◦C cannot be generalized
in light of the null gel strength of P3 (NaCl and NaOH at 4 ◦C, and acetic acid at 22 ◦C).

Processing conditions show scant impact on the aminoacid profile of gelatin (Table 4).
The main aminoacids in collagen (glycine, proline, and hydroproline) varied little across
treatments, and while differences in proline content are statistically significant, the values
range only from 10.20% to 11.39%. Although P3, which did not gel, contains the lowest
amount of proline and protein content, no relationship with gel strength is apparent for the
other samples. Hence, aminoacid composition does not explain differences in gel strength.

Molecular weight distributions, however, appear influenced by the process (Figure 1,
Table 5), and related to differences seen in gel strength. In the strongest gel forming
gelatins (P1 and P5), structural integrity is evidenced by distinct peaks of estimated Mw
slightly above 300 kDa, 200 kDa, and 100 kDa, corresponding to the structural units of
collagen (γ-, β-, and α-chains, respectively). Higher Mw species are due to supramolecular
aggregates of the former. On the other hand, the only gelatin not capable of gelling (P5) only
contains 6% of α-chains, the bulk of the material made of peptides below 100 kDa. These
possibly consist of collagen fragments and aminoacids resulting from its degradation,
and other non-collagenous proteins. Beyond these extreme cases, we failed to find a
clear relationship between gel strength and the proportion of each structural unit. The
behavior of intermediate strength gelatins illustrates this fact: while gel strength was
slightly superior in P2 (53.5) than in P4 (44.5), around two thirds of P2 consist of protein
below 100 kDa, whereas in P4 this fraction accounts for only one third.

Based on the above results, we selected P1 as the preferred process to recover gelatin
from salmon skin, and focused on this material for further characterization. As a starting
point, we were interested in assessing the thermal stability of the gelatin sample. Weight
loss determined by TGA (Figure 2a) behaved fairly similarly to other gelatins [42]. Further-
more, the high glass transition temperature determined by DSC (Figure 2b) suggests that
the chain interactions are strong; this transition is related to the Mw and the chain architec-
ture. Tg is a non-kinetic event, related to the mobility of the chains; therefore, depending
on the solvent used, it may have a different Tg value, as reported in the literature [42].
Moreover, in DSC an endothermic peak appears around 300 ◦C, which corroborates the
degradation of the low molecular weight protein fraction, as well as structurally bound
water, which is observed in the thermogravimetric analysis.

The spectral FTIR profiles of gelatin sample P1 (Figure 3a) are typical of fish gelatin
and comparable to others previously reported for other fish species [43]. We focused
in particular in the Amide I band, as it is more sensitive to changes in the secondary
structure. Qualitatively, the Amide I band can be explained by the superposition of bands
corresponding to different conformational states of the polypeptide chain [43]. By applying
the second derivative method (Figure 3b), we identified components (Table 6) assigned to
the triple-helix conformation typical of tropocollagen, in agreement with the GPC elution
profile. Furthermore, the presence of a –COOH band confirms that gelatin gelling is
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responsible for the situation wherein a certain number of carboxylic acid functions are
blocked to form β-sheets and β-turns, thus forming a supramolecular network. The most
intense signal corresponds to random coil disposition, indicating the predominance of a
disordered structure. This may indicate that not only the peptides below 100 kDa (38.5%)
contribute to this signal, but as do collagen structural units such as α-chains (28%), as
determined by GPC (Table 5).

The rheological measurements of a hydrogel formed with gelatin P1 show typical
gel behavior, which disappears as gelatin is heated above 14 ◦C (Figure 5). At this point,
the network structure formed during gelatinization is disrupted. Previous works have
reported similar values (15 ◦C) [12], but also lower (10–11 ◦C) [8], differences that may be
influenced by the diverse extraction procedures used.

The data presented here portrays gelatin as a viable option to add value to skin
by-products resulting from fish filleting. However, the extracted gelatin only represents
around 5% of the initial biomass (Table 3), leaving the bulk of the material as waste. To
complete the valorization cycle, we propose the proteolysis of these skin remains. In the
best case tested, Alcalase induces almost complete conversion of the substrate, leaving
only around 5% of undigested material (Table 7). Concomitantly, the process manages to
recover a significant amount of fish oil (up to almost 6%).

The hydrolysates still contain some collagenous material, as shown by the presence
of proline and hydroxyproline (almost exclusive to collagen). The contribution of other
proteins raises the ratio of essential aminoacids to 41.3%, comparable to hydrolysates
prepared from other species [44–46], with digestibilities of up to 85.9%. Furthermore,
in vitro antihypertensive activity in the Alcalase hydrolysate CH2 (82.3% inhibition; 71.2 µg
protein/mL-IC50) compares favorably with hydrolysates from salmon heads (71.9% inhi-
bition; 478.5 µg protein/mL-IC50) and frames and trimmings (87.0% inhibition; 653.7 µg
protein/mL-IC50) [20]. These properties pose the hydrolysates as potential ingredients of
food supplements, aquaculture feed, pet food, and microbial culture media.

Digestibility and antihypertensive activity (Table 7) appear correlated with the Mw
of the hydrolysates, with more fragmented protein possessing higher digestibility and
antihypertensive activity. However, previous studies have reported contradictory results,
finding direct [47], inverse [48], or no relationship [20,32].

5. Conclusions

Extraction of gelatin from salmon skin and the production of hydrolysates from the
remaining skin residues represent a viable path to recover protein from filleting by-products.
Of all the methods tested, chemical treatment of the skin with sodium hydroxide, sulfuric
and citric acids at 22 ◦C produces gelatin with the strongest rheological properties. These
properties seem to correlate with a higher proportion of high molecular weight components
and lower amounts of peptides below 100 kDa, but we found no relationship with amino
acid composition. The molecular weight distributions seem to reflect in the bands seen
in infrared spectroscopy, which are related to secondary structuring and random coil
conformation of protein chains. Hydrolysis of the gelatin extraction by-products achieves
higher efficiency with Alcalase, liquefying close to 80% of the initial solids into soluble low
molecular weight peptides. Aminoacid composition, digestibility and antihypertensive
activity of the resulting hydrolysates show their potential as food and feed ingredients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13162828/s1, Figure S1: Flowcharts summarizing the protocols studied for the produc-
tion of gelatins from salmon skin by-products. Chemical treatments in P1 and P2 were run at 22 ◦C
and 4 ◦C, respectively. Chemical treatments in P4 and P5 were run at 22 ◦C and 4 ◦C, respectively;
Figure S2. GPC eluograms of hydrolysates of salmon skin after gelatin extraction. (a) CH1: alcalase
2 h; (b) alcalase 4 h; (c) papain 2 h; (d) papain 4 h. Blue line: right angle light scattering; red line:
refractive index; black line: ultraviolet (232 nm). Table S1: Values obtained from the analysis of the
TGA and DTGA curves of salmon gelatin P1; Table S2: Values obtained from the analysis of DSC of
salmon gelatin P1.
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