
U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

QuaPy: A Python-Based Framework forQuantification
Alejandro Moreo, Andrea Esuli, Fabrizio Sebastiani

Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche

Pisa, Italy

ABSTRACT
QuaPy is an open-source framework for performing quantification
(a.k.a. supervised prevalence estimation), written in Python. Quan-

tification is the task of training quantifiers via supervised learning,

where a quantifier is a predictor that estimates the relative frequen-
cies (a.k.a. prevalence values) of the classes of interest in a sample

of unlabelled data. While quantification can be trivially performed

by applying a standard classifier to each unlabelled data item and

counting how many data items have been assigned to each class,

it has been shown that this “classify and count” method is outper-

formed by methods specifically designed for quantification. QuaPy

provides implementations of a number of baseline methods and

advanced quantification methods, of routines for quantification-

oriented model selection, of several broadly accepted evaluation

measures, and of robust evaluation protocols routinely used in the

field. QuaPy also makes available datasets commonly used for test-

ing quantifiers, and offers visualization tools for facilitating the

analysis and interpretation of the results. The software is open-

source and publicly available under a BSD-3 licence via GitHub
1
,

and can be installed via pip2.

CCS CONCEPTS
• Computing methodologies→ Learning paradigms; • Infor-
mation systems→ Data mining.

KEYWORDS
Quantification, Supervised Prevalence Estimation, Learning toQuan-

tify, Supervised Learning, Python, Open Source

ACM Reference Format:
Alejandro Moreo, Andrea Esuli, Fabrizio Sebastiani. 2021. QuaPy: A Python-

Based Framework for Quantification. In CIKM 2021: 30th ACM International
Conference on Information and Knowledge Management, November 1–5, 2021,
Gold Coast, AU . ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/1122445.1122456

1
https://github.com/HLT-ISTI/QuaPy

2
https://pypi.org/project/QuaPy/

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM 2021, November 1–5, 2021, Gold Coast, AU
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Quantification (variously called learning to quantify, or supervised
prevalence estimation, or class prior estimation) is the task of training
models (“quantifiers”) that estimate the relative frequencies (a.k.a.
prevalence values) of the classes of interest in a sample of unlabelled

data items [14]. For instance, in a sample of 100,000 unlabelled

tweets known to express opinions about Donald Trump, such a

model may be tasked to estimate the percentage of these 100,000

tweets which display a Positive stance towards Trump (and to

do the same for classes Neutral and Negative). In other words,

quantification stands to classification as aggregate data stand to

individual data. Quantification is of special interest in fields such

as the social sciences [16], epidemiology [18], market research [8],

and ecological modelling [2], since these fields are inherently con-

cerned with aggregate data; however, quantification is also useful in

applications outside these fields, such as in enforcing the fairness of

classifiers [4], performingword sense disambiguation [5], allocating

resources [12], and improving the accuracy of classifiers [27].

Quantification can trivially be solved via classification, i.e., by

training a classifier, applying it to the unlabelled data items, and

counting how many data items have been assigned to each class.

However, there is by now abundant evidence [14] that this “classify

and count” method delivers suboptimal quantification accuracy,

and especially so in scenarios characterized by distribution shift,
i.e., by the fact that the class prevalence values in the training set

are substantially different from those in the set of unlabelled data.

As a result, quantification is no more considered just a by-product

of classification, and has evolved as a task in its own right; as

such, quantification has its own learning methods, model selection

protocols, evaluation measures, and evaluation protocols.

In this paper we present QuaPy, a framework written in Python

that provides implementations of the most important tools for re-

search, development, and experimentation, in quantification. The

following script can serve as a minimal working example of how

QuaPy is used. The script fetches a dataset of tweets, trains a quan-

tifier via the Adjusted Classify and Count method (that is meant to

improve the prevalence estimates returned by a standard classifier,

here trained via logistic regression), and then evaluates the quanti-

fier in terms of the Absolute Error (AE) between the estimated and

the true class prevalence values of the test set.

1 import quapy as qp
2 from sklearn.linear_model import LogisticRegression
3

4 data = qp.datasets.fetch_twitter('semeval16')
5

6 # create an "Adjusted Classify & Count" quantifier
7 model = qp.method.aggregative.ACC(LogisticRegression())
8 model.fit(data.training)
9

10 estim_prevalence = model.quantify(data.test.instances)
11 true_prevalence = data.test.prevalence()
12

2021-06-18 06:55. Page 1 of 1–10.

https://orcid.org/0003-4221-6427
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://github.com/HLT-ISTI/QuaPy
https://pypi.org/project/QuaPy/
https://doi.org/10.1145/1122445.1122456

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

CIKM 2021, November 1–5, 2021, Gold Coast, AU Alejandro Moreo, Andrea Esuli, Fabrizio Sebastiani

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

13 error = qp.error.ae(true_prevalence, estim_prevalence)
14 print('Absolute Error (AE)', error)

As mentioned above, quantification is particularly useful in scenar-

ios where distribution shift may occur. Any quantification model

should thus be tested across different data samples characterized

by different class prevalence values. QuaPy implements sampling

procedures and evaluation protocols that automate this endeavour.

The paper is structured as follows. In Section 2 we briefly de-

scribe the quantifier training methods included in QuaPy, while in

Section 3 we present a number of datasets that have been previously

used in quantification research and that we include in the QuaPy

suite. Section 4 is devoted to quantifier evaluation, and discusses

the evaluation measures and evaluation protocols that we make

available within QuaPy. Section 5 turns to model selection, dis-

cussing the hyperparameter optimization protocols implemented

within QuaPy, while Section 6 illustrates the tools that we make

available for visualizing the results of quantification experiments.

Section 7 discusses some experiments that we have carried out in

order to showcase some among the features of QuaPy. In Section 8

we give some concluding remarks.

2 METHODS
A quantifier is defined in QuaPy as a model that can be fit on some

training data, so that the fitted model can estimate class prevalence

values for unlabelled data. More specifically, a quantifier in QuaPy

must inherit from the class BaseQuantifier, and implement the

following abstract methods:

1 @abstractmethod
2 def fit(self, data: LabelledCollection): ...
3

4 @abstractmethod
5 def quantify(self, instances): ...
6

7 @abstractmethod
8 def set_params(self, **parameters): ...
9

10 @abstractmethod
11 def get_params(self, deep=True): ...

The meaning of these functions should be familiar to anybody ac-

customed to the scikit-learn environment [23], since the class

structure of QuaPy is directly inspired by scikit-learn’s “estima-

tors”.
3
Functions fit and quantify are used to train the model and

to return class prevalence estimates, respectively, while functions

set_params and get_params allow a model-selecting routine (see

Section 5) to automate the process of hyperparameter optimization.

Quantification methods can be classified as belonging to the

aggregative, non-aggregative, or meta classes. Aggregative methods

are characterized by the fact that quantification is obtained as an

aggregation of the outputs returned by a classification process

for the individual documents. Non-aggregative methods analyse

instead the sample of unlabelled documents as a whole, without

resorting to the classification of individual data items. Finally, meta-

quantifiers are built on top of other quantifiers, and generate their

predictions by analysing the predictions made by the underlying

3
QuaPy’s quantifiers do not inherit from scikit-learn’s estimators due to one key dif-

ference that makes the two incompatible. While a scikit-learn estimator’s predict
method is expected to produce an array of 𝑐 predictions (with 𝑐 the number of classes)

for each of the 𝑛 data items in the input, the quantifier’s quantify method is instead

requested to output one single vector of 𝑐 prevalence values for a given sample of data

items.

quantifiers. We will briefly present these three classes in the next

three subsections.

2.1 Aggregative methods
Most of the methods proposed in the literature and included in

QuaPy are aggregative. QuaPy models aggregative quantifiers by

means of the abstract class AggregativeQuantifier. This class
extends BaseQuantifier, providing a default implementation of

the quantify method based on the aggregate function, that has
to be implemented, i.e.,

1 def quantify(self, instances):
2 classif_predictions = self.classify(instances)
3 return self.aggregate(classif_predictions)
4

5 @abstractmethod
6 def aggregate(self, classif_predictions:np.ndarray): ...

Implementing an aggregative method only requires overriding

the aggregate method. The AggregativeQuantifier class imple-

ments the rest of the process, and is designed to work with any

scikit-learn estimator. Working with packages or machine learn-

ing tools other than scikit-learn only requires overriding the

classifymethod, which takes as input the individual data items in

the sample and returns the corresponding classification predictions

(see Section 2.1.5).

Probabilistic aggregative methods are a subclass of aggregative

methods, which, instead of the “crisp” decisions returned by a cat-

egorical classifier, use the posterior probabilities returned by a

probabilistic classifier. Probabilistic aggregative methods inherit

from the abstract class AggregativeProbabilisticQuantifier,
which extends AggregativeQuantifier, by providing a default

implementation of the quantify method as follows:

1 def quantify(self, instances):
2 classif_posteriors = self.posterior_probabilities(instances)
3 return self.aggregate(classif_posteriors)

Themethod posterior_probabilities, similarly to themore gen-

eral case, is designed to work together with the predict_proba
method of any probabilistic classifier in scikit-learn. QuaPy
also allows using the scikit-learn’s crisp estimators that do not

come with an implementation of the predict_proba method (e.g.,

LinearSVC). In this case, the estimator is converted into a proba-

bilistic classifier by means of a calibration method [24].
4
Packages

other than scikit-learn can be used as well by providing a cus-

tom implementation of the posterior_probabilities method

(see Section 2.1.5).

One advantage of aggregative methods (probabilistic or not) is

that the evaluation according to any sampling procedure (e.g., the

artificial prevalence protocol – see Section 4) can be carried out

very efficiently, since the entire set of unlabelled items can be pre-

classified once for all at the beginning, and the estimation of class

prevalence values for different samples can directly reuse these

predictions, with no need to reclassify each individual data item

every time. QuaPy takes advantage of this property to drastically

speed up any routine that has to do with quantification on multiple

samples drawn from the same set, as is customarily the case in

quantification, both in the performance evaluation phase (Section 4)

and in the model selection phase (Section 5).

4
In QuaPy this is automatically done by wrapping the estimator in the

CalibratedClassifierCV class.

2021-06-18 06:55. Page 2 of 1–10.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

QuaPy: A Python-Based Framework for Quantification CIKM 2021, November 1–5, 2021, Gold Coast, AU

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.1.1 Classify & Count and its variants. QuaPy provides implemen-

tations for Classify & Count (CC) and its variants, i.e.,

• CC (Classify & Count), the simplest aggregative quantifier,

that simply relies on the label predictions of a classifier to

deliver class prevalence estimates;

• ACC (Adjusted Classify & Count) [12], the “adjusted” variant

of CC, that corrects the predictions of CC according to the

“misclassification rates” (see below) of the classifier;

• PCC (Probabilistic Classify & Count) [3], the probabilistic

variant of CC that relies on the posterior probabilities re-

turned by a probabilistic classifier;

• PACC (Probabilistic Adjusted Classify & Count) [3], which

stands to PCC as ACC stands to CC.

Note that the adjusted variants (ACC and PACC) need to estimate

the parameters (the “misclassification rates”) required for perform-

ing the adjustment; the estimation uses a validation set carved out

of the labelled set. The specific form of parameter optimization can

be set at construction time or at fitting time using the argument

val_split, either by indicating a float in (0,1) specifying the frac-

tion of the training data to be used as a held-out validation set, or

by indicating an int specifying the number of folds to be used in a

𝑘-fold cross-validation (𝑘-FCV) process, or by explicitly passing a

set of instances to be used as the validation set (i.e., an instance of

LabelledCollection – see Section 3).

2.1.2 Forman’s variants of ACC. QuaPy also provides implemen-

tations of a series of binary quantification methods, proposed by

Forman in [11, 12] as variations of ACC, and whose goal is to bring

improved stability to the denominator of the adjustment.
5
The

methods are based on different heuristics for choosing a decision

threshold that would allow for more true positives and many more

false positives, on the grounds this would deliver larger denomina-

tors.

QuaPy implements the methods X (which looks for the threshold

that yields tpr(𝑦) = 1− fpr(𝑦)), MAX (which looks for the threshold

that maximizes tpr(𝑦) − fpr(𝑦)), T50 (which looks for the threshold

that makes tpr(𝑦) closer to 0.5). QuaPy also implementsMS (Median

Sweep), a method that generates class prevalence estimates for

all decision thresholds and returns the median of them all; and

MS2, a variant that computes the median only for cases in which

tpr(𝑦) − fpr(𝑦) > 0.25.

2.1.3 The Saerens-Latinne-Decaestecker algorithm. The Saerens-
Latinne-Decaestecker (SLD) algorithm [27?] (sometimes also called

EMQ, for Expectation Maximization Quantifier) is a probabilistic
quantifier-generatingmethod. SLD consists of using thewell-known

Expectation Maximization algorithm to iteratively update the pos-

terior probabilities generated by a probabilistic classifier and the

class prevalence estimates obtained via maximum-likelihood esti-

mation, in a mutually recursive way, until convergence. Although

this method was originally proposed for improving the quality

5
In the binary case, the ACC adjustment comes down to computing 𝑝ACC (𝑦) =

�̂�CC (𝑦)− ˆ
fpr(𝑦)

ˆtpr(𝑦)− ˆ
fpr(𝑦)

in which 𝑝CC (𝑦) is the prevalence of class 𝑦 as estimated by CC, and

ˆtpr(𝑦) and ˆ
fpr(𝑦) stand for the true positive rate and false positive rate of the classifier,

as estimated in the validation phase. The above-mentioned numerical instability arises

when ˆtpr(𝑦) ≈ ˆ
fpr(𝑦) .

of the posterior probabilities returned by a probabilistic classi-

fier, and not for improving its class prevalence estimates, SLD

has proven to be among the most effective quantifiers in many

experiments [20, 21, 28].

2.1.4 The HDy method. HDy [15] is a probabilistic method for

training binary quantifiers, that models quantification as the prob-

lem ofminimizing the divergence (in terms of theHellinger Distance)
between two cumulative distributions of posterior probabilities re-

turned by the classifier. One of the distributions is generated from

the unlabelled examples and the other is generated from a valida-

tion set. This latter distribution is defined as a mixture of the class-

conditional distributions of the posterior probabilities returned for

the positive and negative validation examples, respectively. The

parameters of the mixture thus represent the estimates of the class

prevalence values.

Since the method requires a validation set to estimate the pa-

rameters of the mixture model, the constructor and fit method of

HDy receive as input the argument val_split, whose semantics

is the same as in ACC and PACC.

2.1.5 Quantifiers based on Explicit Loss Minimization. The quanti-
fiers based on Explicit Loss Minimization (ELM) represent a family

of methods based on structured output learning; these quantifiers

rely on classifiers that have been optimized using a quantification-

oriented loss measure. QuaPy implements the following ELM-based

methods, all relying on Joachims’ SVM
perf

structured output learn-

ing algorithm [17]:
6

• SVM(Q), which attempts to minimize the 𝑄 loss, that com-

bines a classification-oriented loss and a quantification-oriented

loss, as proposed in [1];

• SVM(KLD), which attempts to minimize the Kullback-Leibler

Divergence, as proposed in [9] and as first used in [10];

• SVM(NKLD), which attempts to minimize a version of the

Kullback-Leibler Divergence normalized via the logistic func-

tion, as first used in [10];

• SVM(AE), which uses Absolute Error as the loss, as first used

in [21];

• SVM(RAE), which uses Relative Absolute Error as the loss,

as first used in [21].

All ELM-based methods can train binary quantifiers only, since they

rely on SVM
perf

, which is an inherently binary system. However,

QuaPy allows the conversion of binary quantifiers into multi-class

quantifiers (see Section 2.3).

2.2 Methods for training meta-quantifiers
Meta-quantifiers base their estimates on the estimates produced by

other quantifiers, and are defined in the qp.method.meta module.

2.2.1 Ensembles: A quantification ensemble receives as input any

quantification method (any instance of BaseQuantifier). QuaPy
implements some among the “ensemble” variants proposed in [25,

26], that train different members of the ensemble using different

samples of the original training set; in particular:

6
QuaPy includes the tools to automatically patch the original SVM

perf
code in order

to add the quantification-oriented loss functions.

2021-06-18 06:55. Page 3 of 1–10.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

CIKM 2021, November 1–5, 2021, Gold Coast, AU Alejandro Moreo, Andrea Esuli, Fabrizio Sebastiani

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

• Averaging (policy='ave', default): computes class preva-

lence estimates as the average of the estimates returned by

the base quantifiers.

• Training Prevalence (policy='ptr'): applies a dynamic

selection to the ensemble’s members by retaining only those

members such that the class prevalence values in the sam-

ples they use as training set are closest to preliminary class

prevalence estimates computed as the average of the esti-

mates of all the members. The final estimate is recomputed

by considering only the selected members.

• Distribution Similarity (policy='ds'): performs a dy-

namic selection of base members by retaining the members

trained on samples whose distribution of posterior proba-

bilities is closest, in terms of the Hellinger Distance, to the

distribution of posterior probabilities in the test sample;

• Performance (policy='<any-error-metric>'): performs

a static selection of the ensemble members by retaining those

thatminimize a quantification errormeasure, which is passed

as an argument.

When using either dynamic or static selection policies, one has to

set the red_size parameter, which defines the number of members

that have to be retained.

2.2.2 The QuaNet recurrent quantifier: QuaPy provides an imple-

mentation of QuaNet, a deep-learning-basedmethod for performing

quantification on samples of textual documents, presented in [7].
7

QuaNet processes as input a list of document embeddings (see

below), one for each unlabelled document along with their pos-

terior probabilities generated by a probabilistic classifier. The list

is processed by a bidirectional LSTM that generates a sample em-

bedding (i.e., a dense representation of the entire sample), which

is then concatenated with a vector of class prevalence estimates

produced by an ensemble of simpler quantification methods (CC,

ACC, PCC, PACC, SLD). This vector is then transformed by a set of

feed-forward layers, followed by ReLU activations and dropout, to

compute the final estimations.

QuaNet thus requires a probabilistic classifier that can provide

embedded representations of the inputs. QuaPy offers a basic im-

plementation of such a classifier, based on convolutional neural

networks, that returns its next-to-last representation as the doc-

ument embedding. The following is a working example showing

how to index a textual dataset (see Section 3) and how to instantiate

QuaNet:

1 import quapy as qp
2 from quapy.method.meta import QuaNet
3 from classification.neural import NeuralClassifierTrainer, CNNnet
4

5 qp.environ['SAMPLE_SIZE'] = 500
6

7 # load the kindle dataset as plain text, and convert words
8 # to numerical indexes
9 dataset = qp.datasets.fetch_reviews('kindle', pickle=True)
10 qp.data.preprocessing.index(dataset, min_df=5, inplace=True)
11

12 cnn = CNNnet(dataset.vocabulary_size, dataset.n_classes)
13 learner = NeuralClassifierTrainer(cnn, device='cuda')
14 model = QuaNet(learner, sample_size=500, device='cuda')

7
In order to use QuaNet within QuaPy, the torch framework for deep learning [22]

has to be installed.

2.3 Using binary quantifiers in multi-class
quantification

QuaPy allows a set of binary quantifiers, one for each class, to be

assembled into a single-label multi-class quantifier, by adopting a

“one-vs-all" strategy. This takes the form of computing prevalence es-

timates independently for each class (i.e., via binary quantification)

via independently trained binary quantifiers, and then normalizing

the resulting vector of prevalence values (via L1-normalization) so

that these values sum up to one. In QuaPy this is possible by wrap-

ping any binary quantifier within a OneVsAll object. For example,

a quantifier defined as model=OneVsAll(SVMQ()) will allow SVMQ
to work with single-label multiclass datasets.

3 DATASETS
QuaPy makes available a number of datasets that have been used

for experimentation purposes in the quantification literature, and

specifically:
8

• Reviews: a collection of 3 datasets of customer reviews

about (1) Kindle devices (Kindle), (2) the Harry Potter’s

book series (HP), both already used in [10], and (3) the well-

known IMDBmovie reviews dataset (IMDB) [19]. All reviews

are classified according to (binary) sentiment polarity. The

number of training documents range from 3821 (Kindle) to

25000 (IMDB) and present examples in which labelled data

are balanced (IMDB, 50% positives), imbalanced (Kindle,

92% positives), and severely imbalanced (HP, 98% positives).

• Twitter Sentiment: 11 datasets of tweets labelled by sen-

timent, as used in [13]. The raw text of the tweets is not

available due to Twitter’s Terms of Service, and tweets are

instead provided as tf-idf -weighted vectors. Similarly to the

Reviews datasets, these are high-dimensional datasets, with

dimensionalities ranging from 199,151 to 1,215,742. These

datasets use three sentiment labels (Positive, Neutral, Nega-
tive), and are thus useful for testing non-binary quantifica-

tion methods.

• UCI: 33 binary datasets from the UCI Machine Learning

repository [6], as used in [26].
9
Differently from the previ-

ous datasets, these non-textual datasets are low-dimensional

(with dimensionalities ranging from 3 to 256), thus provid-

ing diversity, in terms of type of data, with respect to to the

previous two sets of datasets.

QuaPy defines a simple Dataset interface that allows importing

any custom dataset into the QuaPy environment. A Dataset ob-

ject in QuaPy is essentially a pair of LabelledCollection objects,

playing the role of the training set and of the test set, respectively.

LabelledCollection is a data class consisting of the instances and
labels. This class implements the core sampling functionality in

QuaPy, which is then exploited by the evaluation tools (Section 4.2)

and by the model selection tools (Section 5).

8
All these datasets have a corresponding fetch method in QuaPy that automatically

downloads the dataset from a public repository, and caches it for reuse.

9
Some of these datasets, in the original form as made available in the UCI Machine

Learning repository, are not binary, but the authors of [26] have transformed each

𝑛-ary dataset into 𝑛 binary datasets according to a “one-vs-all” policy; the datasets we

make available are the binary ones as generated by the authors of [26].

2021-06-18 06:55. Page 4 of 1–10.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

QuaPy: A Python-Based Framework for Quantification CIKM 2021, November 1–5, 2021, Gold Coast, AU

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

From a LabelledCollection, QuaPy allows to easily produce

new samples at desired class prevalence values, i.e.,

1 sample_size = 100
2 prev = [0.4, 0.1, 0.5] # prevalence values for 3 classes
3 sample = data.sampling(sample_size, *prev)

QuaPy supports the definition of samples consistent across runs, in

order to allow testing different quantification methods on the very

same samples.

4 EVALUATION
Evaluating a quantifier requires measuring how good it is at pre-

dicting the class prevalence values of a test sample, which may

have different class prevalence values than those observed on the

training data.

The evaluation of quantifiers is a complex task, since it depends

on many aspects.

For example, the same difference, in absolute value, between

the true and the predicted prevalence values may have a different

“cost” depending on the original true prevalence value: predicting

0.5 prevalence when the true prevalence is 0.49 can be considered,

in some application contexts, a less blatant error than predicting a

prevalence of 0.01 when the true prevalence is 0.00. In some other

application contexts, though, the two above-mentioned estimation

errors may be considered equally serious [29]. This means that

sometimes we may want to use a certain evaluation measure and

some other times we may want to use a different one.

Additionally, for some application contexts we may be interested

in measuring the quantification error only on samples whose class

prevalence values do not differ too much from those of the training

set, because we assume distribution shift, in practice, to always

be limited in magnitude. Conversely, in some other application

contexts, we may want to test our quantifiers also in situations

characterized by extreme values of distribution shift, because we

expect our environment to be characterized by high variability,

and because we want our quantifiers to be robust also to possibly

extreme amounts of shift.

As a result, an environment for experimenting with quantifica-

tion must not only be endowed with several evaluation measures,

but it also must allow the experimentation to be carried out accord-

ing to different evaluation protocols.

4.1 Error measures
Several error measures have been proposed in the literature [29],

and QuaPy implements a rich set of them:

• ae: absolute error
• rae: relative absolute error
• se: squared error

• kld: Kullback-Leibler Divergence
• nkld: normalized Kullback-Leibler Divergence

Functions mae, mrae, mse, mkld, and mnkld are also available, which
return the average values of the same measures across different

samples. For aggregative quantifiers, also the 𝐹1 and “vanilla ac-

curacy” measures are available for measuring the quality of the

underlying classifiers.

Some error functions, e.g., rae, kld, and nkld, and their averaged
versions, are undefined for extreme prevalence values (i.e., 0 and

1), and are numerically unstable for prevalence values close to

these extremes. A common solution to this problem is to perform

smoothing, i.e., adding to each (true or predicted) prevalence value a

small amount, and then normalizing. A traditional smoothing value

from the literature is 1/2𝑇 , where𝑇 is the size of the sample. QuaPy

supports setting the smoothing value as an environment variable

(qp.environ['SAMPLE_SIZE']), or passing it as an argument of

the error measure.

4.2 Evaluation protocols
QuaPy implements both the natural prevalence protocol (NPP) and
the artificial prevalence protocol (APP).

In the NPP, the test set is sampled randomly, so that most samples

exhibit class prevalence values not to different from those of the

test set.

In the APP, the test set is instead sampled in a controlled way, in

order to generate samples characterized by different, pre-specified

prevalence values, so as to cover, with uniform probability, the full

spectrum of class prevalence values. In the APP the user specifies

the number of equidistant points to be generated from the interval

[0,1]. For example, if n_prevs=11 then, for each class, the preva-

lence values [0.0, 0.1, ..., 0.9, 1.0] will be used. This means that, for

two classes, the number of different sampled prevalence values will

be 11 (since, once the prevalence of one class is determined, the

other one is also). For 3 classes, the number of valid combinations

can be obtained as 11 + 10 + ... + 1 = 66. The number of valid combina-

tions (i.e., that sum up to one) that will be produced for a given value

of n_prevpoints across n_classes can be determined by invoking

quapy.functional.num_prevalence_combinations, e.g.:

1 import quapy.functional as F
2 n_prevs = 21 # [0, 0.05, 0.1, ..., 0.95, 1]
3 n_classes = 4
4 repeats = 1
5 n = F.num_prevalence_combinations(n_prevs, n_classes, repeats)

In this example, 𝑛 = 1771. The last argument, n_repeats, sets the
number of samples that will be generated for any valid combination

(typical values are 10 or higher, in order to support the computation

of standard deviations and to perform statistical significance tests).

One can insteadwork the otherway around, i.e., set an evaluation

budged so as to obtain the number of prevalence values that will

generate a number of samples close but no higher than the fixed

budget, e.g.:

1 budget = 5000
2 n_classes = 4
3 repeats = 1
4 n_prevs = F.get_nprevpoints_approximation(budget, n_classes,

repeats)↩→
5 n = F.num_prevalence_combinations(n_prevs, n_classes, repeats)

Here the function get_nprevpoints_approximation determines

that for the given budget and 4 classes, by setting n_prevpoints=
30 the number of samples will be n= 4960.

QuaPy implements evaluation functions that allow the user to

either specify the n_prevpoints value or an evaluation budget.

The following script shows a full example in which a PACC model

relying on a classifier trained via logistic regression, is tested on the

HP dataset by means of the APP protocol on samples of size 500,

setting a budget of 1000 test samples, in terms of various evaluation

metrics (mae, mrae, mkld).

2021-06-18 06:55. Page 5 of 1–10.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

CIKM 2021, November 1–5, 2021, Gold Coast, AU Alejandro Moreo, Andrea Esuli, Fabrizio Sebastiani

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

1 import quapy as qp
2 import quapy.functional as F
3 from sklearn.linear_model import LogisticRegression
4

5 # setting this environment variable allows some
6 # error metrics (e.g., mrae) to be smoothed
7 qp.environ["SAMPLE_SIZE"] = 500
8

9 dataset = qp.datasets.fetch_reviews('hp', tfidf=True, min_df=5)
10

11 training = dataset.training
12 test = dataset.test
13

14 lr = LogisticRegression()
15 pacc = qp.method.aggregative.PACC(lr)
16

17 pacc.fit(training)
18

19 df = qp.evaluation.artificial_prevalence_report(
20 pacc, # the quantification method
21 test, # the test set on which the method will be evaluated
22 sample_size=500, # indicates the size of samples to be drawn
23 eval_budget=1000, # total number of samples to generate
24 n_repetitions=10, # number of samples for each prevalence
25 n_jobs=-1, # the number of parallel workers (-1 for all CPUs)
26 random_seed=42, # allows replicating test samples across runs
27 error_metrics=['mae', 'mrae', 'mkld'], # evaluation metrics
28 verbose=True # set to True to show some standard-line outputs
29)

The resulting report is a pandas dataframe:

true-prev estim-prev mae mrae mkld
0 [0.0, 1.0] [0.000, 1.000] 0.000 0.000 0.000
1 [0.0, 1.0] [0.000, 1.000] 0.000 0.000 0.000

...

...
998 [1.0, 0.0] [0.914, 0.086] 0.086 43.243 0.086
999 [1.0, 0.0] [0.906, 0.094] 0.094 47.069 0.094

5 MODEL SELECTION
Quantification has long been regarded as a by-product of classifi-

cation, which means that the model selection (i.e., hyperparame-

ter optimization) strategies customarily adopted in quantification

have simply been borrowed from classification. It has been argued

in [21] that specific model selection strategies should be adopted

for quantification. That is, model selection strategies for quantifica-

tion should minimize quantification-oriented loss measures, and

be carried out on a variety of scenarios exhibiting different degrees

of distribution shift.

QuaPy supports quantification-oriented model selection by im-

plementing, in the class qp.model_selection.GridSearchQ, a
grid-search exploration over the space of hyperparameter combi-

nations that evaluates each such combination by means of a given

quantification-oriented error metric (see Section 4.1), and according

to either the APP (the default value) or the NPP.

The following is an example of quantification-oriented model

selection using GridSearchQ. In this example, model selection is

performed with a fixed budget of 1000 evaluations for each combi-

nation of hyperparameters. The loss function to miminize is MAE,

a quantification-oriented error measure, as evaluated on randomly

drawn samples at equidistant prevalence values covering the entire

spectrum (APP protocol) on a stratified held-out portion consisting

of 40% of the training set.
10

10
Classification-oriented model selection can be done in QuaPy for aggregative quan-

tifiers by simply using scikit-learn’s GridSearchCV method on the base Estimator.

1 import quapy as qp
2 from quapy.method.aggregative import PCC
3 from sklearn.linear_model import LogisticRegression
4 import numpy as np
5

6 dataset = qp.datasets.fetch_reviews('hp', tfidf=True, min_df=5)
7

8 # model selection with the APP
9 model = qp.model_selection.GridSearchQ(
10 model=PCC(LogisticRegression()),
11 param_grid={'C': np.logspace(-4,5,10),
12 'class_weight': ['balanced', None]},
13 sample_size=500,
14 protocol='app',
15 eval_budget=1000,
16 error='mae',
17 refit=True, # retrain on the whole labelled set once done
18 val_split=0.4,
19).fit(dataset.training)
20

21 # evaluation in terms of MAE
22 results = qp.evaluation.artificial_prevalence_protocol(
23 model,
24 dataset.test,
25 sample_size=500,
26 n_prevpoints=101,
27 n_repetitions=10,
28 error_metric='mae'
29)
30

31 print(f'best hyper-params={model.best_params_}')
32 print(f'MAE={results:.5f}')

In this example, the system returns:

best hyper-params={'C': 0.1, 'class_weight': 'balanced'}
MAE=0.20342

6 RESULT VISUALIZATION
QuaPy implements some plotting functions that can be useful in

displaying the performance of the tested quantification methods:

• Diagonal plot: The diagonal plot shows a very insightful

view of the quantifier’s performance, i.e., it plots the pre-

dicted class prevalence (on the y-axis) against the true class

prevalence (on the x-axis), averaging across all samples char-

acterized by the same true prevalence. Unfortunately, this

visualization device is inherently limited to binary quantifi-

cation (one can simply generate as many diagonal plots as

there are classes, though, by indicating which class should

be considered the target of the plot).

• Error-by-Shift plot: This plot displays the quantification
error made by a quantifier as a function of the distribution

shift between the training set and the test sample, averag-

ing across all samples characterized by the same amount of

distribution shift. Both quantification error and distribution

shift can be measured in terms of any measure among those

described in Section 4, and can be computed and plotted both

in the binary case and in the non-binary case.

• Bias-Box plot: This plot aims at displaying, by means of

box plots, the bias that any quantifier exhibits with respect to

the training class prevalence values. The bias can be broken

down into different bins, e.g., distinguishing the bias in cases

of low, medium, and high prevalence shift.

In Figure 1 we show examples of each of the above types of plot, as

resulting from the experiments that we will discuss in Section 7.

2021-06-18 06:55. Page 6 of 1–10.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

QuaPy: A Python-Based Framework for Quantification CIKM 2021, November 1–5, 2021, Gold Coast, AU

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 1: Examples of plots generated by QuaPy: Diagonal plot (top left), Error-by-Shift plot (bottom left), Global Bias-Box
plot (top right), and Local (5 bins) Bias-Box plot (bottom right).

7 EXPERIMENTS
In this section we present some experiments that we have carried

out in order to showcase some among the features of QuaPy. The

code to replicate all these experiments, and to generate the relative

tables and plots, can be accessed via GitHub.
11

As the datasets, we consider the set of UCI Machine Learn-

ing datasets used in [26], consisting of 30 binary datasets (see

Section 3).
12

Following [26], we remove the “frustratingly easy”

datasets acute.a, acute.b, and iris.1, where even a trivial CC

approach manages to yield zero quantification error. The datasets

do not come with a predefined train/test split; we thus carry out an

evaluation based on 5-fold cross-validation and report the average

quantification error across the 5 test folds. Each iteration thus de-

fines a training set 𝐿 (4 folds) and a test set 𝑈 (1 fold). We choose

AE as our error metric and adopt the APP protocol for evaluation.

11
See the files uci_experiments.py (runs all experiments), uci_tables.py (gener-

ates Table 1 directly in LATEX), and uci_plots.py (generates all plots from Figure

1) included in the folder wiki_examples/ of the repository https://github.com/HLT-

ISTI/QuaPy.wiki.git

12
In their study, [26] used 32 datasets. However, we have not been able to locate

datasets “diabetes” and “phoneme” in the UCI ML repository.

For each method and test set 𝑈 we generate 𝑚 = 100 different

random samples of 𝑞 = 100 instances each, at prevalence values

in the range [0.00, 0.05, . . . , 0.95, 1.00] via selective undersampling,

and report the resulting MAE value. Each MAE value we report

corresponds to the average of 10,500 experiments (100 samples ×
21 class prevalence values × 5 folds).

For model selection, we split the training set 𝐿 into a proper

training set 𝐿Tr (consisting of 60% of 𝐿) and a held-out validation set

𝐿Va (the remaining 40%) in a stratified way. For each combination

of hyperparameters we train the model using 𝐿Tr and evaluate

the performance on 𝐿Va in terms of MAE by following the APP

protocol [21]; in this case we use 𝑞 = 100 and𝑚 = 25. Once the best

values of the hyperparameters have been identified, we re-train the

method using the entire training set.

All quantifiers we consider in this demonstration are either ag-

gregative quantifiers or ensembles of aggregative base quantifiers,

which means that all of them rely on an underlying classifier. We

consider Logistic Regression (LR) as our default classifier-training

algorithm in all cases, except for the methods from the “explicit

loss minimization” camp, which instead natively rely on SVM
perf

.

2021-06-18 06:55. Page 7 of 1–10.

https://github.com/HLT-ISTI/QuaPy.wiki.git
https://github.com/HLT-ISTI/QuaPy.wiki.git

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

CIKM 2021, November 1–5, 2021, Gold Coast, AU Alejandro Moreo, Andrea Esuli, Fabrizio Sebastiani

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

The set of hyperparameters to optimize include the regulariza-

tion parameter 𝐶 (common to LR and SVMs), taking values in

{10−3, 10−2, . . . , 102, 103}, and the parameter class_weight (only
for LR), which may take values balanced (which has the effect of

giving more weight to test examples from less frequent classes)

or None (which has the effect of giving the same weight to all test

examples).

As the learning methods we consider CC, its variants PCC,

ACC, PACC, Forman’s variants
13

MAX, MS, MS2, the expectation-

maximization-based SLDmethod,
14
themixturemodel HDy, SVM(AE)

as the representative of the “explicit loss minimization” family
15
,

and E(HDy)DS as the representative of ensemble methods (since it is

the one which fared best in the experiments of [25]). For E(HDy)DS

we set the number of base quantifiers to size=30 and the number of

members to be selected dynamically to red_size=15, and perform

model selection independently for each base member.

Table 1 reports the AE results of this experimentation. Our results

are fairly consistent with those reported in [20, 21], and seem to

indicate that the strongest method of all is SLD, which obtains the

best average MAE result, the best average rank, and is the best

method on 13 datasets out of 30. Methods E(HDy)DS (8 times best

method), PACC (4 times best method), and (to a lesser extent) ACC

(2 times best method), also seem to perform very well, obtaining

average ranks not statistically significantly different from the best

average rank (obtained by SLD). Method SVM(AE) tends to produce

results that are markedly worse than the rest of competitors. In line

with the observations of [28], none of the variants MAX, MS, MS2

manages to improve over ACC. Also in line with the findings of [25],

the ensemble E(HDy)DS clearly outperforms the base quantifier

HDy it is built upon.

Figure 1 shows examples of plots (3 out of 4 plots are only for

the Positive class) generated using QuaPy. The Diagonal plot (the

results are averages across all samples characterized by the same

true class prevalence values) reveals that, for high prevalence val-

ues of the Positive class, SLD tends to slightly overestimate these

class prevalence values while most other methods tend instead to

underestimate them. For low prevalence values of the Positive class,
methods MAX, MS, MS2, PCC, and CC tend to overestimate these

prevalence values. The Error-by-Shift plot (bottom left) displays

AE as a function of the distribution shift between the training set

and each of the test samples. (The results are averages across all

samples characterized by the same value of distribution shift.) Here

one can appreciate that E(HDy)DS excels at situations character-

ized by low distribution shift, while SLD seems the most robust in

13
To avoid clutter, we report only the three Forman’s variants that have worked best

in most of the experiments reported in [11]. Additional experiments that we have run,

and that we do not report in this paper, confirm that T50 and X perform much worse

than the other methods.

14
Despite the fact that classifiers trained by LR are considered inherently well-

calibrated (see, e.g., https://scikit-learn.org/stable/modules/calibration.html), [?] has
found that re-calibrating LR brings additional benefits to SLD. In our experiments we

thus instantiate SLD with a re-calibrated version of LR, and we indeed observe this to

improve results noticeably. However, re-calibrating does not deliver any improvement

for any other probabilistic quantifier that we test here, and instead shows a tendency

to deteriorate the results. For this reason, we use a re-calibrated LR only for SLD, and

a “standard” LR in all other cases.

15
Among all ELM-based methods, we choose the one that minimizes the same loss

that we adopt for evaluating the results. We do not consider other variants (SVM(Q),

SVM(KLD), SVM(NKLD), SVM(RAE)) since, in recent evaluations (see, e.g., [20, 21]),

they have consistently underperformed other competitors.

dealing with high-shift scenarios. The Bias-Box plots (top right)

show the distribution of error bias (i.e., of the signed error between

the estimated prevalence value and the true prevalence value) for

all methods, as averaged across all datasets and test samples. This

diagram reveals that PACC, SLD, and E(HDy)DS are the methods

displaying the lowest bias overall, given that their boxes (delimiting

the first and third quartiles) are the most squashed, and given that

their whiskers (maximum and minimum, disregarding outliers) are

the shortest. One interesting fact that is clearly revealed by this

box-plot is, in line with what reported in [25], the ability of the

ensemble method (E(HDy)DS) to reduce the variance of the base

quantifiers it is built upon (HDy). It is also interesting to note how

the heuristic implemented in MS2 drastically reduces the variance

produced by MS. The last plot (bottom right) displays error bias

trends with samples binned according to their true prevalence; it

clearly shows how the “unadjusted” methods (e.g., CC, PCC) dis-

play positive bias for low prevalence values (thus overestimating

the true prevalence) and negative bias for high prevalence values

(thus underestimating the true prevalence), while the “adjusted”

versions (ACC and PACC) reduce this effect, since they tend to

display box-plots centred at zero bias in those cases. This plot also

clearly explains that MS tends to display a huge positive bias in the

low-prevalence regime, while SVM(AE) displays a huge negative

bias in the high-prevalence regime.

Note that the results presented here are just for the purposes of

illustrating the functionality of QuaPy, and should not be taken as

an absolute statement on the relative merits of the different quan-

tification methods. For instance, a different batch of experiments

(those reported in [20], and dealing with sentiment quantification

on datasets of tweets), tell a slightly different story, since they re-

port a much larger difference in accuracy between top-performing

methods (SLD, PACC, ACC) and lesser performing ones (CC, PCC,

SVM(AE), and others). One of the main differences between the

experiments in this paper and those in [20] is that we here work

on binary quantification only, while [20] tackled single-label multi-

class quantification (since all datasets used there were ternary). As

always, a complete understanding of the relative merits of different

learning methods can only be obtained through multiple, varied

sets of experiments (see also [28]).

8 CONCLUSIONS
Quantification is a research topic of growing interest in the ar-

eas of machine learning, data mining, and information retrieval.

We have presented QuaPy, an open-source, Python-based package

that makes available a rich set of quantification methods, tools,

experimental protocols, and datasets, with the goal of supporting

an efficient and scientifically correct experimentation of quantifi-

cation methods. We think that QuaPy will be of help to machine

learning researchers that work on developing new quantification

algorithms, as it provides them with many baselines to compare

against, datasets to test their methods on, and tools that implement

all the typical steps of quantification-based experimentation, from

data preparation to the visualization of results. We think that QuaPy

will be of help also to researchers and practitioners in other disci-

plines who simply need to apply quantification in their own work,

as it provides them with a streamlined workflow, a wide choice of

2021-06-18 06:55. Page 8 of 1–10.

https://scikit-learn.org/stable/modules/calibration.html

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

QuaPy: A Python-Based Framework for Quantification CIKM 2021, November 1–5, 2021, Gold Coast, AU

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Quantification methods

C
C

A
C
C

P
C
C

P
A
C
C

M
A
X

M
S

M
S
2

S
L
D

S
V
M
(
A
E
)

H
D
y

E
(
H
D
y
)
D
S

BALANCE.1 0.039 0.032 0.049 0.037 0.040 0.046 0.036 0.025 0.035 0.022 0.020
BALANCE.2 0.314 0.379 0.264 0.432 0.465 0.288 0.331 0.372 0.500 0.470 0.355

BALANCE.3 0.039 0.020 0.045 0.021 0.040 0.046 0.036 0.018 0.064 0.017 0.014
BREAST-CANCER 0.022 0.025 0.029 0.023 0.028 0.021 0.023 0.020 0.144 0.029 0.026

CMC.1 0.194 0.108 0.226 0.117 0.191 0.195 0.178 0.094 0.227 0.156 0.126

CMC.2 0.178 0.138 0.220 0.098 0.271 0.500 0.427 0.105 0.449 0.118 0.103

CMC.3 0.211 0.172 0.239 0.127 0.254 0.376 0.353 0.124
‡

0.336 0.136 0.122
CTG.1 0.037 0.020 0.050 0.020 0.041 0.033 0.035 0.017 0.094 0.028 0.018

CTG.2 0.048 0.040 0.078 0.045 0.048 0.653 0.059 0.030 0.152 0.045 0.040

CTG.3 0.047 0.044 0.050 0.043 0.045 0.649 0.061 0.022 0.113 0.053 0.045

GERMAN 0.151 0.142 0.191 0.092 0.154 0.125 0.134 0.101 0.262 0.165 0.113

HABERMAN 0.231 0.190
‡

0.237 0.267 0.242 0.572 0.244 0.190 0.283 0.399 0.324

IONOSPHERE 0.111 0.074 0.116 0.084 0.124 0.209 0.089 0.075
‡

0.256 0.104 0.082

IRIS.2 0.201 0.241 0.195 0.183 0.251 0.412 0.256 0.215 0.461 0.075 0.056
IRIS.3 0.019 0.074 0.044 0.071 0.054 0.134 0.024 0.057 0.205 0.069 0.047

MAMMOGRAPHIC 0.090 0.048 0.130 0.040 0.091 0.059 0.060 0.036 0.134 0.044 0.031
PAGEBLOCKS.5 0.048 0.040 0.067 0.041

‡
0.066 0.474 0.115 0.070 0.342 0.085 0.066

SEMEION 0.042 0.049 0.058 0.040 0.038 0.500 0.074 0.030 0.070 0.037 0.047

SONAR 0.135 0.200 0.163 0.119 0.145 0.171 0.159 0.114 0.346 0.136 0.131

SPAMBASE 0.042 0.026 0.066 0.022 0.049 0.070 0.037 0.031 0.196 0.025 0.024

SPECTF 0.143 0.155 0.178 0.133 0.276 0.620 0.182 0.105 0.296 0.420 0.231

TICTACTOE 0.024 0.019 0.024 0.014 0.024 0.136 0.024 0.019 0.500 0.018 0.019

TRANSFUSION 0.178 0.139 0.215 0.097 0.220 0.510 0.433 0.087 0.442 0.246 0.166

WDBC 0.034 0.036 0.034 0.027 0.038 0.096 0.029 0.025 0.056 0.019 0.015
WINE.1 0.029 0.025 0.025 0.030 0.033 0.133 0.030 0.044 0.062 0.040 0.019
WINE.2 0.026 0.048 0.043 0.052 0.045 0.088 0.041 0.046 0.051 0.032 0.022
WINE.3 0.031 0.040 0.016 0.033 0.028 0.190 0.029 0.061 0.018

†
0.018 0.025

WINE-Q-RED 0.140 0.076 0.183 0.059 0.141 0.065 0.099 0.056 0.222 0.065 0.058

WINE-Q-WHITE 0.150 0.077 0.194 0.064 0.149 0.113 0.124 0.059 0.247 0.072 0.066

YEAST 0.155 0.107 0.197 0.071 0.159 0.233 0.235 0.066 0.378 0.073 0.071

Average 0.104
‡

0.093
‡

0.121
†

0.083
‡

0.125
†

0.257 0.132
† 0.077 0.231 0.107

‡
0.083

‡

Rank Average 5.733 4.967
†

7.033 3.900
‡

7.133 9.033 6.733 3.133 9.900 5.233 3.200
‡

Table 1: Values of AE obtained in our experiments; each value is the average across 10,500 values, each obtained on a different
sample. Boldface indicates the best method for a given dataset. Superscripts † and ‡ denote the methods (if any) whose scores
are not statistically significantly different from the best one according to a paired sample, two-tailed t-test at different confi-
dence levels: symbol † indicates 0.001 < 𝑝-value < 0.05while symbol ‡ indicates 0.05 ≤ 𝑝-value. The absence of any such symbol
indicates 𝑝-value ≤ 0.001 (i.e., that the performance of the method is statistically significantly different from that of the best
method). For ease of readability, for each dataset we colour-code cells via intense green for the best result, intense red for the
worst result, and an interpolated tone for the scores in-between.

different approaches, and quick access to the package thanks to

the support of installation based on pip. QuaPy is an open-source

project, licensed under the BSD-3 licence; its repository will be

updated following the advances in quantification research, and it is

open to contributions of new methods, tools, and datasets.

2021-06-18 06:55. Page 9 of 1–10.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

CIKM 2021, November 1–5, 2021, Gold Coast, AU Alejandro Moreo, Andrea Esuli, Fabrizio Sebastiani

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

REFERENCES
[1] Barranqero, J., Díez, J., and del Coz, J. J. Quantification-oriented learning

based on reliable classifiers. Pattern Recognition 48, 2 (2015), 591–604.
[2] Beijbom, O., Hoffman, J., Yao, E., Darrell, T., Rodriguez-Ramirez, A.,

Gonzalez-Rivero, M., and Hoegh-Guldberg, O. Quantification in-the-wild:

Data-sets and baselines. CoRR abs/1510.04811 (2015). Presented at the NIPS 2015

Workshop on Transfer and Multi-Task Learning, Montreal, CA, 2015.

[3] Bella, A., Ferri, C., Hernández-Orallo, J., and Ramírez-Quintana, M. J.

Quantification via probability estimators. In Proceedings of the 11th IEEE Interna-
tional Conference on Data Mining (ICDM 2010) (Sydney, AU, 2010), pp. 737–742.

[4] Biswas, A., andMukherjee, S. Fairness through the lens of proportional equality.

In Proceedings of the 18th International Conference on Autonomous Agents and
Multi-Agent Systems (Montreal, CA, 2019), AAMAS 2019, pp. 1832–1834.

[5] Chan, Y. S., and Ng, H. T. Estimating class priors in domain adaptation for word

sense disambiguation. In Proceedings of the 44th Annual Meeting of the Association
for Computational Linguistics (ACL 2006) (Sydney, AU, 2006), pp. 89–96.

[6] Dua, D., and Graff, C. UCI machine learning repository, 2017.

[7] Esuli, A., Moreo, A., and Sebastiani, F. A recurrent neural network for senti-

ment quantification. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management (CIKM 2018) (Torino, IT, 2018), pp. 1775–
1778.

[8] Esuli, A., and Sebastiani, F. Machines that learn how to code open-ended

survey data. International Journal of Market Research 52, 6 (2010), 775–800.
[9] Esuli, A., and Sebastiani, F. Sentiment quantification. IEEE Intelligent Systems

25, 4 (2010), 72–75.
[10] Esuli, A., and Sebastiani, F. Optimizing text quantifiers for multivariate loss

functions. ACM Transactions on Knowledge Discovery and Data 9, 4 (2015), Article
27.

[11] Forman, G. Quantifying trends accurately despite classifier error and class

imbalance. In Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD 2006) (Philadelphia, US, 2006),
pp. 157–166.

[12] Forman, G. Quantifying counts and costs via classification. Data Mining and
Knowledge Discovery 17, 2 (2008), 164–206.

[13] Gao, W., and Sebastiani, F. Tweet sentiment: From classification to quantifi-

cation. In Proceedings of the 7th International Conference on Advances in Social
Network Analysis and Mining (ASONAM 2015) (Paris, FR, 2015), pp. 97–104.

[14] González, P., Castaño, A., Chawla, N. V., and del Coz, J. J. A review on

quantification learning. ACM Computing Surveys 50, 5 (2017), 74:1–74:40.
[15] González-Castro, V., Alaiz-Rodríguez, R., and Alegre, E. Class distribution

estimation based on the Hellinger distance. Information Sciences 218 (2013),

146–164.

[16] Hopkins, D. J., and King, G. A method of automated nonparametric content

analysis for social science. American Journal of Political Science 54, 1 (2010),

229–247.

[17] Joachims, T. Transductive support vector machines. In Semi-Supervised Learning,
O. Chapelle, B. Schölkopf, and A. Zien, Eds. The MIT Press, Cambridge, US, 2006,

pp. 105–117.

[18] King, G., and Lu, Y. Verbal autopsy methods with multiple causes of death.

Statistical Science 23, 1 (2008), 78–91.
[19] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. Learning

word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics (ACL 2011) (Portland, US, 2011),
pp. 142–150.

[20] Moreo, A., and Sebastiani, F. Tweet sentiment quantification: An experimental

re-evaluation, 2020. arXiv 2011.08091.

[21] Moreo, A., and Sebastiani, F. Re-assessing the “Classify and Count” quantifi-

cation method. In Proceedings of the 43rd European Conference on Information
Retrieval, Volume II (Lucca, IT, 2021), pp. 75–91.

[22] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,

Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and

Chintala, S. Pytorch: An imperative style, high-performance deep learning

library. In Advances in Neural Information Processing Systems 32. 2019, pp. 8024–
8035.

[23] Pedregosa, F., Varoqaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,

Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.

Scikit-learn: Machine learning in Python. Journal of Machine Learning Research
12 (2011), 2825–2830.

[24] Platt, J. C. Fast training of support vector machines using sequential minimal

optimization. In Advances in kernel methods: Support vector learning, B. Schölkopf,
C. J. C. Burges, and A. J. Smola, Eds. MIT Press, Cambridge, US, 1999, pp. 185–208.

[25] Pérez-Gállego, P., Castaño, A., Quevedo, J. R., and del Coz, J. J. Dynamic

ensemble selection for quantification tasks. Information Fusion 45 (2019), 1–15.
[26] Pérez-Gállego, P., Quevedo, J. R., and del Coz, J. J. Using ensembles for

problems with characterizable changes in data distribution: A case study on

quantification. Information Fusion 34 (2017), 87–100.
[27] Saerens, M., Latinne, P., and Decaestecker, C. Adjusting the outputs of a

classifier to new a priori probabilities: A simple procedure. Neural Computation
14, 1 (2002), 21–41.

[28] Schumacher, T., Strohmaier, M., and Lemmerich, F. A comparative evaluation

of quantification methods. CoRR abs/2103.03223 (2021).
[29] Sebastiani, F. Evaluation measures for quantification: An axiomatic approach.

Information Retrieval Journal 23, 3 (2020), 255–288.

2021-06-18 06:55. Page 10 of 1–10.

	Abstract
	1 Introduction
	2 Methods
	2.1 Aggregative methods
	2.2 Methods for training meta-quantifiers
	2.3 Using binary quantifiers in multi-class quantification

	3 Datasets
	4 Evaluation
	4.1 Error measures
	4.2 Evaluation protocols

	5 Model selection
	6 Result visualization
	7 Experiments
	8 Conclusions
	References

