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ABSTRACT
QuaPy is an open-source framework for performing quantification
(a.k.a. supervised prevalence estimation), written in Python. Quan-

tification is the task of training quantifiers via supervised learning,

where a quantifier is a predictor that estimates the relative frequen-
cies (a.k.a. prevalence values) of the classes of interest in a sample

of unlabelled data. While quantification can be trivially performed

by applying a standard classifier to each unlabelled data item and

counting how many data items have been assigned to each class,

it has been shown that this “classify and count” method is outper-

formed by methods specifically designed for quantification. QuaPy

provides implementations of a number of baseline methods and

advanced quantification methods, of routines for quantification-

oriented model selection, of several broadly accepted evaluation

measures, and of robust evaluation protocols routinely used in the

field. QuaPy also makes available datasets commonly used for test-

ing quantifiers, and offers visualization tools for facilitating the

analysis and interpretation of the results. The software is open-

source and publicly available under a BSD-3 licence via GitHub
1
,

and can be installed via pip2.
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1 INTRODUCTION
Quantification (variously called learning to quantify, or supervised
prevalence estimation, or class prior estimation) is the task of training
models (“quantifiers”) that estimate the relative frequencies (a.k.a.
prevalence values) of the classes of interest in a sample of unlabelled

data items [14]. For instance, in a sample of 100,000 unlabelled

tweets known to express opinions about Donald Trump, such a

model may be tasked to estimate the percentage of these 100,000

tweets which display a Positive stance towards Trump (and to

do the same for classes Neutral and Negative). In other words,

quantification stands to classification as aggregate data stand to

individual data. Quantification is of special interest in fields such

as the social sciences [16], epidemiology [18], market research [8],

and ecological modelling [2], since these fields are inherently con-

cerned with aggregate data; however, quantification is also useful in

applications outside these fields, such as in enforcing the fairness of

classifiers [4], performingword sense disambiguation [5], allocating

resources [12], and improving the accuracy of classifiers [27].

Quantification can trivially be solved via classification, i.e., by

training a classifier, applying it to the unlabelled data items, and

counting how many data items have been assigned to each class.

However, there is by now abundant evidence [14] that this “classify

and count” method delivers suboptimal quantification accuracy,

and especially so in scenarios characterized by distribution shift,
i.e., by the fact that the class prevalence values in the training set

are substantially different from those in the set of unlabelled data.

As a result, quantification is no more considered just a by-product

of classification, and has evolved as a task in its own right; as

such, quantification has its own learning methods, model selection

protocols, evaluation measures, and evaluation protocols.

In this paper we present QuaPy, a framework written in Python

that provides implementations of the most important tools for re-

search, development, and experimentation, in quantification. The

following script can serve as a minimal working example of how

QuaPy is used. The script fetches a dataset of tweets, trains a quan-

tifier via the Adjusted Classify and Count method (that is meant to

improve the prevalence estimates returned by a standard classifier,

here trained via logistic regression), and then evaluates the quanti-

fier in terms of the Absolute Error (AE) between the estimated and

the true class prevalence values of the test set.

1 import quapy as qp
2 from sklearn.linear_model import LogisticRegression
3

4 data = qp.datasets.fetch_twitter('semeval16')
5

6 # create an "Adjusted Classify & Count" quantifier
7 model = qp.method.aggregative.ACC(LogisticRegression())
8 model.fit(data.training)
9

10 estim_prevalence = model.quantify(data.test.instances)
11 true_prevalence = data.test.prevalence()
12
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13 error = qp.error.ae(true_prevalence, estim_prevalence)
14 print('Absolute Error (AE)', error)

As mentioned above, quantification is particularly useful in scenar-

ios where distribution shift may occur. Any quantification model

should thus be tested across different data samples characterized

by different class prevalence values. QuaPy implements sampling

procedures and evaluation protocols that automate this endeavour.

The paper is structured as follows. In Section 2 we briefly de-

scribe the quantifier training methods included in QuaPy, while in

Section 3 we present a number of datasets that have been previously

used in quantification research and that we include in the QuaPy

suite. Section 4 is devoted to quantifier evaluation, and discusses

the evaluation measures and evaluation protocols that we make

available within QuaPy. Section 5 turns to model selection, dis-

cussing the hyperparameter optimization protocols implemented

within QuaPy, while Section 6 illustrates the tools that we make

available for visualizing the results of quantification experiments.

Section 7 discusses some experiments that we have carried out in

order to showcase some among the features of QuaPy. In Section 8

we give some concluding remarks.

2 METHODS
A quantifier is defined in QuaPy as a model that can be fit on some

training data, so that the fitted model can estimate class prevalence

values for unlabelled data. More specifically, a quantifier in QuaPy

must inherit from the class BaseQuantifier, and implement the

following abstract methods:

1 @abstractmethod
2 def fit(self, data: LabelledCollection): ...
3

4 @abstractmethod
5 def quantify(self, instances): ...
6

7 @abstractmethod
8 def set_params(self, **parameters): ...
9

10 @abstractmethod
11 def get_params(self, deep=True): ...

The meaning of these functions should be familiar to anybody ac-

customed to the scikit-learn environment [23], since the class

structure of QuaPy is directly inspired by scikit-learn’s “estima-

tors”.
3
Functions fit and quantify are used to train the model and

to return class prevalence estimates, respectively, while functions

set_params and get_params allow a model-selecting routine (see

Section 5) to automate the process of hyperparameter optimization.

Quantification methods can be classified as belonging to the

aggregative, non-aggregative, or meta classes. Aggregative methods

are characterized by the fact that quantification is obtained as an

aggregation of the outputs returned by a classification process

for the individual documents. Non-aggregative methods analyse

instead the sample of unlabelled documents as a whole, without

resorting to the classification of individual data items. Finally, meta-

quantifiers are built on top of other quantifiers, and generate their

predictions by analysing the predictions made by the underlying

3
QuaPy’s quantifiers do not inherit from scikit-learn’s estimators due to one key dif-

ference that makes the two incompatible. While a scikit-learn estimator’s predict
method is expected to produce an array of 𝑐 predictions (with 𝑐 the number of classes)

for each of the 𝑛 data items in the input, the quantifier’s quantify method is instead

requested to output one single vector of 𝑐 prevalence values for a given sample of data

items.

quantifiers. We will briefly present these three classes in the next

three subsections.

2.1 Aggregative methods
Most of the methods proposed in the literature and included in

QuaPy are aggregative. QuaPy models aggregative quantifiers by

means of the abstract class AggregativeQuantifier. This class
extends BaseQuantifier, providing a default implementation of

the quantify method based on the aggregate function, that has
to be implemented, i.e.,

1 def quantify(self, instances):
2 classif_predictions = self.classify(instances)
3 return self.aggregate(classif_predictions)
4

5 @abstractmethod
6 def aggregate(self, classif_predictions:np.ndarray): ...

Implementing an aggregative method only requires overriding

the aggregate method. The AggregativeQuantifier class imple-

ments the rest of the process, and is designed to work with any

scikit-learn estimator. Working with packages or machine learn-

ing tools other than scikit-learn only requires overriding the

classifymethod, which takes as input the individual data items in

the sample and returns the corresponding classification predictions

(see Section 2.1.5).

Probabilistic aggregative methods are a subclass of aggregative

methods, which, instead of the “crisp” decisions returned by a cat-

egorical classifier, use the posterior probabilities returned by a

probabilistic classifier. Probabilistic aggregative methods inherit

from the abstract class AggregativeProbabilisticQuantifier,
which extends AggregativeQuantifier, by providing a default

implementation of the quantify method as follows:

1 def quantify(self, instances):
2 classif_posteriors = self.posterior_probabilities(instances)
3 return self.aggregate(classif_posteriors)

Themethod posterior_probabilities, similarly to themore gen-

eral case, is designed to work together with the predict_proba
method of any probabilistic classifier in scikit-learn. QuaPy
also allows using the scikit-learn’s crisp estimators that do not

come with an implementation of the predict_proba method (e.g.,

LinearSVC). In this case, the estimator is converted into a proba-

bilistic classifier by means of a calibration method [24].
4
Packages

other than scikit-learn can be used as well by providing a cus-

tom implementation of the posterior_probabilities method

(see Section 2.1.5).

One advantage of aggregative methods (probabilistic or not) is

that the evaluation according to any sampling procedure (e.g., the

artificial prevalence protocol – see Section 4) can be carried out

very efficiently, since the entire set of unlabelled items can be pre-

classified once for all at the beginning, and the estimation of class

prevalence values for different samples can directly reuse these

predictions, with no need to reclassify each individual data item

every time. QuaPy takes advantage of this property to drastically

speed up any routine that has to do with quantification on multiple

samples drawn from the same set, as is customarily the case in

quantification, both in the performance evaluation phase (Section 4)

and in the model selection phase (Section 5).

4
In QuaPy this is automatically done by wrapping the estimator in the

CalibratedClassifierCV class.
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2.1.1 Classify & Count and its variants. QuaPy provides implemen-

tations for Classify & Count (CC) and its variants, i.e.,

• CC (Classify & Count), the simplest aggregative quantifier,

that simply relies on the label predictions of a classifier to

deliver class prevalence estimates;

• ACC (Adjusted Classify & Count) [12], the “adjusted” variant

of CC, that corrects the predictions of CC according to the

“misclassification rates” (see below) of the classifier;

• PCC (Probabilistic Classify & Count) [3], the probabilistic

variant of CC that relies on the posterior probabilities re-

turned by a probabilistic classifier;

• PACC (Probabilistic Adjusted Classify & Count) [3], which

stands to PCC as ACC stands to CC.

Note that the adjusted variants (ACC and PACC) need to estimate

the parameters (the “misclassification rates”) required for perform-

ing the adjustment; the estimation uses a validation set carved out

of the labelled set. The specific form of parameter optimization can

be set at construction time or at fitting time using the argument

val_split, either by indicating a float in (0,1) specifying the frac-

tion of the training data to be used as a held-out validation set, or

by indicating an int specifying the number of folds to be used in a

𝑘-fold cross-validation (𝑘-FCV) process, or by explicitly passing a

set of instances to be used as the validation set (i.e., an instance of

LabelledCollection – see Section 3).

2.1.2 Forman’s variants of ACC. QuaPy also provides implemen-

tations of a series of binary quantification methods, proposed by

Forman in [11, 12] as variations of ACC, and whose goal is to bring

improved stability to the denominator of the adjustment.
5
The

methods are based on different heuristics for choosing a decision

threshold that would allow for more true positives and many more

false positives, on the grounds this would deliver larger denomina-

tors.

QuaPy implements the methods X (which looks for the threshold

that yields tpr(𝑦) = 1− fpr(𝑦)), MAX (which looks for the threshold

that maximizes tpr(𝑦) − fpr(𝑦)), T50 (which looks for the threshold

that makes tpr(𝑦) closer to 0.5). QuaPy also implementsMS (Median

Sweep), a method that generates class prevalence estimates for

all decision thresholds and returns the median of them all; and

MS2, a variant that computes the median only for cases in which

tpr(𝑦) − fpr(𝑦) > 0.25.

2.1.3 The Saerens-Latinne-Decaestecker algorithm. The Saerens-
Latinne-Decaestecker (SLD) algorithm [27? ] (sometimes also called

EMQ, for Expectation Maximization Quantifier) is a probabilistic
quantifier-generatingmethod. SLD consists of using thewell-known

Expectation Maximization algorithm to iteratively update the pos-

terior probabilities generated by a probabilistic classifier and the

class prevalence estimates obtained via maximum-likelihood esti-

mation, in a mutually recursive way, until convergence. Although

this method was originally proposed for improving the quality

5
In the binary case, the ACC adjustment comes down to computing 𝑝ACC (𝑦) =

�̂�CC (𝑦)− ˆ
fpr(𝑦)

ˆtpr(𝑦)− ˆ
fpr(𝑦)

in which 𝑝CC (𝑦) is the prevalence of class 𝑦 as estimated by CC, and

ˆtpr(𝑦) and ˆ
fpr(𝑦) stand for the true positive rate and false positive rate of the classifier,

as estimated in the validation phase. The above-mentioned numerical instability arises

when ˆtpr(𝑦) ≈ ˆ
fpr(𝑦) .

of the posterior probabilities returned by a probabilistic classi-

fier, and not for improving its class prevalence estimates, SLD

has proven to be among the most effective quantifiers in many

experiments [20, 21, 28].

2.1.4 The HDy method. HDy [15] is a probabilistic method for

training binary quantifiers, that models quantification as the prob-

lem ofminimizing the divergence (in terms of theHellinger Distance)
between two cumulative distributions of posterior probabilities re-

turned by the classifier. One of the distributions is generated from

the unlabelled examples and the other is generated from a valida-

tion set. This latter distribution is defined as a mixture of the class-

conditional distributions of the posterior probabilities returned for

the positive and negative validation examples, respectively. The

parameters of the mixture thus represent the estimates of the class

prevalence values.

Since the method requires a validation set to estimate the pa-

rameters of the mixture model, the constructor and fit method of

HDy receive as input the argument val_split, whose semantics

is the same as in ACC and PACC.

2.1.5 Quantifiers based on Explicit Loss Minimization. The quanti-
fiers based on Explicit Loss Minimization (ELM) represent a family

of methods based on structured output learning; these quantifiers

rely on classifiers that have been optimized using a quantification-

oriented loss measure. QuaPy implements the following ELM-based

methods, all relying on Joachims’ SVM
perf

structured output learn-

ing algorithm [17]:
6

• SVM(Q), which attempts to minimize the 𝑄 loss, that com-

bines a classification-oriented loss and a quantification-oriented

loss, as proposed in [1];

• SVM(KLD), which attempts to minimize the Kullback-Leibler

Divergence, as proposed in [9] and as first used in [10];

• SVM(NKLD), which attempts to minimize a version of the

Kullback-Leibler Divergence normalized via the logistic func-

tion, as first used in [10];

• SVM(AE), which uses Absolute Error as the loss, as first used

in [21];

• SVM(RAE), which uses Relative Absolute Error as the loss,

as first used in [21].

All ELM-based methods can train binary quantifiers only, since they

rely on SVM
perf

, which is an inherently binary system. However,

QuaPy allows the conversion of binary quantifiers into multi-class

quantifiers (see Section 2.3).

2.2 Methods for training meta-quantifiers
Meta-quantifiers base their estimates on the estimates produced by

other quantifiers, and are defined in the qp.method.meta module.

2.2.1 Ensembles: A quantification ensemble receives as input any

quantification method (any instance of BaseQuantifier). QuaPy
implements some among the “ensemble” variants proposed in [25,

26], that train different members of the ensemble using different

samples of the original training set; in particular:

6
QuaPy includes the tools to automatically patch the original SVM

perf
code in order

to add the quantification-oriented loss functions.

2021-06-18 06:55. Page 3 of 1–10.
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• Averaging (policy='ave', default): computes class preva-

lence estimates as the average of the estimates returned by

the base quantifiers.

• Training Prevalence (policy='ptr'): applies a dynamic

selection to the ensemble’s members by retaining only those

members such that the class prevalence values in the sam-

ples they use as training set are closest to preliminary class

prevalence estimates computed as the average of the esti-

mates of all the members. The final estimate is recomputed

by considering only the selected members.

• Distribution Similarity (policy='ds'): performs a dy-

namic selection of base members by retaining the members

trained on samples whose distribution of posterior proba-

bilities is closest, in terms of the Hellinger Distance, to the

distribution of posterior probabilities in the test sample;

• Performance (policy='<any-error-metric>'): performs

a static selection of the ensemble members by retaining those

thatminimize a quantification errormeasure, which is passed

as an argument.

When using either dynamic or static selection policies, one has to

set the red_size parameter, which defines the number of members

that have to be retained.

2.2.2 The QuaNet recurrent quantifier: QuaPy provides an imple-

mentation of QuaNet, a deep-learning-basedmethod for performing

quantification on samples of textual documents, presented in [7].
7

QuaNet processes as input a list of document embeddings (see

below), one for each unlabelled document along with their pos-

terior probabilities generated by a probabilistic classifier. The list

is processed by a bidirectional LSTM that generates a sample em-

bedding (i.e., a dense representation of the entire sample), which

is then concatenated with a vector of class prevalence estimates

produced by an ensemble of simpler quantification methods (CC,

ACC, PCC, PACC, SLD). This vector is then transformed by a set of

feed-forward layers, followed by ReLU activations and dropout, to

compute the final estimations.

QuaNet thus requires a probabilistic classifier that can provide

embedded representations of the inputs. QuaPy offers a basic im-

plementation of such a classifier, based on convolutional neural

networks, that returns its next-to-last representation as the doc-

ument embedding. The following is a working example showing

how to index a textual dataset (see Section 3) and how to instantiate

QuaNet:

1 import quapy as qp
2 from quapy.method.meta import QuaNet
3 from classification.neural import NeuralClassifierTrainer, CNNnet
4

5 qp.environ['SAMPLE_SIZE'] = 500
6

7 # load the kindle dataset as plain text, and convert words
8 # to numerical indexes
9 dataset = qp.datasets.fetch_reviews('kindle', pickle=True)
10 qp.data.preprocessing.index(dataset, min_df=5, inplace=True)
11

12 cnn = CNNnet(dataset.vocabulary_size, dataset.n_classes)
13 learner = NeuralClassifierTrainer(cnn, device='cuda')
14 model = QuaNet(learner, sample_size=500, device='cuda')

7
In order to use QuaNet within QuaPy, the torch framework for deep learning [22]

has to be installed.

2.3 Using binary quantifiers in multi-class
quantification

QuaPy allows a set of binary quantifiers, one for each class, to be

assembled into a single-label multi-class quantifier, by adopting a

“one-vs-all" strategy. This takes the form of computing prevalence es-

timates independently for each class (i.e., via binary quantification)

via independently trained binary quantifiers, and then normalizing

the resulting vector of prevalence values (via L1-normalization) so

that these values sum up to one. In QuaPy this is possible by wrap-

ping any binary quantifier within a OneVsAll object. For example,

a quantifier defined as model=OneVsAll(SVMQ()) will allow SVMQ
to work with single-label multiclass datasets.

3 DATASETS
QuaPy makes available a number of datasets that have been used

for experimentation purposes in the quantification literature, and

specifically:
8

• Reviews: a collection of 3 datasets of customer reviews

about (1) Kindle devices (Kindle), (2) the Harry Potter’s

book series (HP), both already used in [10], and (3) the well-

known IMDBmovie reviews dataset (IMDB) [19]. All reviews

are classified according to (binary) sentiment polarity. The

number of training documents range from 3821 (Kindle) to

25000 (IMDB) and present examples in which labelled data

are balanced (IMDB, 50% positives), imbalanced (Kindle,

92% positives), and severely imbalanced (HP, 98% positives).

• Twitter Sentiment: 11 datasets of tweets labelled by sen-

timent, as used in [13]. The raw text of the tweets is not

available due to Twitter’s Terms of Service, and tweets are

instead provided as tf-idf -weighted vectors. Similarly to the

Reviews datasets, these are high-dimensional datasets, with

dimensionalities ranging from 199,151 to 1,215,742. These

datasets use three sentiment labels (Positive, Neutral, Nega-
tive), and are thus useful for testing non-binary quantifica-

tion methods.

• UCI: 33 binary datasets from the UCI Machine Learning

repository [6], as used in [26].
9
Differently from the previ-

ous datasets, these non-textual datasets are low-dimensional

(with dimensionalities ranging from 3 to 256), thus provid-

ing diversity, in terms of type of data, with respect to to the

previous two sets of datasets.

QuaPy defines a simple Dataset interface that allows importing

any custom dataset into the QuaPy environment. A Dataset ob-

ject in QuaPy is essentially a pair of LabelledCollection objects,

playing the role of the training set and of the test set, respectively.

LabelledCollection is a data class consisting of the instances and
labels. This class implements the core sampling functionality in

QuaPy, which is then exploited by the evaluation tools (Section 4.2)

and by the model selection tools (Section 5).

8
All these datasets have a corresponding fetch method in QuaPy that automatically

downloads the dataset from a public repository, and caches it for reuse.

9
Some of these datasets, in the original form as made available in the UCI Machine

Learning repository, are not binary, but the authors of [26] have transformed each

𝑛-ary dataset into 𝑛 binary datasets according to a “one-vs-all” policy; the datasets we

make available are the binary ones as generated by the authors of [26].
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From a LabelledCollection, QuaPy allows to easily produce

new samples at desired class prevalence values, i.e.,

1 sample_size = 100
2 prev = [0.4, 0.1, 0.5] # prevalence values for 3 classes
3 sample = data.sampling(sample_size, *prev)

QuaPy supports the definition of samples consistent across runs, in

order to allow testing different quantification methods on the very

same samples.

4 EVALUATION
Evaluating a quantifier requires measuring how good it is at pre-

dicting the class prevalence values of a test sample, which may

have different class prevalence values than those observed on the

training data.

The evaluation of quantifiers is a complex task, since it depends

on many aspects.

For example, the same difference, in absolute value, between

the true and the predicted prevalence values may have a different

“cost” depending on the original true prevalence value: predicting

0.5 prevalence when the true prevalence is 0.49 can be considered,

in some application contexts, a less blatant error than predicting a

prevalence of 0.01 when the true prevalence is 0.00. In some other

application contexts, though, the two above-mentioned estimation

errors may be considered equally serious [29]. This means that

sometimes we may want to use a certain evaluation measure and

some other times we may want to use a different one.

Additionally, for some application contexts we may be interested

in measuring the quantification error only on samples whose class

prevalence values do not differ too much from those of the training

set, because we assume distribution shift, in practice, to always

be limited in magnitude. Conversely, in some other application

contexts, we may want to test our quantifiers also in situations

characterized by extreme values of distribution shift, because we

expect our environment to be characterized by high variability,

and because we want our quantifiers to be robust also to possibly

extreme amounts of shift.

As a result, an environment for experimenting with quantifica-

tion must not only be endowed with several evaluation measures,

but it also must allow the experimentation to be carried out accord-

ing to different evaluation protocols.

4.1 Error measures
Several error measures have been proposed in the literature [29],

and QuaPy implements a rich set of them:

• ae: absolute error
• rae: relative absolute error
• se: squared error

• kld: Kullback-Leibler Divergence
• nkld: normalized Kullback-Leibler Divergence

Functions mae, mrae, mse, mkld, and mnkld are also available, which
return the average values of the same measures across different

samples. For aggregative quantifiers, also the 𝐹1 and “vanilla ac-

curacy” measures are available for measuring the quality of the

underlying classifiers.

Some error functions, e.g., rae, kld, and nkld, and their averaged
versions, are undefined for extreme prevalence values (i.e., 0 and

1), and are numerically unstable for prevalence values close to

these extremes. A common solution to this problem is to perform

smoothing, i.e., adding to each (true or predicted) prevalence value a

small amount, and then normalizing. A traditional smoothing value

from the literature is 1/2𝑇 , where𝑇 is the size of the sample. QuaPy

supports setting the smoothing value as an environment variable

(qp.environ['SAMPLE_SIZE']), or passing it as an argument of

the error measure.

4.2 Evaluation protocols
QuaPy implements both the natural prevalence protocol (NPP) and
the artificial prevalence protocol (APP).

In the NPP, the test set is sampled randomly, so that most samples

exhibit class prevalence values not to different from those of the

test set.

In the APP, the test set is instead sampled in a controlled way, in

order to generate samples characterized by different, pre-specified

prevalence values, so as to cover, with uniform probability, the full

spectrum of class prevalence values. In the APP the user specifies

the number of equidistant points to be generated from the interval

[0,1]. For example, if n_prevs=11 then, for each class, the preva-

lence values [0.0, 0.1, ..., 0.9, 1.0] will be used. This means that, for

two classes, the number of different sampled prevalence values will

be 11 (since, once the prevalence of one class is determined, the

other one is also). For 3 classes, the number of valid combinations

can be obtained as 11 + 10 + ... + 1 = 66. The number of valid combina-

tions (i.e., that sum up to one) that will be produced for a given value

of n_prevpoints across n_classes can be determined by invoking

quapy.functional.num_prevalence_combinations, e.g.:

1 import quapy.functional as F
2 n_prevs = 21 # [0, 0.05, 0.1, ..., 0.95, 1]
3 n_classes = 4
4 repeats = 1
5 n = F.num_prevalence_combinations(n_prevs, n_classes, repeats)

In this example, 𝑛 = 1771. The last argument, n_repeats, sets the
number of samples that will be generated for any valid combination

(typical values are 10 or higher, in order to support the computation

of standard deviations and to perform statistical significance tests).

One can insteadwork the otherway around, i.e., set an evaluation

budged so as to obtain the number of prevalence values that will

generate a number of samples close but no higher than the fixed

budget, e.g.:

1 budget = 5000
2 n_classes = 4
3 repeats = 1
4 n_prevs = F.get_nprevpoints_approximation(budget, n_classes,

repeats)↩→
5 n = F.num_prevalence_combinations(n_prevs, n_classes, repeats)

Here the function get_nprevpoints_approximation determines

that for the given budget and 4 classes, by setting n_prevpoints=
30 the number of samples will be n= 4960.

QuaPy implements evaluation functions that allow the user to

either specify the n_prevpoints value or an evaluation budget.

The following script shows a full example in which a PACC model

relying on a classifier trained via logistic regression, is tested on the

HP dataset by means of the APP protocol on samples of size 500,

setting a budget of 1000 test samples, in terms of various evaluation

metrics (mae, mrae, mkld).
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1 import quapy as qp
2 import quapy.functional as F
3 from sklearn.linear_model import LogisticRegression
4

5 # setting this environment variable allows some
6 # error metrics (e.g., mrae) to be smoothed
7 qp.environ["SAMPLE_SIZE"] = 500
8

9 dataset = qp.datasets.fetch_reviews('hp', tfidf=True, min_df=5)
10

11 training = dataset.training
12 test = dataset.test
13

14 lr = LogisticRegression()
15 pacc = qp.method.aggregative.PACC(lr)
16

17 pacc.fit(training)
18

19 df = qp.evaluation.artificial_prevalence_report(
20 pacc, # the quantification method
21 test, # the test set on which the method will be evaluated
22 sample_size=500, # indicates the size of samples to be drawn
23 eval_budget=1000, # total number of samples to generate
24 n_repetitions=10, # number of samples for each prevalence
25 n_jobs=-1, # the number of parallel workers (-1 for all CPUs)
26 random_seed=42, # allows replicating test samples across runs
27 error_metrics=['mae', 'mrae', 'mkld'], # evaluation metrics
28 verbose=True # set to True to show some standard-line outputs
29 )

The resulting report is a pandas dataframe:

true-prev estim-prev mae mrae mkld
0 [0.0, 1.0] [0.000, 1.000] 0.000 0.000 0.000
1 [0.0, 1.0] [0.000, 1.000] 0.000 0.000 0.000

... ... ...

... ... ...
998 [1.0, 0.0] [0.914, 0.086] 0.086 43.243 0.086
999 [1.0, 0.0] [0.906, 0.094] 0.094 47.069 0.094

5 MODEL SELECTION
Quantification has long been regarded as a by-product of classifi-

cation, which means that the model selection (i.e., hyperparame-

ter optimization) strategies customarily adopted in quantification

have simply been borrowed from classification. It has been argued

in [21] that specific model selection strategies should be adopted

for quantification. That is, model selection strategies for quantifica-

tion should minimize quantification-oriented loss measures, and

be carried out on a variety of scenarios exhibiting different degrees

of distribution shift.

QuaPy supports quantification-oriented model selection by im-

plementing, in the class qp.model_selection.GridSearchQ, a
grid-search exploration over the space of hyperparameter combi-

nations that evaluates each such combination by means of a given

quantification-oriented error metric (see Section 4.1), and according

to either the APP (the default value) or the NPP.

The following is an example of quantification-oriented model

selection using GridSearchQ. In this example, model selection is

performed with a fixed budget of 1000 evaluations for each combi-

nation of hyperparameters. The loss function to miminize is MAE,

a quantification-oriented error measure, as evaluated on randomly

drawn samples at equidistant prevalence values covering the entire

spectrum (APP protocol) on a stratified held-out portion consisting

of 40% of the training set.
10

10
Classification-oriented model selection can be done in QuaPy for aggregative quan-

tifiers by simply using scikit-learn’s GridSearchCV method on the base Estimator.

1 import quapy as qp
2 from quapy.method.aggregative import PCC
3 from sklearn.linear_model import LogisticRegression
4 import numpy as np
5

6 dataset = qp.datasets.fetch_reviews('hp', tfidf=True, min_df=5)
7

8 # model selection with the APP
9 model = qp.model_selection.GridSearchQ(
10 model=PCC(LogisticRegression()),
11 param_grid={'C': np.logspace(-4,5,10),
12 'class_weight': ['balanced', None]},
13 sample_size=500,
14 protocol='app',
15 eval_budget=1000,
16 error='mae',
17 refit=True, # retrain on the whole labelled set once done
18 val_split=0.4,
19 ).fit(dataset.training)
20

21 # evaluation in terms of MAE
22 results = qp.evaluation.artificial_prevalence_protocol(
23 model,
24 dataset.test,
25 sample_size=500,
26 n_prevpoints=101,
27 n_repetitions=10,
28 error_metric='mae'
29 )
30

31 print(f'best hyper-params={model.best_params_}')
32 print(f'MAE={results:.5f}')

In this example, the system returns:

best hyper-params={'C': 0.1, 'class_weight': 'balanced'}
MAE=0.20342

6 RESULT VISUALIZATION
QuaPy implements some plotting functions that can be useful in

displaying the performance of the tested quantification methods:

• Diagonal plot: The diagonal plot shows a very insightful

view of the quantifier’s performance, i.e., it plots the pre-

dicted class prevalence (on the y-axis) against the true class

prevalence (on the x-axis), averaging across all samples char-

acterized by the same true prevalence. Unfortunately, this

visualization device is inherently limited to binary quantifi-

cation (one can simply generate as many diagonal plots as

there are classes, though, by indicating which class should

be considered the target of the plot).

• Error-by-Shift plot: This plot displays the quantification
error made by a quantifier as a function of the distribution

shift between the training set and the test sample, averag-

ing across all samples characterized by the same amount of

distribution shift. Both quantification error and distribution

shift can be measured in terms of any measure among those

described in Section 4, and can be computed and plotted both

in the binary case and in the non-binary case.

• Bias-Box plot: This plot aims at displaying, by means of

box plots, the bias that any quantifier exhibits with respect to

the training class prevalence values. The bias can be broken

down into different bins, e.g., distinguishing the bias in cases

of low, medium, and high prevalence shift.

In Figure 1 we show examples of each of the above types of plot, as

resulting from the experiments that we will discuss in Section 7.
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Figure 1: Examples of plots generated by QuaPy: Diagonal plot (top left), Error-by-Shift plot (bottom left), Global Bias-Box
plot (top right), and Local (5 bins) Bias-Box plot (bottom right).

7 EXPERIMENTS
In this section we present some experiments that we have carried

out in order to showcase some among the features of QuaPy. The

code to replicate all these experiments, and to generate the relative

tables and plots, can be accessed via GitHub.
11

As the datasets, we consider the set of UCI Machine Learn-

ing datasets used in [26], consisting of 30 binary datasets (see

Section 3).
12

Following [26], we remove the “frustratingly easy”

datasets acute.a, acute.b, and iris.1, where even a trivial CC

approach manages to yield zero quantification error. The datasets

do not come with a predefined train/test split; we thus carry out an

evaluation based on 5-fold cross-validation and report the average

quantification error across the 5 test folds. Each iteration thus de-

fines a training set 𝐿 (4 folds) and a test set 𝑈 (1 fold). We choose

AE as our error metric and adopt the APP protocol for evaluation.

11
See the files uci_experiments.py (runs all experiments), uci_tables.py (gener-

ates Table 1 directly in LATEX), and uci_plots.py (generates all plots from Figure

1) included in the folder wiki_examples/ of the repository https://github.com/HLT-

ISTI/QuaPy.wiki.git

12
In their study, [26] used 32 datasets. However, we have not been able to locate

datasets “diabetes” and “phoneme” in the UCI ML repository.

For each method and test set 𝑈 we generate 𝑚 = 100 different

random samples of 𝑞 = 100 instances each, at prevalence values

in the range [0.00, 0.05, . . . , 0.95, 1.00] via selective undersampling,

and report the resulting MAE value. Each MAE value we report

corresponds to the average of 10,500 experiments (100 samples ×
21 class prevalence values × 5 folds).

For model selection, we split the training set 𝐿 into a proper

training set 𝐿Tr (consisting of 60% of 𝐿) and a held-out validation set

𝐿Va (the remaining 40%) in a stratified way. For each combination

of hyperparameters we train the model using 𝐿Tr and evaluate

the performance on 𝐿Va in terms of MAE by following the APP

protocol [21]; in this case we use 𝑞 = 100 and𝑚 = 25. Once the best

values of the hyperparameters have been identified, we re-train the

method using the entire training set.

All quantifiers we consider in this demonstration are either ag-

gregative quantifiers or ensembles of aggregative base quantifiers,

which means that all of them rely on an underlying classifier. We

consider Logistic Regression (LR) as our default classifier-training

algorithm in all cases, except for the methods from the “explicit

loss minimization” camp, which instead natively rely on SVM
perf

.
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The set of hyperparameters to optimize include the regulariza-

tion parameter 𝐶 (common to LR and SVMs), taking values in

{10−3, 10−2, . . . , 102, 103}, and the parameter class_weight (only
for LR), which may take values balanced (which has the effect of

giving more weight to test examples from less frequent classes)

or None (which has the effect of giving the same weight to all test

examples).

As the learning methods we consider CC, its variants PCC,

ACC, PACC, Forman’s variants
13

MAX, MS, MS2, the expectation-

maximization-based SLDmethod,
14
themixturemodel HDy, SVM(AE)

as the representative of the “explicit loss minimization” family
15
,

and E(HDy)DS as the representative of ensemble methods (since it is

the one which fared best in the experiments of [25]). For E(HDy)DS

we set the number of base quantifiers to size=30 and the number of

members to be selected dynamically to red_size=15, and perform

model selection independently for each base member.

Table 1 reports the AE results of this experimentation. Our results

are fairly consistent with those reported in [20, 21], and seem to

indicate that the strongest method of all is SLD, which obtains the

best average MAE result, the best average rank, and is the best

method on 13 datasets out of 30. Methods E(HDy)DS (8 times best

method), PACC (4 times best method), and (to a lesser extent) ACC

(2 times best method), also seem to perform very well, obtaining

average ranks not statistically significantly different from the best

average rank (obtained by SLD). Method SVM(AE) tends to produce

results that are markedly worse than the rest of competitors. In line

with the observations of [28], none of the variants MAX, MS, MS2

manages to improve over ACC. Also in line with the findings of [25],

the ensemble E(HDy)DS clearly outperforms the base quantifier

HDy it is built upon.

Figure 1 shows examples of plots (3 out of 4 plots are only for

the Positive class) generated using QuaPy. The Diagonal plot (the

results are averages across all samples characterized by the same

true class prevalence values) reveals that, for high prevalence val-

ues of the Positive class, SLD tends to slightly overestimate these

class prevalence values while most other methods tend instead to

underestimate them. For low prevalence values of the Positive class,
methods MAX, MS, MS2, PCC, and CC tend to overestimate these

prevalence values. The Error-by-Shift plot (bottom left) displays

AE as a function of the distribution shift between the training set

and each of the test samples. (The results are averages across all

samples characterized by the same value of distribution shift.) Here

one can appreciate that E(HDy)DS excels at situations character-

ized by low distribution shift, while SLD seems the most robust in

13
To avoid clutter, we report only the three Forman’s variants that have worked best

in most of the experiments reported in [11]. Additional experiments that we have run,

and that we do not report in this paper, confirm that T50 and X perform much worse

than the other methods.

14
Despite the fact that classifiers trained by LR are considered inherently well-

calibrated (see, e.g., https://scikit-learn.org/stable/modules/calibration.html), [? ] has
found that re-calibrating LR brings additional benefits to SLD. In our experiments we

thus instantiate SLD with a re-calibrated version of LR, and we indeed observe this to

improve results noticeably. However, re-calibrating does not deliver any improvement

for any other probabilistic quantifier that we test here, and instead shows a tendency

to deteriorate the results. For this reason, we use a re-calibrated LR only for SLD, and

a “standard” LR in all other cases.

15
Among all ELM-based methods, we choose the one that minimizes the same loss

that we adopt for evaluating the results. We do not consider other variants (SVM(Q),

SVM(KLD), SVM(NKLD), SVM(RAE)) since, in recent evaluations (see, e.g., [20, 21]),

they have consistently underperformed other competitors.

dealing with high-shift scenarios. The Bias-Box plots (top right)

show the distribution of error bias (i.e., of the signed error between

the estimated prevalence value and the true prevalence value) for

all methods, as averaged across all datasets and test samples. This

diagram reveals that PACC, SLD, and E(HDy)DS are the methods

displaying the lowest bias overall, given that their boxes (delimiting

the first and third quartiles) are the most squashed, and given that

their whiskers (maximum and minimum, disregarding outliers) are

the shortest. One interesting fact that is clearly revealed by this

box-plot is, in line with what reported in [25], the ability of the

ensemble method (E(HDy)DS) to reduce the variance of the base

quantifiers it is built upon (HDy). It is also interesting to note how

the heuristic implemented in MS2 drastically reduces the variance

produced by MS. The last plot (bottom right) displays error bias

trends with samples binned according to their true prevalence; it

clearly shows how the “unadjusted” methods (e.g., CC, PCC) dis-

play positive bias for low prevalence values (thus overestimating

the true prevalence) and negative bias for high prevalence values

(thus underestimating the true prevalence), while the “adjusted”

versions (ACC and PACC) reduce this effect, since they tend to

display box-plots centred at zero bias in those cases. This plot also

clearly explains that MS tends to display a huge positive bias in the

low-prevalence regime, while SVM(AE) displays a huge negative

bias in the high-prevalence regime.

Note that the results presented here are just for the purposes of

illustrating the functionality of QuaPy, and should not be taken as

an absolute statement on the relative merits of the different quan-

tification methods. For instance, a different batch of experiments

(those reported in [20], and dealing with sentiment quantification

on datasets of tweets), tell a slightly different story, since they re-

port a much larger difference in accuracy between top-performing

methods (SLD, PACC, ACC) and lesser performing ones (CC, PCC,

SVM(AE), and others). One of the main differences between the

experiments in this paper and those in [20] is that we here work

on binary quantification only, while [20] tackled single-label multi-

class quantification (since all datasets used there were ternary). As

always, a complete understanding of the relative merits of different

learning methods can only be obtained through multiple, varied

sets of experiments (see also [28]).

8 CONCLUSIONS
Quantification is a research topic of growing interest in the ar-

eas of machine learning, data mining, and information retrieval.

We have presented QuaPy, an open-source, Python-based package

that makes available a rich set of quantification methods, tools,

experimental protocols, and datasets, with the goal of supporting

an efficient and scientifically correct experimentation of quantifi-

cation methods. We think that QuaPy will be of help to machine

learning researchers that work on developing new quantification

algorithms, as it provides them with many baselines to compare

against, datasets to test their methods on, and tools that implement

all the typical steps of quantification-based experimentation, from

data preparation to the visualization of results. We think that QuaPy

will be of help also to researchers and practitioners in other disci-

plines who simply need to apply quantification in their own work,

as it provides them with a streamlined workflow, a wide choice of

2021-06-18 06:55. Page 8 of 1–10.
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E
(
H
D
y
)
D
S

BALANCE.1 0.039 0.032 0.049 0.037 0.040 0.046 0.036 0.025 0.035 0.022 0.020
BALANCE.2 0.314 0.379 0.264 0.432 0.465 0.288 0.331 0.372 0.500 0.470 0.355

BALANCE.3 0.039 0.020 0.045 0.021 0.040 0.046 0.036 0.018 0.064 0.017 0.014
BREAST-CANCER 0.022 0.025 0.029 0.023 0.028 0.021 0.023 0.020 0.144 0.029 0.026

CMC.1 0.194 0.108 0.226 0.117 0.191 0.195 0.178 0.094 0.227 0.156 0.126

CMC.2 0.178 0.138 0.220 0.098 0.271 0.500 0.427 0.105 0.449 0.118 0.103

CMC.3 0.211 0.172 0.239 0.127 0.254 0.376 0.353 0.124
‡

0.336 0.136 0.122
CTG.1 0.037 0.020 0.050 0.020 0.041 0.033 0.035 0.017 0.094 0.028 0.018

CTG.2 0.048 0.040 0.078 0.045 0.048 0.653 0.059 0.030 0.152 0.045 0.040

CTG.3 0.047 0.044 0.050 0.043 0.045 0.649 0.061 0.022 0.113 0.053 0.045

GERMAN 0.151 0.142 0.191 0.092 0.154 0.125 0.134 0.101 0.262 0.165 0.113

HABERMAN 0.231 0.190
‡

0.237 0.267 0.242 0.572 0.244 0.190 0.283 0.399 0.324

IONOSPHERE 0.111 0.074 0.116 0.084 0.124 0.209 0.089 0.075
‡

0.256 0.104 0.082

IRIS.2 0.201 0.241 0.195 0.183 0.251 0.412 0.256 0.215 0.461 0.075 0.056
IRIS.3 0.019 0.074 0.044 0.071 0.054 0.134 0.024 0.057 0.205 0.069 0.047

MAMMOGRAPHIC 0.090 0.048 0.130 0.040 0.091 0.059 0.060 0.036 0.134 0.044 0.031
PAGEBLOCKS.5 0.048 0.040 0.067 0.041

‡
0.066 0.474 0.115 0.070 0.342 0.085 0.066

SEMEION 0.042 0.049 0.058 0.040 0.038 0.500 0.074 0.030 0.070 0.037 0.047

SONAR 0.135 0.200 0.163 0.119 0.145 0.171 0.159 0.114 0.346 0.136 0.131

SPAMBASE 0.042 0.026 0.066 0.022 0.049 0.070 0.037 0.031 0.196 0.025 0.024

SPECTF 0.143 0.155 0.178 0.133 0.276 0.620 0.182 0.105 0.296 0.420 0.231

TICTACTOE 0.024 0.019 0.024 0.014 0.024 0.136 0.024 0.019 0.500 0.018 0.019

TRANSFUSION 0.178 0.139 0.215 0.097 0.220 0.510 0.433 0.087 0.442 0.246 0.166

WDBC 0.034 0.036 0.034 0.027 0.038 0.096 0.029 0.025 0.056 0.019 0.015
WINE.1 0.029 0.025 0.025 0.030 0.033 0.133 0.030 0.044 0.062 0.040 0.019
WINE.2 0.026 0.048 0.043 0.052 0.045 0.088 0.041 0.046 0.051 0.032 0.022
WINE.3 0.031 0.040 0.016 0.033 0.028 0.190 0.029 0.061 0.018

†
0.018 0.025

WINE-Q-RED 0.140 0.076 0.183 0.059 0.141 0.065 0.099 0.056 0.222 0.065 0.058

WINE-Q-WHITE 0.150 0.077 0.194 0.064 0.149 0.113 0.124 0.059 0.247 0.072 0.066

YEAST 0.155 0.107 0.197 0.071 0.159 0.233 0.235 0.066 0.378 0.073 0.071

Average 0.104
‡

0.093
‡

0.121
†

0.083
‡

0.125
†

0.257 0.132
† 0.077 0.231 0.107

‡
0.083

‡

Rank Average 5.733 4.967
†

7.033 3.900
‡

7.133 9.033 6.733 3.133 9.900 5.233 3.200
‡

Table 1: Values of AE obtained in our experiments; each value is the average across 10,500 values, each obtained on a different
sample. Boldface indicates the best method for a given dataset. Superscripts † and ‡ denote the methods (if any) whose scores
are not statistically significantly different from the best one according to a paired sample, two-tailed t-test at different confi-
dence levels: symbol † indicates 0.001 < 𝑝-value < 0.05while symbol ‡ indicates 0.05 ≤ 𝑝-value. The absence of any such symbol
indicates 𝑝-value ≤ 0.001 (i.e., that the performance of the method is statistically significantly different from that of the best
method). For ease of readability, for each dataset we colour-code cells via intense green for the best result, intense red for the
worst result, and an interpolated tone for the scores in-between.

different approaches, and quick access to the package thanks to

the support of installation based on pip. QuaPy is an open-source

project, licensed under the BSD-3 licence; its repository will be

updated following the advances in quantification research, and it is

open to contributions of new methods, tools, and datasets.

2021-06-18 06:55. Page 9 of 1–10.
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