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The zipped file contains global 1-degree grid files of four different surface deformation parameters: 

• Horizontal velocity, North component (vnorth) 
• Horizontal velocity, East component (veast) 
• Vertical velocity (vup) 
• Geoid change (dgeoid) 

calculated from a set of 26 different glacial isostatic adjustment models applying 10 different radially 
varying (=layered) earth structures and 3 different global ice models. 

The different earth structures and the available combinations with ice models are as follows 
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VM5a See Roy & Peltier (2017) vm5a ICE-6G_C 
 

VM7 See Roy & Peltier (2017) vm7 ICE-7G_NA 
 

File naming is simply {ice model}_{earth model}_{parameter}.grd. For example, anu-ice_f72_vup.grd is 
the global vertical velocity grid file calculated with a GIA model with ANU-ICE ice history and 60 km 
lithospheric thickness, 4E20 Pa s upper mantle viscosity and 2E21 Pa s lower mantle viscosity. Grid files 
(NetCDF format) were generated with GMT6 (Wessel et al., 2019), thus can be directly used. 

Ice thickness histories of ICE-6G_C (Argus et al., 20214; Peltier et al., 2015) and ICE-7G_NA (Roy & 
Peltier, 2017) were downloaded from W. R. Peltier’s data website at the University of Toronto, 
Canada: https://www.atmosp.physics.utoronto.ca/~peltier/data.php 

Note that the velocity field of ICE-6G_C(VM5a) can be compared to the one available from W. R. 
Peltier’s data website. The files provided here are not a substitute for the ones by W. R. Peltier and 
colleagues! Analyzing the difference between the files from this work and the ones available on the 
data website can help getting an error estimate from the two GIA model implementations (see further 
below). The user will find minor differences in the uplift component but larger ones in far field areas 
of the horizontal components. 

ICE-7G_NA(VM7) results are added as complement for interested users. However, note that ICE-
7G_NA contains ice thickness history modifications in North America only and a fully global re-
optimization of the ice thickness is warranted. Hence, excessive use and interpretation of these grid 
files, especially on global scale, should be avoided. 
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ANU-ICE is a global 1-degree ice thickness model merged from several regional models (Lambeck, 
1995; Fleming & Lambeck, 2004; Lambeck et al., 2010; 2014; 2017) kindly provided by Anthony Lambert 
and Kurt Lambeck, ANU, Canberra, Australia. The regional models contain differing spatial and 
temporal resolutions that were unified to fit the global 1-degree spatial resolution at mainly common 
time steps (500–1000 years). The Antarctic Ice Sheet part contains changes in the last time steps, thus 
some larger changes in the velocities can be found there. 

The software ICEAGE (Kaufmann, 2004) is used for calculating the grids, which applies the viscoelastic 
normal-mode method (Peltier, 1974; Wu, 1978). The sea-level equation is solved in a pseudo-spectral 
approach (Mitrovica et al., 1994; Mitrovica & Milne, 1998) in an iterative procedure in the spectral 
domain. See further details in Kaufmann and Lambeck (2000; 2002). The spherical harmonic expansion 
in the spectral domain is truncated at degree 192, which corresponds to ~1° spatial resolution. The 
models are spherically symmetric (1D), compressible, with Maxwell-viscoelasticity, rotational feedback, 
and time-dependent coastlines. The Earth’s core is, as assumed to be inviscid, incorporated as lower 
boundary condition. Rheological parameters such as depth-dependent density, Young’s modulus, etc., 
are taken from PREM (Preliminary Reference Earth Model; Dziewonski & Anderson, 1981). 
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