
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

1541

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: D8397049420/2020©BEIESP

DOI: 10.35940/ijeat.D8397.049420
Journal Website: www.ijeat.org

 Abstract: Deep Learning allows us to build powerful models to

solve problems like image classification, time series prediction,

natural language processing, etc. This is achieved at the cost of

huge amounts of storage and processing requirements which are

sometimes not possible in machines with limited resources. In this

paper, we compare different methods which tackle this problem

with network pruning. Selected few pruning methodologies from

the deep learning literature were implemented to display their

results. Modern neural architectures have a combination of

different layers like convolutional layers, pooling layers, dense

layers, etc. We compare pruning techniques for dense layers (such

as unit/neuron pruning, and weight Pruning), and convolutional

layers as well (using L1 norm, taylor expansion of loss to

determine importance of convolutional filters, and Variable

Importance in Projection using Partial Least Squares) for the

image classification task. This study aims to ease the overhead in

terms of optimization of the model for academic, as well as

commercial, use of deep neural networks.

Keywords: Deep learning, Neural networks, Pruning deep

networks, convolutional neural networks.

I. INTRODUCTION

Deep learning has been on rise for quite a while and has

proved itself to be state-of-the-art for many real-life problems

related to texts, images, audio, video etc. Researchers have

achieved unexpectedly better results in various tasks such as

image classification, image segmentation, object

classification and detection, text mining, recommendation

engines, speech recognition, prediction modelling and many

others by employing deep learning with their approaches.

The performance improves as we train deeper and deeper

networks. For Example, on the Image classification task

bigger and deeper architectures like InceptionResNetV2[23]

(164 layers deep), Xception[1] (71 layers deep), ResNet50[8]

(50 layers deep), InceptionV3[24] (48 layers deep), VGG16

and VGG-19[22] (16 and 19 layers respectively) etc. reduced

the top-1 and top-5 error by a significant margin than the

previous state-of-the-art architectures such as AlexNet[14] (8

layers) and LeNet[15] (6 layers deep). Since every moon has

a dark side, this performance also comes at the price of

computation as well as storage cost.

Revised Manuscript Received on April 25, 2020.
* Correspondence Author

Rahul, Hritik Dahiya*, Assistant Professor in the Department of

Computer Science and Engineering in Northern India Engineering College

affiliated to GGSIPU, Delhi
Divyansh Singh, Pursuing B.Tech, Department of Computer

Engineering at Delhi Technological University, India.
Ishan Chawla, Pursuing B.Tech, Department of Computer Engineering

at Delhi Technological University, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Even with the considerable speedup advantage of GPUs,

it takes a significant amount of training time for deep

networks. Big storage and computational requirements of

these networks limit their usage to resource intensive

machines, and makes it difficult for them to be deployed on

mobile devices. As the network grows deeper, the number of

parameters grows large as well. They tend to explode to the

extent of redundancy, leading to overfitting and ultimately

poor generalization capacity. Most intuitive answer to this

issue is the removal of parameters which are redundant. This

is what Pruning does and which leads to network

compression and acceleration without hurting the

performance considerably. It provides the solution to the

computation issue by reducing the amount of expensive

operations (FLoating point OPerations, or FLOPs[19]) as

well as the storage issue by removing the redundancy. In this

paper we discuss various pruning methods which are useful

in reducing memory requirements and computational

requirements of different models.

Section II of this study jots down some previous research

related to our topic. Section III describes the pruning

techniques, the implementation details are summarized in

Section IV, and their results are noted and compared in

Section V. At last, the research is concluded in Section VI of

this study.

II. RELATED WORK

Accelerating deep networks has been a continuously

researched topic for quite some time. Many researchers have

been studying different kinds of pruning and tried to classify

them into high level categories, like [21] categorised pruning

algorithms as one of the two broad classes. One of them

estimated the effect of removal of a weight, filter, channel or

layer, depending on the granularity of pruning (sensitivity of

the element) only to filter them out. The other group, on the

other hand, modifies the objective function to suppress the

unnecessary weights while training. Reference [20] took a

step further and categorised the neural network compression

techniques into one of three high level groups in their survey

- Precision Reduction i.e. change the representation of

weights(e.g. Quantization[2],[6], encoding etc.), Compact

Network Design (e.g. SqueezeNet[11], MobileNet[10], [11]

etc.), and Network Pruning.

In recent years, [9] proposed a two-step iterative approach

for pruning a single layer, which is extended to multi-layered

architecture as well. In the first step, the most representative

channels are selected using

LASSO (Least Absolute

Shrinkage and Selection

Novel Pruning Techniques in

Convolutional-Neural Networks

Rahul, Hritik Dahiya, Divyansh Singh, Ishan Chawla

http://www.ijeat.org/
https://paperpile.com/c/20tObQ/5zEq3
https://paperpile.com/c/20tObQ/DJFBH
https://paperpile.com/c/20tObQ/znVS
https://paperpile.com/c/20tObQ/h5GD
https://paperpile.com/c/20tObQ/RKP17
https://paperpile.com/c/20tObQ/rln25
https://paperpile.com/c/20tObQ/WkgTn
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://paperpile.com/c/20tObQ/tfAHV
https://paperpile.com/c/20tObQ/VaBnj
https://paperpile.com/c/20tObQ/JBGal
https://paperpile.com/c/20tObQ/JBGal+W2vZD+1kgfL
https://paperpile.com/c/20tObQ/hPulY
https://paperpile.com/c/20tObQ/hPulY+YHndS
https://paperpile.com/c/20tObQ/zx4uv

Novel Pruning Techniques in Convolutional-Neural Networks

1542

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: D8397049420/2020©BEIESP

DOI: 10.35940/ijeat.D8397.049420

Journal Website: www.ijeat.org

Operator) regression and the redundant ones are removed.

The output of the unpruned network is reconstructed as

closely as possible using the least-squares error in the second

step, and the steps are iterated until the required sparsity level

is achieved. Reference [17] introduced a scaling factor (ℽ) for

the output of every convolutional channel, trained these

factors alongside the network weights but with an additional

sparsity loss imposed on the former (i.e. the loss function

now includes an additional term which is a function of ℽ but

independent of the network weights). ℽ is used as the criteria

to identify which channel contributes more to the output and

thus should be kept or pruned. The variance/scale factor of

Batch Normalization Layer[12] (which follows the

convolution layer) was considered to be an appropriate

choice for ℽ. The authors from Nvidia provided a brute force

approach to the pruning problem known as Oracle Pruning in

[19]. They formulated pruning as an optimization problem of

choosing a subset of parameters (here filters, not individual

weights of every filter) which will lead to the minimum

change in the objective function i.e. measure the effect of

removing each non-zero parameter one by one, and then

prune the ones with minimum effect on the objective

function, for as many iterations needed to achieve the desired

sparsity. It is very expensive computationally and requires

lots of GPUs, hence it was treated as the baseline to check the

correctness of filter ranking criterias.

Reference [18] introduced ThinNet, a framework for layer

by layer filter pruning, which uses statistical information

from the next layer to select the filters to be removed in the

current layer. For every layer, a greedy algorithm is used for

channel selection. Channels of the filters and feature maps of

the previous layer which correspond to the filters to be

pruned are also removed. After channel selection for a layer,

the channels are weighed by the weights of a least square

regression, which turns out to be a great initialization for the

next step i.e. fine-tuning. These steps are iterated for the next

layer. Reference [3] introduced GSM SGD (Global Sparse

Momentum in stochastic gradient descent) method to prune

deep networks. This method introduced a pruning technique

which pruned the model during training, so repeated

fine-tuning of the model post pruning is not necessary. The

importance values for each layer is calculated using the taylor

expansion of the loss function and then at each gradient

update step, the least important weights are updated using

only the regularization parameter and not the gradient update.

This modified version of momentum SGD (Stochastic

Gradient Descent) was termed as GSM SGD. This ensured

pruning of filters or weights which did not gain importance

during the training phase. This method is beneficial in many

scenarios as it can work on small architectures as well. It is a

model independent method which can be used for both filter

and weight pruning.

Reference [4] proposed a hypothesis which states that a

large network contains within itself a sub-network (W0)

which, when trained in isolation, can achieve the same (or

even exceed) test accuracy of the unpruned network (W) in

at-most the same number of training iterations as the original

model. This sub-network is termed as the “Winning Ticket”.

This winning ticket is sensitive to the learning rate. The

authors improved upon their original theory in [5] so that it

could be scaled to larger networks and bigger datasets as

well. They eliminated the need for warm-up and introduced

Late-Resetting i.e. instead of reinitializing the weights of

winning ticket to that of iteration 0 (W0), the network is

reinitialized to the weights after a few iterations of pruning

i.e. iteration i (Wi , i is a very small percentage of the total

number of iterations, around 1%. Authors of the paper used

i=1000 i.e. weights of 1000th iteration from the total of

112,000 iterations, for a VGG-19 network on

CIFAR-10[13]). The winning ticket weights by late-resetting

were found to be closer to those of the final pruned network

(WF) than the weights of winning ticket without late-resetting

(closeness metric used was the cosine of the angles between

WF - W0 and Wi -W0).

III. PRUNING TECHNIQUES USED IN THIS STUDY

A. Pruning of dense neural networks

Dense Neural Networks are Fully Connected (FC)

networks where each neuron of a layer is connected to every

other neuron of the following layer. For the neural network to

make a classification we only require a few selected

connections. Hence, it is concluded that most of the

connections in a dense network are redundant. Redundant

connections can be pruned using unstructured pruning

algorithms which do not depend on a particular layer or

channel.

1) Weight pruning

The connections between the neurons can be ranked on

the basis of their weight connections[7]. The weights with

significantly low value do not affect the output of the neural

net. Connections can be deleted where the weights are set to

zero in the weight matrix. To achieve sparsity of s% in a

network, we rank the individual weights in the weight matrix,

W, according to their magnitude, and subsequently set the

smallest s% weights to zero.

2) Unit/Neuron pruning

Instead of looking at an individual weight in the weight

matrix, [7] removed the complete neuron along with all of its

incoming and outgoing weights. Least important neurons are

deleted. The entire column is set to zero in order to delete a

whole neuron from the network. To achieve s% sparsity,

columns of the weight matrix are ranked according to their

L2 Norm and the smallest s% columns are removed.

B. Pruning of convolutional neural networks

Although a dense layer is heavily parameterized than a

convolutional layer, because of parameter sharing, a major

percentage of the total FLOPs occur in the convolutional part

of the network. Thus, instead of pruning the dense layer,

convolutional pruning provides a greater acceleration benefit.

In the following subsections, convolutional pruning

techniques compared in this study are introduced.

1) Smallest L1-norm pruning

Reference [16] discussed structured filter pruning of

ConvNets using the L1 norm of the filters as the selection

criteria. The gist of the pruning algorithm for a single

convolutional layer is as follows.

The filters are sorted according to

their L1 norm, after which s% of

http://www.ijeat.org/
https://paperpile.com/c/20tObQ/MK8ZZ
https://paperpile.com/c/20tObQ/j16t3
https://paperpile.com/c/20tObQ/tfAHV
https://paperpile.com/c/20tObQ/Q49m9
https://paperpile.com/c/20tObQ/QN8eG
https://paperpile.com/c/20tObQ/U93kH
https://paperpile.com/c/20tObQ/LapaW
https://paperpile.com/c/20tObQ/ozUZW
https://paperpile.com/c/20tObQ/l8dJa
https://paperpile.com/c/20tObQ/l8dJa
https://paperpile.com/c/20tObQ/Bm5wX

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

1543

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: D8397049420/2020©BEIESP

DOI: 10.35940/ijeat.D8397.049420
Journal Website: www.ijeat.org

the smallest valued filters are removed. The corresponding

feature maps, as well as the corresponding filters of the

following layer, are also removed. The ideology behind this

criteria seems to be that smaller the filter values, smaller will

be its contribution to the output. This technique can be

implemented in either a local or a global fashion. When

implemented, global pruning (i.e. when all the filters of the

network are ranked together) broke down early in the pruning

process (around 30% sparsity) for the smallest L1-norm filter

selection criteria. At the break-down point, all of the weights

of a layer are pruned and the network loses its learning

capability. It performed no better than a simple probability

calculator. Local pruning was implemented with a little

variations i.e. Layer by Layer One-shot pruning and Layer by

Layer Iterative fashion.

a) Layer by Layer One shot Pruning

For any sparsity level, say s, s% filters were removed

from each convolutional layer in one shot. The network was

fine-tuned to achieve the accuracy used for comparison in the

result section.

b) Layer by Layer Iterative Pruning

 Unlike one shot pruning, s% filters are not pruned all at

once, but in baby steps. If the network is already t% pruned

(t<s) and well adjusted to this level of pruning (i.e.

fine-tuned), it can recover much faster than the one which is

pruned in one shot for the same level of sparsity. It also tends

to be more robust.

2) Taylor expansion of loss function

In this method, [19] took into consideration the value of

loss/objective function, if any given filter to zeroed i.e.

pruned. Let be the loss function, where is the

collection of all network parameters i.e. filters of every layer

of the network for the input image set, D. If any filter f is

zeroed out, then the change in loss function is given by (1).

)0,|()|(=−= fDLDLL  (1)

Using taylor expansion and ignoring higher order terms,

dL is estimated to (2).

f

L
fL




= (2)

For any filter, its importance value is calculated by taking

the L1 norm of the filter across all channels i.e.

CWH

dL

fI H W C





=)((3)

where H, W, and C are the height, width and number of

channels of the current filter respectively. The filters are

pruned based on their importance values, layer by layer or

globally. The amount of pruning or sparsity is a

user-specified parameter. After this ranking of filters,

following approaches for pruning the low ranking filters can

be employed.

a) Layer by Layer Pruning

Here s% of the total number of filters are pruned for every

convolutional layer, as if they were isolated from one

another, according to their rank calculated using equation 3.

b) Global Pruning

Here s% of the total filters are pruned from the pool of filters,

irrespective of the layer in which they reside.

c) Global Iterative Pruning

Here s% of the total filters are pruned on the basis of their

global ranking, but instead of pruning the network in one go,

the network is pruned in small steps where k% filters are

removed at each step followed by fine-tuning. This process is

repeated for s/k total steps.

3) Pruning filters using Partial Least Squares

Reference [26] discussed pruning of deep convolutional

networks using Partial Least Squares. This algorithm

estimates the importance of a filter on the basis of its

relationship with the class label, and projects the same in a

low dimensional space. It is an iterative algorithm where s%

of the least important filters are discarded after each iteration.

There are 4 phases of this algorithm:

a) Filter Representation

The filters of the convnet are represented in terms of feature

vectors. This is realized using a simple pooling operation

over the filters. Pooling operation results in either a single

feature (when global pooling operation is used) or a set of

features (when max-pooling 2 × 2 is used). The filters are

represented in a high-dimensional space of dimensionality d.

b) Feature Projection

The high dimensional feature space is projected onto a low

dimensional space of dimensionality c (where c << d) using

the Partial Least Squares method. This latent space is

represented by the feature vectors with maximum covariance

with the class label.

c) Filter Importance

The filters are scored using Variable Importance in

Projection (VIP) technique[25].

d) Prune and Fine-tuning

The set of scores for filters, {f1, f2, ..., fj}, is generated and

s% (pruning ratio) of the filters are discarded according to

their scores.

IV. IMPLEMENTATION DETAILS

A. Details for Dense networks

MNIST dataset was chosen for classification of 10 object

classes with 60,000 images as training data and 10,000

images for testing. Each data sample is of 28 by 28 pixel

grayscale images.

 A simple feed-forward neural network with 4 hidden layers

having 1000, 1000, 500 and 250 neurons in the corresponding

layers is employed. Each hidden layer is followed by the

ReLu activation function. Finally the output layer has the

softmax function which classifies the output from hidden

layers into 10 classes. The model is not fine-tuned post

pruning.

B. Details for Convolutional networks

CIFAR-10[13] dataset was

chosen for classification of 10

object classes with 50,000

images as training data and

http://www.ijeat.org/
https://paperpile.com/c/20tObQ/tfAHV
https://paperpile.com/c/20tObQ/ozUZW

Novel Pruning Techniques in Convolutional-Neural Networks

1544

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: D8397049420/2020©BEIESP

DOI: 10.35940/ijeat.D8397.049420

Journal Website: www.ijeat.org

10,000 test images. Architecture of the network used for the

purpose of this study is VGG-16[22] model which was

pre-trained on CIFAR-10. Majority of the techniques used in

this paper were implemented on VGG-16. However, due to

the complexity of the PLS algorithm and unavailability of

computation resources, PLS was implemented on a smaller

convolutional network having two Conv2D Layers with

ReLu and a MaxPooling Layer, followed by another set of

two Conv2D Layers with ReLu and a MaxPooling Layer.

The activations are flattened. A Dropout Layer, and two FC

layers with ReLu activation follow. Finally the output layer

has a Softmax function which classifies the input into 10

classes. Model is fine-tuned for 10 epochs after each iteration

of pruning to measure the pruning performance on the test

set.

Fig. 1 Accuracy of unit and weight Pruned model with increasing sparsity

Fig. 2 Accuracy of local One-shot and local Iterative Smallest L1 norm pruned model with change in pruning

percentage.

V. RESULT

A. Dense networks

Fig. 1 compares the performance of unit pruning and

weight pruning of a feedforward dense network. It shows the

change in accuracy when redundant neurons and redundant

weights are removed with increasing sparsity in the network.

In weight pruning, the test accuracy remains the same till 90

% sparsity, however it drops tremendously after that. Thus, it

can be concluded that 90% of the weights are redundant in

our model and it requires only 10%-15% of its initial weights

to perform its task. Model performs faster and still achieves

good accuracy when it is compressed. It is represented using

less space, and the time complexity of the model is reduced

by a significant extent. Given that the model is not fine-tuned

after pruning, the model can perform even better if it is

re-trained with the pruned weights.

The breakdown point for Unit

Pruning is at 70% sparsity. After

which the model starts to

http://www.ijeat.org/
https://paperpile.com/c/20tObQ/RKP17

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

1545

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: D8397049420/2020©BEIESP

DOI: 10.35940/ijeat.D8397.049420
Journal Website: www.ijeat.org

disintegrate as more columns are removed from the weight

matrix. It is concluded that 70% neurons can be pruned from

this network without significant loss of accuracy. Therefore,

weight pruning holds advantage over unit pruning in terms of

the compression because it remains unaltered till 90%

sparsity. Whereas, unit pruning is much faster than weight

pruning due to its structured methodology. A combination of

both techniques can provide good compression and

acceleration benefits.

B. Convolutional Networks

Fig. 2 shows how the selected network reacts to pruning

according to the smallest L1-norm criteria. The network after

iterative approach is close to 90% accuracy at 60% sparsity,

unlike one-shot fashion which is slightly less than 85%

accurate Following which the accuracy drop becomes

significant. Iterative approach clearly outperforms one-shot

pruning at significant levels of sparsity.

Reaction of network to pruning by taylor expansion of

loss is shown in Fig. 3. Result of global pruning are much

better than that of layer-by-layer pruning in Taylor loss

criteria and the accuracy holds itself to a reasonable level

upto 40% sparsity i.e. after 1690 filters of the original 4224

filters are removed, the accuracy dropped from 93.59% to

91.91% (a drop of 1.68% on the test data).

This result looks good till the sudden drop in accuracy is

observed at 50% sparsity. It is due to the fact that some layers

get pruned in their entirety and the network is not able to

recover from the damage. After 60% pruning, the model gets

completely damaged.

Fig. 3 Accuracy of local One-shot, global, and global Iterative taylor loss pruned model with change in pruning

percentage.

http://www.ijeat.org/

Novel Pruning Techniques in Convolutional-Neural Networks

1546

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: D8397049420/2020©BEIESP

DOI: 10.35940/ijeat.D8397.049420

Journal Website: www.ijeat.org

Fig. 4 Comparison of Accuracy of convolutional pruning techniques with change in pruning percentage.

Fig. 5 Distribution of filters pruned in global iterative pruning using taylor expansion of loss.

Fig. 6 Accuracy of the VIP PLS pruned model with percentage of filters pruned

The downside of the global iterative method is the amount

of time needed to train, when fine-tuning was included in the

process. In an ideal case with unlimited computational

resources, the network can be fine-tuned after removal of a

single filter and till the required

sparsity is achieved, but this is

not practical. Hence,

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

1547

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: D8397049420/2020©BEIESP

DOI: 10.35940/ijeat.D8397.049420
Journal Website: www.ijeat.org

a trade-off between the size of the step and the final

accuracy achieved is necessary. In this study, a step size of

10% pruning was taken i.e. at each step around 423 filters are

removed before fine-tuning.

Pruning techniques applied to the VGG model are

compiled and compared in Fig. 4 according to accuracy drop.

At the breaking point, clearly iterative approaches take the

crown in terms of accuracy retention.

FLOPs reduction was also used as a metric beside

accuracy in order to evaluate the performance of pruning

techniques. Calculation of number of FLOPs in any

convolutional layers was provided in [19] using the following

formula:

outin CKCWHconvFLOPs +=)1)((2_ 2

 (4)

where H, W, , K and are height, width of the input

feature map, input channels ,kernel size and output channels

respectively. FLOP reduction was used to evaluate the

performance advantages of the above selected iterative

algorithms, namely Layer by Layer Iterative Smallest L1

Norm pruning and Global Iterative Taylor Loss criteria,

which are described in Table I. The values in the table

correspond to the points where the accuracy drops sharply,

which appears to be at 60% sparsity in Fig. 4.

Table I: Comparison of Filter selection criterias at 60%

sparsity

Fig. 5, which shows the distribution of unimportant filters

when pruned globally according to taylor loss criteria, and

Fig. 4 together provide an important observation. Fig. 5

concludes that the majority of redundant weights lie in the

later or deeper layers of the network. Earlier weights allow

the network to capture high level details (e.g. shapes, lines,

textures etc.) for the classification task at hand, and thus add

more value to the decision making process. Hence, when the

accuracy takes a sharper dip at 60% sparsity, Taylor criteria

holds the highest accuracy among others (refer Fig. 4).

Results of the networks after VIP PLS pruning can be

seen in Fig. 6. There is not much drop in accuracy when the

pruning percentage is increased; accuracy remains consistent

until 70% of the filters are removed. The steep fall in

accuracy at 70% pruning is the breaking point of the model.

Accuracy even increases a little compared to the initial

accuracy until the 50% pruning mark.

Let’s see the importance of fine-tuning. Fine-tuning after

pruning retrains and tunes the model keeping in context of the

lost connections, filters or neurons depending upon the

pruning technique and the ranking algorithm. Retraining after

pruning is a must as it enables the model to classify better

after some classifying power is lost due to pruning. It is

visible how the accuracy curves of the techniques differ. PLS

maintains higher accuracy than the original till 50% pruning,

whereas the other methods never gain a higher accuracy than

the one they started with. Although it doesn’t make sense to

compare techniques implemented on different architectures,

the upward trajectory of the PLS curve is enough to

determine its superiority.

VI. CONCLUSION

In this study, the results observed by implementing

various ranking algorithms in different ways to prune a deep

network were showcased, along with their effects on the

Floating Point Operations (FLOPs) without hurting the

performance appreciably. The decision making process of

selecting the desired approach is thus reduced to the trade-off

between performance and the amount of pruning.

For Dense networks, Unit pruning provides simplicity and

ease implementation over weight pruning, whereas the latter

out-performs the former.

For Convolution Networks of low to medium complexity,

VIP PLS technique outperforms the other techniques. But in

a highly complex network the aforementioned technique lags

behind. Moreover VIP PLS is extremely computationally

expensive compared to other techniques. In general, Taylor

Expansion of Losses criteria is much more suitable for

complex networks and outperforms L1 Norm pruning in

ranking the performance of filters.

Keeping the choice of pruning technique aside, different

approaches to their implementation affect their performance

i.e. either in a global or local fashion, and either in one-shot

or a number of iterations. Global approach is free from the

assumption that every layer has an equal number of

redundant filters, unlike the local approach. But the global

fashion falls victim to the breakage of the network when the

pruning algorithm declares a large part of the layer

redundant. Similarly, when the pruning technique is

implemented using a single shot approach, it falls short in

front of an iterative approach; since small steps to achieve a

pruning percentage allow the network to recover from the

removal of parameters in a step by step fashion.

Refining neural nets can also be beneficial for transfer

learning since a bigger model pre-trained on a different but

similar, bigger dataset can be used for a smaller problem and

the redundant weights can be pruned to return a smaller and

compact model with comparable accuracy to the original

bigger model. Pruning of Deep Neural Networks, in future,

can open the world of deep learning to small, mobile devices

and reduce its dependency on devices with high-end

computational and memory resources. Since, the crux of a

large number of pruning methods is its ranking algorithm,

development of new and better ranking methods which can

make identification of redundant weights much more

accurate is a path worth exploring in future research.

ACKNOWLEDGMENT

We are grateful to our mentor, the Department of CSE,

Delhi Technological University for providing us with

facilities and a platform to complete this study.

REFERENCES

1. F. Chollet, Xception: Deep Learning with Depth Wise Separable

Convolutions, 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2017).

2. M. Courbariaux, Y. Bengio, J.-P. David, BinaryConnect: Training Deep

Neural Networks with binary weights during propagations, arXiv
[cs.LG]. (2015).

3. X. Ding, G. Ding, X. Zhou, Y.

Guo, J. Han, J. Liu, Global Sparse

Momentum SGD for Pruning

http://www.ijeat.org/
https://paperpile.com/c/20tObQ/tfAHV
http://paperpile.com/b/20tObQ/DJFBH
http://paperpile.com/b/20tObQ/DJFBH
http://paperpile.com/b/20tObQ/DJFBH
http://paperpile.com/b/20tObQ/DJFBH
http://paperpile.com/b/20tObQ/DJFBH
http://paperpile.com/b/20tObQ/1kgfL
http://paperpile.com/b/20tObQ/1kgfL
http://paperpile.com/b/20tObQ/1kgfL
http://paperpile.com/b/20tObQ/QN8eG
http://paperpile.com/b/20tObQ/QN8eG
http://paperpile.com/b/20tObQ/QN8eG

Novel Pruning Techniques in Convolutional-Neural Networks

1548

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

© Copyright: All rights reserved.

Retrieval Number: D8397049420/2020©BEIESP

DOI: 10.35940/ijeat.D8397.049420

Journal Website: www.ijeat.org

Very Deep Neural Networks, arXiv [cs.LG]. (2019).
4. J. Frankle, M. Carbine, The Lottery Ticket Hypothesis: Finding Sparse,

Trainable Neural Networks, arXiv [cs.LG]. (2018).

5. J. Frankle, G.K. Dziugaite, D.M. Roy, M. Carbin, The Lottery Ticket

Hypothesis at scale, arXiv [cs.LG]. (2019).

6. P. Gysel, M. Motamedi, S. Ghiasi, Hardware-oriented Approximation of
Convolutional Neural Networks, arXiv [cs.CV]. (2016).

7. S. Han, J. Pool, J. Tran, W.J. Dally, Learning both Weights and
Connections for Efficient Neural Networks, arXiv [cs.NE]. (2015).

8. K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image

Recognition, 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2016).

9. Y. He, X. Zhang, J. Sun, Channel Pruning for Accelerating Very Deep
Neural Networks, Github, n.d.

10. A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.

Weyand, M. Andreetto, H. Adam, MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications, arXiv [cs.CV].

(2017).
11. F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K.

Keutzer, SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH

50X FEWER PARAMETERS AND <0.5MB MODEL SIZE, (n.d.).
12. S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift, arXiv [cs.LG]. (2015).

13. A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images,

(n.d.).

14. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet Classification with
Deep Convolutional Neural Networks, (n.d.).

15. Y. LeCun, L. Bottou, B. Yoshua, P. Haffner, Gradient-Based Learning
Applied to Document Recognition, (n.d.).

16. H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning Filters for

Efficient ConvNets, arXiv [cs.CV]. (2016).
17. Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning Efficient

Convolutional Networks through Network Slimming, 2017 IEEE
International Conference on Computer Vision (ICCV). (2017).

18. J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, W. Lin, ThiNet:

Pruning CNN Filters for a Thinner Net, IEEE Trans. Pattern Anal. Mach.
Intell. 41 (2019) 2525–2538.

19. P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning
Convolutional Neural Networks for Resource Efficient Inference, arXiv

[cs.LG]. (2016).

20. R. Pilipović, P. Bulić, V. Risojević, Compression of Convolutional
Neural Networks - A short survey, (n.d.).

21. R. Reed, Pruning algorithms-a survey, IEEE Trans. Neural Netw. 4
(1993) 740–747.

22. K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for

Large-Scale Image Recognition, arXiv [cs.CV]. (2014).
23. C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4,

Inception-ResNet and the Impact of Residual Connections on Learning,
arXiv [cs.CV]. (2016).

24. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the

Inception Architecture for Computer Vision, 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2016).

25. T. Mehmood, K. H. Liland, L. Snipen, and S. Sæbø, “A review of variable
selection methods in Partial Least Squares Regression,” Chemom. Intell.

Lab. Syst., vol. 118, pp. 62–69, 2012.

26. A. Jordao, R. Kloss, F. Yamada, and W. R. Schwartz, “Pruning Deep
Neural Networks using Partial Least Squares,” 2018.

AUTHORS PROFILE

Rahul has done B.Tech in CSE and M.Tech in

Information Security and currently working as an
Assistant Professor in the Department of Computer

Science and Engineering in Delhi Technological

University, Govt of NCT of Delhi. He has previously
worked as an Assistant Professor in Department of

Computer Science and Engineering in Sant Longowal
Institute of Engineering and Technology, Under MHRD, Established by

Govt of India and also worked as an Assistant Professor in the Department of

Computer Science and Engineering in Northern India Engineering College

affiliated to GGSIPU, Delhi. He has many research publications in reputed

International Conferences and Journals and having more than 4.5 years of

teaching experience. His research interests are machine learning, deep
learning, recommender systems, natural language processing, sentiment

analysis.

Hritik Dahiya is pursuing his B.Tech. in Computer
Engineering from Delhi Technological University. He

has a review paper, “A Review of Trends and

Techniques in Recommender Systems” published in the

IEEE digital library. His research interests include, and

are not limited to, Deep Learning, Computer Vision,

and Machine Learning.

Divyansh Singh is pursuing his B.Tech. in Computer
Engineering from Delhi Technological University. He

has a review paper, “A Review of Trends and

Techniques in Recommender Systems” published in the
IEEE digital library. His research interests include and

are not limited to Deep Learning, Computer Vision and

Machine Learning.

Ishan Chawla is currently pursuing his B.Tech in the
Department of Computer Engineering at Delhi

Technological University, India. He has previously

worked in integrating Deep Learning with Finance in
Stock Sentiment Analysis, Earning and Bankruptcy

Prediction. His research interests are in Deep Learning,

Computer Vision, Machine Learning and Natural

Language Processing.

http://www.ijeat.org/
http://paperpile.com/b/20tObQ/QN8eG
http://paperpile.com/b/20tObQ/U93kH
http://paperpile.com/b/20tObQ/U93kH
http://paperpile.com/b/20tObQ/U93kH
http://paperpile.com/b/20tObQ/U93kH
http://paperpile.com/b/20tObQ/LapaW
http://paperpile.com/b/20tObQ/LapaW
http://paperpile.com/b/20tObQ/W2vZD
http://paperpile.com/b/20tObQ/W2vZD
http://paperpile.com/b/20tObQ/l8dJa
http://paperpile.com/b/20tObQ/l8dJa
http://paperpile.com/b/20tObQ/znVS
http://paperpile.com/b/20tObQ/znVS
http://paperpile.com/b/20tObQ/znVS
http://paperpile.com/b/20tObQ/zx4uv
http://paperpile.com/b/20tObQ/zx4uv
http://paperpile.com/b/20tObQ/YHndS
http://paperpile.com/b/20tObQ/YHndS
http://paperpile.com/b/20tObQ/YHndS
http://paperpile.com/b/20tObQ/YHndS
http://paperpile.com/b/20tObQ/hPulY
http://paperpile.com/b/20tObQ/hPulY
http://paperpile.com/b/20tObQ/hPulY
http://paperpile.com/b/20tObQ/j16t3
http://paperpile.com/b/20tObQ/j16t3
http://paperpile.com/b/20tObQ/ozUZW
http://paperpile.com/b/20tObQ/ozUZW
http://paperpile.com/b/20tObQ/rln25
http://paperpile.com/b/20tObQ/rln25
http://paperpile.com/b/20tObQ/WkgTn
http://paperpile.com/b/20tObQ/WkgTn
http://paperpile.com/b/20tObQ/Bm5wX
http://paperpile.com/b/20tObQ/Bm5wX
http://paperpile.com/b/20tObQ/MK8ZZ
http://paperpile.com/b/20tObQ/MK8ZZ
http://paperpile.com/b/20tObQ/MK8ZZ
http://paperpile.com/b/20tObQ/Q49m9
http://paperpile.com/b/20tObQ/Q49m9
http://paperpile.com/b/20tObQ/Q49m9
http://paperpile.com/b/20tObQ/tfAHV
http://paperpile.com/b/20tObQ/tfAHV
http://paperpile.com/b/20tObQ/tfAHV
http://paperpile.com/b/20tObQ/JBGal
http://paperpile.com/b/20tObQ/JBGal
http://paperpile.com/b/20tObQ/VaBnj
http://paperpile.com/b/20tObQ/VaBnj
http://paperpile.com/b/20tObQ/RKP17
http://paperpile.com/b/20tObQ/RKP17
http://paperpile.com/b/20tObQ/5zEq3
http://paperpile.com/b/20tObQ/5zEq3
http://paperpile.com/b/20tObQ/5zEq3
http://paperpile.com/b/20tObQ/h5GD
http://paperpile.com/b/20tObQ/h5GD
http://paperpile.com/b/20tObQ/h5GD

