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    Abstract: Deep Learning allows us to build powerful models to 

solve problems like image classification, time series prediction, 

natural language processing, etc. This is achieved at the cost of 

huge amounts of storage and processing requirements which are 

sometimes not possible in machines with limited resources. In this 

paper, we compare different methods which tackle this problem 

with network pruning. Selected few pruning methodologies from 

the deep learning literature were implemented to display their 

results. Modern neural architectures have a combination of 

different layers like convolutional layers, pooling layers, dense 

layers, etc. We compare pruning techniques for dense layers (such 

as unit/neuron pruning, and weight Pruning), and convolutional 

layers as well (using L1 norm, taylor expansion of loss to 

determine importance of convolutional filters, and Variable 

Importance in Projection using Partial Least Squares) for the 

image classification task. This study aims to ease the overhead in 

terms of optimization of the model for academic, as well as 

commercial, use of deep neural networks. 

Keywords: Deep learning, Neural networks, Pruning deep 

networks, convolutional neural networks. 

I. INTRODUCTION 

Deep learning has been on rise for quite a while and has 

proved itself to be state-of-the-art for many real-life problems 

related to texts, images, audio, video etc. Researchers have 

achieved unexpectedly better results in various tasks such as 

image classification, image segmentation, object 

classification and detection, text mining, recommendation 

engines, speech recognition, prediction modelling and many 

others by employing deep learning with their approaches. 

The performance improves as we train deeper and deeper 

networks. For Example, on the Image classification task 

bigger and deeper architectures like InceptionResNetV2[23] 

(164 layers deep), Xception[1] (71 layers deep), ResNet50[8] 

(50 layers deep), InceptionV3[24] (48 layers deep), VGG16 

and VGG-19[22] (16 and 19 layers respectively) etc. reduced 

the top-1 and top-5 error by a significant margin than the 

previous state-of-the-art architectures such as AlexNet[14] (8 

layers) and LeNet[15] (6 layers deep). Since every moon has 

a dark side, this performance also comes at the price of 

computation as well as storage cost.  
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Even with the considerable speedup advantage of GPUs, 

it takes a significant amount of training time for deep 

networks. Big storage and computational requirements of 

these networks limit their usage to resource intensive 

machines, and makes it difficult for them to be deployed on 

mobile devices. As the network grows deeper, the number of 

parameters grows large as well. They tend to explode to the 

extent of redundancy, leading to overfitting and ultimately 

poor generalization capacity. Most intuitive answer to this 

issue is the removal of parameters which are redundant. This 

is what Pruning does and which leads to network 

compression and acceleration without hurting the 

performance considerably. It provides the solution to the 

computation issue by reducing the amount of expensive 

operations (FLoating point OPerations, or FLOPs[19]) as 

well as the storage issue by removing the redundancy. In this 

paper we discuss various pruning methods which are useful 

in reducing memory requirements and computational 

requirements of different models.  

Section II of this study jots down some previous research 

related to our topic. Section III describes the pruning 

techniques, the implementation details are summarized in 

Section IV, and their results are noted and compared in 

Section V. At last, the research is concluded in Section VI of 

this study. 

II.  RELATED WORK 

Accelerating deep networks has been a continuously 

researched topic for quite some time. Many researchers have 

been studying different kinds of pruning and tried to classify 

them into high level categories, like [21] categorised pruning 

algorithms as one of the two broad classes. One of them 

estimated the effect of removal of a weight, filter, channel or 

layer, depending on the granularity of pruning (sensitivity of 

the element) only to filter them out. The other group, on the 

other hand, modifies the objective function to suppress the 

unnecessary weights while training. Reference [20] took a 

step further and categorised the neural network compression 

techniques into one of three high level groups in their survey 

- Precision Reduction i.e. change the representation of 

weights(e.g. Quantization[2],[6], encoding etc.), Compact 

Network Design (e.g. SqueezeNet[11], MobileNet[10], [11] 

etc.), and Network Pruning.  

In recent years, [9] proposed a two-step iterative approach 

for pruning a single layer, which is extended to multi-layered 

architecture as well. In the first step, the most representative 

channels are selected using  
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Operator) regression and the redundant ones are removed.  

The output of the unpruned network is reconstructed as 

closely as possible using the least-squares error in the second 

step, and the steps are iterated until the required sparsity level 

is achieved. Reference [17] introduced a scaling factor (ℽ) for 

the output of every convolutional channel, trained these 

factors alongside the network weights but with an additional 

sparsity loss imposed on the former (i.e. the loss function 

now includes an additional term which is a function of ℽ but 

independent of the network weights). ℽ is used as the criteria 

to identify which channel contributes more to the output and 

thus should be kept or pruned. The variance/scale factor of 

Batch Normalization Layer[12] (which follows the 

convolution layer) was considered to be an appropriate 

choice for ℽ. The authors from Nvidia provided a brute force 

approach to the pruning problem known as Oracle Pruning in 

[19]. They formulated pruning as an optimization problem of 

choosing a subset of parameters (here filters, not individual 

weights of every filter) which will lead to the minimum 

change in the objective function i.e. measure the effect of 

removing each non-zero parameter one by one, and then 

prune the ones with minimum effect on the objective 

function, for as many iterations needed to achieve the desired 

sparsity. It is very expensive computationally and requires 

lots of GPUs, hence it was treated as the baseline to check the 

correctness of filter ranking criterias. 

Reference [18] introduced ThinNet, a framework for layer 

by layer filter pruning, which uses statistical information 

from the next layer to select the filters to be removed in the 

current layer. For every layer, a greedy algorithm is used for 

channel selection. Channels of the filters and feature maps of 

the previous layer which correspond to the filters to be 

pruned are also removed. After channel selection for a layer, 

the channels are weighed by the weights of a least square 

regression, which turns out to be a great initialization for the 

next step i.e. fine-tuning. These steps are iterated for the next 

layer. Reference [3] introduced GSM SGD (Global Sparse 

Momentum in stochastic gradient descent) method to prune 

deep networks. This method introduced a pruning technique 

which pruned the model during training, so repeated 

fine-tuning of the model post pruning is not necessary. The 

importance values for each layer is calculated using the taylor 

expansion of the loss function and then at each gradient 

update step, the least important weights are updated using 

only the regularization parameter and not the gradient update. 

This modified version of momentum SGD (Stochastic 

Gradient Descent) was termed as GSM SGD. This ensured 

pruning of filters or weights which did not gain importance 

during the training phase. This method is beneficial in many 

scenarios as it can work on small architectures as well. It is a 

model independent method which can be used for both filter 

and weight pruning.  

Reference [4] proposed a hypothesis which states that a 

large network contains within itself a sub-network (W0) 

which, when trained in isolation, can achieve the same (or 

even exceed) test accuracy of the unpruned network (W) in 

at-most the same number of training iterations as the original 

model. This sub-network is termed as the “Winning Ticket”. 

This winning ticket is sensitive to the learning rate. The 

authors improved upon their original theory in [5] so that it 

could be scaled to larger networks and bigger datasets as 

well. They eliminated the need for warm-up and introduced 

Late-Resetting i.e. instead of reinitializing the weights of 

winning ticket to that of iteration 0 (W0), the network is 

reinitialized to the weights after a few iterations of pruning 

i.e. iteration i (Wi , i is a very small percentage of the total 

number of iterations, around 1%. Authors of the paper used 

i=1000 i.e.  weights of 1000th iteration from the total of  

112,000 iterations, for a VGG-19 network on 

CIFAR-10[13]). The winning ticket weights by late-resetting 

were found to be closer to those of the final pruned network 

(WF) than the weights of winning ticket without late-resetting 

(closeness metric used was the cosine of the angles between 

WF - W0 and Wi -W0 ). 

III. PRUNING TECHNIQUES USED IN THIS STUDY 

A. Pruning of dense neural networks 

Dense Neural Networks are Fully Connected (FC) 

networks where each neuron of a layer is connected to every 

other neuron of the following layer. For the neural network to 

make a classification we only require a few selected 

connections. Hence, it is concluded that most of the 

connections in a dense network are redundant. Redundant 

connections can be pruned using unstructured pruning 

algorithms which do not depend on a particular layer or 

channel.  

1) Weight pruning  

The connections between the neurons can be ranked on 

the basis of their weight connections[7]. The weights with 

significantly low value do not affect the output of the neural 

net. Connections can be deleted where the weights are set to 

zero in the weight matrix. To achieve sparsity of s% in a 

network, we rank the individual weights in the weight matrix, 

W, according to their magnitude, and subsequently set the 

smallest s% weights to zero. 

2) Unit/Neuron pruning 

Instead of looking at an individual weight in the weight 

matrix, [7] removed the complete neuron along with all of its 

incoming and outgoing weights. Least important neurons are 

deleted. The entire column is set to zero in order to delete a 

whole neuron from the network. To achieve s% sparsity, 

columns of the weight matrix are ranked according to their 

L2 Norm and the smallest s% columns are removed. 

B. Pruning of convolutional neural networks 

Although a dense layer is heavily parameterized than a 

convolutional layer, because of parameter sharing, a major 

percentage of the total FLOPs occur in the convolutional part 

of the network. Thus, instead of pruning the dense layer, 

convolutional pruning provides a greater acceleration benefit. 

In the following subsections, convolutional pruning 

techniques compared in this study are introduced. 

1) Smallest L1-norm pruning 

Reference [16] discussed structured filter pruning of 

ConvNets using the L1 norm of the filters as the selection 

criteria. The gist of the pruning algorithm for a single 

convolutional layer is as follows. 

The filters are sorted according to 

their L1 norm, after which s% of 
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the smallest valued filters are removed. The corresponding 

feature maps, as well as the corresponding filters of the 

following layer, are also removed. The ideology behind this 

criteria seems to be that smaller the filter values, smaller will 

be its contribution to the output. This technique can be 

implemented in either a local or a global fashion. When 

implemented, global pruning (i.e. when all the filters of the 

network are ranked together) broke down early in the pruning 

process (around 30% sparsity) for the smallest L1-norm filter 

selection criteria. At the break-down point, all of the weights 

of a layer are pruned and the network loses its learning 

capability. It performed no better than a simple probability 

calculator. Local pruning was implemented with a little 

variations i.e. Layer by Layer One-shot pruning and Layer by 

Layer Iterative fashion.  

a) Layer by Layer One shot Pruning 

For any sparsity level, say s, s% filters were removed 

from each convolutional layer in one shot. The network was 

fine-tuned to achieve the accuracy used for comparison in the 

result section.  

b) Layer by Layer Iterative Pruning 

 Unlike one shot pruning, s% filters are not pruned all at 

once, but in baby steps. If the network is already t% pruned 

(t<s) and well adjusted to this level of pruning (i.e. 

fine-tuned), it can recover much faster than the one which is 

pruned in one shot for the same level of sparsity. It also tends 

to be more robust.  

2) Taylor expansion of loss function 

In this method, [19] took into consideration the value of 

loss/objective function, if any given filter to zeroed i.e. 

pruned. Let  be the loss function, where is the 

collection of all network parameters i.e. filters of every layer 

of the network for the input image set, D. If any filter f is 

zeroed out, then the change in loss function is given by (1). 

)0,|()|( =−= fDLDLL             (1) 

Using taylor expansion and ignoring higher order terms, 

dL is estimated to (2). 

f

L
fL




=                    (2) 

For any filter, its importance value is calculated by taking 

the L1 norm of the filter across all channels i.e. 

CWH

dL

fI H W C





=)(                  (3) 

where H, W, and C are the height, width and number of 

channels of the current filter respectively. The filters are 

pruned based on their importance values, layer by layer or 

globally. The amount of pruning or sparsity is a 

user-specified parameter. After this ranking of filters, 

following approaches for pruning the low ranking filters can 

be employed. 

a) Layer by Layer Pruning 

Here s% of the total number of filters are pruned for every 

convolutional layer, as if they were isolated from one 

another, according to their rank calculated using equation 3.  

b) Global Pruning 

Here s% of the total filters are pruned from the pool of filters, 

irrespective of the layer in which they reside. 

c) Global Iterative Pruning 

Here s% of the total filters are pruned on the basis of their 

global ranking, but instead of pruning the network in one go, 

the network is pruned in small steps where k% filters are 

removed at each step followed by fine-tuning. This process is 

repeated for s/k total steps.  

3) Pruning filters using Partial Least Squares 

Reference [26] discussed pruning of deep convolutional 

networks using Partial Least Squares. This algorithm 

estimates the importance of a filter on the basis of its 

relationship with the class label, and projects the same in a 

low dimensional space. It is an iterative algorithm where s% 

of the least important filters are discarded after each iteration. 

There are 4 phases of this algorithm: 

a) Filter Representation 

The filters of the convnet are represented in terms of feature 

vectors. This is realized using a simple pooling operation 

over the filters. Pooling operation results in either a single 

feature (when global pooling operation is used) or a set of 

features (when max-pooling 2 × 2 is used). The filters are 

represented in a high-dimensional space of dimensionality d. 

b) Feature Projection 

The high dimensional feature space is projected onto a low 

dimensional space of dimensionality c (where c << d) using 

the Partial Least Squares method. This latent space is 

represented by the feature vectors with maximum  covariance 

with the class label. 

c) Filter Importance 

The filters are scored using Variable Importance in 

Projection (VIP) technique[25]. 

d) Prune and Fine-tuning 

The set of scores for filters, {f1, f2, ..., fj}, is generated and 

s% (pruning ratio) of the filters are discarded according to 

their scores.  

IV. IMPLEMENTATION DETAILS 

A. Details for Dense networks 

MNIST dataset was chosen for classification of 10 object 

classes with 60,000 images as training data and 10,000 

images for testing. Each data sample is of 28 by 28 pixel 

grayscale images. 

 

 A simple feed-forward neural network with 4 hidden layers 

having 1000, 1000, 500 and 250 neurons in the corresponding 

layers is employed. Each hidden layer is followed by the 

ReLu activation function. Finally the output layer has the 

softmax function which classifies the output from hidden 

layers into 10 classes. The model is not fine-tuned post 

pruning. 

B.  Details for Convolutional networks 

 

CIFAR-10[13] dataset was 

chosen for classification of 10 

object classes with 50,000 

images as training data and 
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10,000 test images. Architecture of the network used for the 

purpose of this study is VGG-16[22] model which was 

pre-trained on CIFAR-10. Majority of the techniques used in 

this paper were implemented on VGG-16. However, due to 

the complexity of the PLS algorithm and unavailability of 

computation resources, PLS was implemented on a smaller 

convolutional network having two Conv2D Layers with 

ReLu and a MaxPooling Layer, followed by another set of 

two Conv2D Layers with ReLu and a MaxPooling Layer. 

The activations are flattened. A Dropout Layer, and two FC 

layers with ReLu activation follow. Finally the output layer 

has a Softmax function which classifies the input into 10 

classes. Model is fine-tuned for 10 epochs after each iteration 

of pruning to measure the pruning performance on the test 

set. 

 

Fig. 1 Accuracy of unit and weight Pruned model with increasing sparsity 

 
Fig. 2 Accuracy of local One-shot and local Iterative Smallest L1 norm pruned model with change in pruning 

percentage. 

V. RESULT 

A. Dense networks 

Fig. 1 compares the performance of unit pruning and 

weight pruning of a feedforward dense network. It shows the 

change in accuracy when redundant neurons and redundant 

weights are removed with increasing sparsity in the network. 

In weight pruning, the test accuracy remains the same till 90 

% sparsity, however it drops tremendously after that. Thus, it 

can be concluded that 90% of the weights are redundant in 

our model and it requires only 10%-15% of its initial weights 

to perform its task. Model performs faster and still achieves 

good accuracy when it is compressed. It is represented using 

less space, and the time complexity of the model is reduced 

by a significant extent. Given that the model is not fine-tuned 

after pruning, the model can perform even better if it is 

re-trained with the pruned weights.  

 

 

 

The breakdown point for Unit 

Pruning is at 70% sparsity. After 

which the model starts to 
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disintegrate as more columns are removed from the weight 

matrix. It is concluded that 70% neurons can be pruned from 

this network without significant loss of accuracy. Therefore, 

weight pruning holds advantage over unit pruning in terms of 

the compression because it remains unaltered till 90% 

sparsity. Whereas, unit pruning is much faster than weight 

pruning due to its structured methodology. A combination of 

both techniques can provide good compression and 

acceleration benefits.    

B. Convolutional Networks 

Fig. 2 shows how the selected network reacts to pruning 

according to the smallest L1-norm criteria. The network after 

iterative approach is close to 90% accuracy at 60% sparsity, 

unlike one-shot fashion which is slightly less than 85% 

accurate Following which the accuracy drop becomes 

significant. Iterative approach clearly outperforms one-shot 

pruning at significant levels of sparsity.  

Reaction of network to pruning by taylor expansion of 

loss is shown in Fig. 3. Result of global pruning are much 

better than that of layer-by-layer pruning in Taylor loss 

criteria and the accuracy holds itself to a reasonable level 

upto 40% sparsity i.e. after 1690 filters of the original 4224 

filters are removed, the accuracy dropped from 93.59% to 

91.91% (a drop of  1.68% on the test data). 

This result looks good till the sudden drop in accuracy is 

observed at  50% sparsity. It is due to the fact that some layers 

get pruned in their entirety and the network is not able to 

recover from the damage. After 60% pruning, the model gets 

completely damaged.  

 
Fig. 3 Accuracy of local One-shot, global, and global Iterative taylor loss pruned model with change in pruning 

percentage.
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Fig. 4 Comparison of Accuracy of convolutional pruning techniques with change in pruning percentage. 
  

Fig. 5 Distribution of filters pruned in global iterative pruning using taylor expansion of loss. 

 

 
Fig. 6 Accuracy of the VIP PLS pruned model with percentage of filters pruned 

The downside of the global iterative method is the amount 

of time needed to train, when fine-tuning was included in the 

process. In an ideal case with unlimited computational 

resources, the network can be fine-tuned after removal of a 

single filter and till the required 

sparsity is achieved, but this is 

not practical. Hence,  
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a trade-off between the size of the step and the final 

accuracy achieved is necessary. In this study, a step size of 

10% pruning was taken i.e. at each step around 423 filters are 

removed before fine-tuning.  

Pruning techniques applied to the VGG model are 

compiled and compared in Fig. 4 according to accuracy drop. 

At the breaking point, clearly iterative approaches take the 

crown in terms of accuracy retention. 

FLOPs reduction was also used as a metric beside 

accuracy in order to evaluate the performance of pruning 

techniques. Calculation of number of FLOPs in any 

convolutional layers was provided in [19] using the following 

formula:  

outin CKCWHconvFLOPs += )1)((2_ 2   

 (4) 

where H, W, , K and  are height, width of the input 

feature map, input channels ,kernel size and output channels 

respectively. FLOP reduction was used to evaluate the 

performance advantages of the above selected iterative 

algorithms,  namely Layer by Layer Iterative Smallest L1 

Norm pruning and Global Iterative Taylor Loss criteria, 

which are described in Table I. The values in the table 

correspond to the points where the accuracy drops sharply, 

which appears to be at 60% sparsity in Fig. 4. 

Table I: Comparison of Filter selection criterias at 60% 

sparsity 

 
Fig. 5, which shows the distribution of unimportant filters 

when pruned globally according to taylor loss criteria, and 

Fig. 4 together provide an important observation. Fig. 5 

concludes that the majority of redundant weights lie in the 

later or deeper layers of the network. Earlier weights allow 

the network to capture high level details (e.g. shapes, lines, 

textures etc.) for the classification task at hand, and thus add 

more value to the decision making process. Hence, when the 

accuracy takes a sharper dip at 60% sparsity, Taylor criteria 

holds the highest accuracy among others (refer Fig. 4). 

Results of the networks after VIP PLS pruning can be 

seen in Fig. 6. There is not much drop in accuracy when the 

pruning percentage is increased; accuracy remains consistent 

until 70% of the filters are removed. The steep fall in 

accuracy at 70% pruning is the breaking point of the model. 

Accuracy even increases a little compared to the initial 

accuracy until the 50% pruning mark. 

Let’s see the importance of fine-tuning. Fine-tuning after 

pruning retrains and tunes the model keeping in context of the 

lost connections, filters or neurons depending upon the 

pruning technique and the ranking algorithm. Retraining after 

pruning is a must as it enables the model to classify better 

after some classifying power is lost due to pruning.  It is 

visible how the accuracy curves of the techniques differ. PLS 

maintains higher accuracy than the original till 50% pruning, 

whereas the other methods never gain a higher accuracy than 

the one they started with. Although it doesn’t make sense to 

compare techniques implemented on different architectures, 

the upward trajectory of the PLS curve is enough to 

determine its superiority. 

VI. CONCLUSION 

In this study, the results observed by implementing 

various ranking algorithms in different ways to prune a deep 

network were showcased, along with their effects on the 

Floating Point Operations (FLOPs) without hurting the 

performance appreciably. The decision making process of 

selecting the desired approach is thus reduced to the trade-off 

between performance and the amount of pruning.  

For Dense networks, Unit pruning provides simplicity and 

ease implementation over weight pruning, whereas the latter 

out-performs the former.  

For Convolution Networks of low to medium complexity, 

VIP PLS technique outperforms the other techniques. But in 

a highly complex network the aforementioned technique lags 

behind. Moreover VIP PLS is extremely computationally 

expensive compared to other techniques. In general, Taylor 

Expansion of Losses criteria is much more suitable for 

complex networks and outperforms L1 Norm pruning in 

ranking the performance of filters. 

Keeping the choice of pruning technique aside, different 

approaches to their implementation affect their performance 

i.e. either in a global or local fashion, and either in one-shot 

or a number of iterations. Global approach is free from the 

assumption that every layer has an equal number of 

redundant filters, unlike the local approach. But the global 

fashion falls victim to the breakage of the network when the 

pruning algorithm declares a large part of the layer 

redundant. Similarly, when the pruning technique is 

implemented using a single shot approach, it falls short in 

front of an iterative approach; since small steps to achieve a 

pruning percentage allow the network to recover from the 

removal of parameters in a step by step fashion. 

Refining neural nets can also be beneficial for transfer 

learning since a bigger model pre-trained on a different but 

similar, bigger dataset can be used for a smaller problem and 

the redundant weights can be pruned to return a smaller and 

compact model with comparable accuracy to the original 

bigger model. Pruning of Deep Neural Networks, in future, 

can open the world of deep learning to small, mobile devices 

and reduce its dependency on devices with high-end 

computational and memory resources. Since, the crux of a 

large number of pruning methods is its ranking algorithm, 

development of new and better ranking methods which can 

make identification of redundant weights much more 

accurate is a path worth exploring in future research. 
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