Giant white-light flares on fully convective stars occur at high latitudes

Ekaterina $\|_{\text {lin }}{ }^{1,2}$, Katja Poppenhäger ${ }^{1,2}$, Sarah J. Schmidt ${ }^{1}$, Silva P. Järvinen ${ }^{1}$, Elisabeth R. Newton ${ }^{3}$, Julián D. Alvarado-Gómez ${ }^{1}$, J. Sebastian Pineda ${ }^{4}$, James R. A. Davenport ${ }^{5}$, Mahmoudreza Oshagh ${ }^{6,7}$, Hya llyin ${ }^{1}$ ${ }^{1}$ Leibniz Institute for Astrophysics Potsdam (AIP), ${ }^{2}$ University of Potsdam, ${ }^{3}$ Dartmouth College, ${ }^{4}$ University of Colorado Boulder, ${ }^{5}$ University of Washington, ${ }^{6}$ Instituto de Astrofisica de Canarias, ${ }^{7}$ Universidad de La Laguna

In a systematic analysis of late M dwarfs observed with TESS, we detected four stars with giant flares that were modulated in brightness by the stars' rapid rotation. Using the shape of the modulated curve we could localize these flares between 55° and 81° latitude on the stellar surface, far higher than typical solar flare latitudes.
These results suggest:
a. Strong magnetic fields tend to emerge close to the stellar rotational poles in rapidly rotating fully convective stars.
b. The impact of flares on the habitability of exoplanets around small stars could be weaker than previously thought.

1. data :: TESS light curves

2. model :: rotational modulation

3. results :: high latitudes

typical max. solar flare latitude

