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ABSTRACT

Computational modeling and simulation of real-world problems, e.g., various applications in the automotive,
aerospace, and biomedical industries, often involve geometric objects which are bounded by curved surfaces. The
geometric modeling of such objects can be performed via high-order meshes. Such a mesh, when paired with a
high-order partial di↵erential equation (PDE) solver, can realize more accurate solution results with a decreased
number of mesh elements (in comparison to a low-order mesh). There are several types of high-order mesh generation
approaches, such as direct methods, a posteriori methods, and isogeometric analysis (IGA)-based spline modeling
approaches. In this paper, we propose a direct, high-order, curvilinear tetrahedral mesh generation method using
an advancing front technique. After generating the mesh, we apply mesh optimization to improve the quality and
to take advantage of the degrees of freedom available in the initially straight-sided quadratic elements. Our method
aims to generate high-quality tetrahedral mesh elements from various types of boundary representations including
the cases where no computer-aided design files are available. Such a method is essential, for example, for generating
meshes for various biomedical models where the boundary representation is obtained from medical images instead of
CAD files. We present several numerical examples of second-order tetrahedral meshes generated using our method
based on input triangular surface meshes.

Keywords: high-order mesh generation, advancing front, tetrahedral meshes

1. INTRODUCTION

The use of high-order partial di↵erential equation
(PDE) solvers for various computational mechanics
problems have seen an increase in recent years due
to their ability to deliver more accurate results at a
lower computational cost [1, 2, 3]. However, to obtain
such results, these solvers must be paired with a high-
order mesh while working with geometries that involve
curved boundaries [4, 5]. Most real-world problems,
such as various applications in the automotive [6, 7],
aerospace [8, 9], and biomedical [10, 11] industries,

involve geometries containing such curved surfaces.
Computational modeling and simulation of these prob-
lems would greatly benefit from the use of high-order
meshes, giving more accurate results with a decreased
number of mesh elements compared to using its low-
order counterpart. Since high-order meshes can be
composed of both curved and straight elements, using
these meshes ensures that the various curves and fea-
tures present in the geometries are preserved and well-
captured in the corresponding mesh. Thus, robust and
high-quality high-order meshes are an essential part of
accurate and e�cient computational simulations.
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There are two main categories of methods that can be
used to generate a high-order mesh. The first cat-
egory is known as a posteriori methods [4, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22]. This is the most
common approach for generating high-order meshes.
These methods consist of three main steps: first, a
low-order mesh of the geometry is generated and ad-
ditional nodes are added to the low-order mesh. Next,
the newly-added boundary nodes are projected onto
the curved domain so that they conform to the bound-
ary, and finally the new positions of the interior nodes
are computed, followed by moving these nodes to
their updated positions. The mesh topology is main-
tained throughout the process. There are two popu-
lar techniques for deformation of the low-order mesh.
The first one involves optimizing an objective func-
tion [13, 12, 15, 16, 18, 19, 21]. The second tech-
nique is based on the solution of PDEs, e.g., a lin-
ear elasticity approach [20], a nonlinear elasticity ap-
proach [4], a thermo-elastic analogy based approach
[23], or other strategies [14]. There are challenges as-
sociated with the a posteriori approach. For exam-
ple, often the boundary transformation step can cre-
ate tangled elements in the mesh resulting in an invalid
mesh. Also, with this approach, it is required to pos-
sess the geometry of the desired high-order mesh to
represent the curved boundary. Such geometries are
often attained from computer-aided design (CAD) files
which are not always available, for example, in case of
patient-specific anatomical models.

Direct methods make up the second category of high-
order mesh generation approaches. With this ap-
proach, a high-order mesh is generated directly from a
curved geometry. In earlier work [24], we developed a
high-order triangular mesh generation method based
on an advancing front technique. To the best of our
knowledge, this is the only direct method for high-
order mesh generation which generates the meshes
from a high-order edge mesh of the boundary. In ad-
dition, it generates the high-order meshes for use with
the finite element method.

Other geometric approaches have been developed for
use with PDE solvers. Such examples include isogeo-
metric analysis (IGA) [25, 26], Non-Uniform Rational
B-splines (NURBS)-Enhanced Finite Element Method
(NEFEM) [27], and Conforming to Interface Struc-
tured Adaptive Mesh Refinement (CISAMR) [28, 29].
IGA aims to integrate analysis and design by employ-
ing the same basis functions to describe the geometric
representation and numerical simulation, thus making
it possible to perform analysis directly on CAD mod-
els [30, 31]. The mesh used in IGA is generated by
parameterization of the geometric domain over which
the PDE is posed. This is di↵erent than the direct ap-
proach of mesh generation mentioned above, where the
mesh and the geometry are separate entities. Two of

the most popular techniques used in IGA are NURBS
and T-splines [25, 26, 31]. Similarly the objective of
NEFEM is the integration of the CAD boundary rep-
resentation of the domain and FEM [27]. In contrast
with the approach taken in IGA and NEFEM, we aim
to generate tetrahedral meshes for FEM using direct
methods. To date, there are no direct high-order tetra-
hedral mesh generation methods available for use with
the traditional FEM approach.

In this paper, we will discuss our direct method for
generation of high-order tetrahedral meshes using an
advancing front technique, which extends our earlier
work in [24]. Among the many algorithms that have
been developed for generating unstructured 3D meshes
over the years, the Delaunay tetrahedralization meth-
ods and the advancing front-based methods are the
most popular [32]. Our mesh generation method uses
the advancing front approach [33, 34, 35, 36, 37, 38] to
generate high-order tetrahedral meshes for geometric
models in which the surface is represented by high-
order triangular elements. To utilize the degrees of
freedom available in each element, and to improve the
quality of the meshes, we then employ a mesh opti-
mization method. To this end, we use the optimization
algorithm for regularization of high-order elements
available in Gmsh [17, 39]. Our current implemen-
tation can be used to generate curvilinear quadratic
tetrahedral meshes. However, the algorithm can also
be used to generate curvilinear tetrahedral meshes of
higher-order. We plan to extend our implementation
to handle such cases as part of our future work. Our
present focus is on generating curvilinear quadratic
tetrahedral meshes for geometries that are represented
by quadratic triangular surface meshes with uniform
element size distribution.

The novelty of our work lies in our method’s ability
to generate high-order meshes directly from curved
boundaries. Since our method uses a direct approach
instead of an a posteriori approach, it can gener-
ate meshes for various biomedical applications where
patient-specific models are obtained from medical im-
ages and no CAD representation is available. One such
example is cardiovascular modeling, where the use of
high-order curvilinear meshes would aid in capturing
the various features and curves present in the heart.
Various research groups in recent years have used dif-
ferent high-order mesh generation schemes to gener-
ate cardiovascular meshes [10, 11]. In [10], cubic Her-
mite and cubic Lagrange cardiac ventricular meshes
are generated, with the final meshes having 1, 12, and
6 and 2, 9, and 8 elements in radial, circumferential,
and longitudinal directions, resulting in a fairly coarse
mesh. The mesh generation technique used in [11] in-
volved a manual vertex placement strategy to generate
cubic Hermite meshes. In contrast to these techniques,
using our method, it is possible to generate quadratic
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tetrahedral biomedical meshes where the mesh is fine
enough to capture the boundary representation prop-
erly and does not involve manual intervention.

In Section 2, we present our mesh generation method.
Results of our high-order tetrahedral mesh generation
method on several geometries are shown in Section 3.
Finally, in Section 4, we summarize our results and
discuss several possibilities for future work.

2. HIGH-ORDER TETRAHEDRAL
MESH GENERATION

In this section, we describe our high-order curvilinear
tetrahedral mesh generation algorithm using an ad-
vancing front approach.

2.1 Initial front setup

In the proposed algorithm, we start with a high-order
triangular surface mesh as input and use it to generate
a curvilinear high-order tetrahedral mesh. The input
triangular surface mesh can be based on various types
of boundary representations, e.g., from CAD files or
patient-specific boundary meshes obtained from med-
ical images, e.g. MRI or CT scans. To generate the
tetrahedral mesh, first we assign the triangular sur-
face mesh as the initial active front. Each triangular
face is considered an element of the active front. First,
we check to ensure that the active front is not empty.
Assuming it is not empty, we start with the first tri-
angular element in the active front. As the method
progresses and new elements are generated, we update
the active front by deleting the triangular faces that
are already used to generate the tetrahedral elements
and by adding the new faces that are created after
generating the tetrahedra.

2.2 Calculating reference height

Next, we calculate the area of the surface triangles.
Since the surface triangles are curved, we need to use
shape functions for the high-order elements to calcu-
late the area. For a second-order mesh, we use the
shape functions for a two-dimensional second-order
Lagrange element and high-degree Gaussian quadra-
ture rules developed by Dunavant [40]. We use a
polynomial of degree 6 with 12 Gaussian points and
weights. We calculate the area Aj of each triangu-
lar element using the Jacobian of the transformation
in two dimensions. Next, we average the areas of all
the curved triangular elements and denote this average
area by Aavg. We use this average area to calculate a
reference height h of a tetrahedron using the following
equation:

h =
2
p
2p

3 4
p
3
Aavg, (1)

Equation 1 calculates the height of a regu-
lar/equilateral tetrahedron using the area of one of
its triangular faces. The constant value in equation
1 comes from the properties of an equilateral tetrahe-
dron [37]. Our aim is to generate tetrahedral elements
as close to a regular tetrahedron as possible. Calcu-
lating the height in this manner helps us to ensure
this goal. We use the average area instead of indi-
vidual, local triangle areas to calculate this reference
height. This helps us to maintain a uniform search
radius and a uniform element size distribution. This
matches well with our current focus which is the gener-
ation of high-order, curvilinear tetrahedral meshes for
geometries whose surface meshes mainly have uniform
element size distribution.

2.3 Searching for candidate vertices

Once we have calculated h, we begin the process of
generating the tetrahedral elements from the surface
mesh. To this end, we first need to search for candidate
vertices within a specific search radius. In a high-
order triangular surface mesh, each triangular element
has both low-order and high-order vertices. The low-
order vertices are the three endpoints of the triangle
edges. The high-order vertices depend on the degree of
polynomial of the triangular element. For a quadratic
element, high-order vertices are the midpoints of each
edge. Hence, only the low-order vertices are considered
while searching for candidates to serve as the fourth
vertex of the tetrahedron. We start with selecting the
first triangular face from the active front and calculate
the centroid c of that element. Next, we calculate
the inward surface normal of the same element. Since
the normal of the triangle face is the normal of its
tangent plane, we first calculate the tangent plane to
the triangular face and use that to calculate the surface
normal. We use the centroid as a reference point and
insert a vertex a at a distance h from the centroid of
the selected triangular face. The vertex is inserted in
the direction of the inward normal vector of the surface
mesh. Next, we search for other suitable candidate
vertices within a specific radius, r = ↵h, of a. Here,
↵ is a user-defined constant value that can be varied
according to the size of the geometry and mesh. If ↵
is set as 1.5, the search radius would be 1.5 times the
length of h. The choice of ↵ depends on the how coarse
or fine the mesh is. If the users wish to search within a
larger radius, they may increase the value of ↵, if they
wish to search within a smaller radius, they can reduce
the value of ↵. As a general guideline, the coarser the
mesh is, the larger the search radius should be in order
to capture enough candidate vertices. Once we set an
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↵, we use it for all the elements of that particular
mesh.

While generating a tetrahedron, initially the candidate
vertices consist of vertex a and the low-order vertices
that are within radius r of the selected triangular face.
Since a fixed h is used to search and generate all tetra-
hedral elements, element size uniformity throughout
the mesh is ensured. Currently in Matlab, we are us-
ing the findNearestNeighbors function to search for the
nearest neighbors from a point cloud of low-order ver-
tices. Figure 1 shows an example of various low-order
vertices present in the mesh which give the several
possible candidate tetrahedra.

Figure 1: Example of various vertices present in the
mesh giving possible candidate tetrahedra. Here, a is
the newly added vertex that is inserted at a distance
h from centroid c of triangular surface DEF. Vertices
4,5, and 6 are pre-existing vertices in the mesh that
fall within search radius r.

2.4 Vertex selection

For each candidate tetrahedron Ci, i = 1, 2, ..., n, we
perform several validity checks and quality metric cal-
culations to ensure we generate the best possible tetra-
hedron among from the available candidate vertices.
We describe the validity and quality checks in detail in
Sections 2.5 and 2.6. The candidate tetrahedron that
passes all validity and quality checks is selected as the
final tetrahedron for that surface triangular face. If no
such candidate is available, we perform several mesh
modification operations around the selected triangular
face to obtain a valid tetrahedral element. The mesh
modification operations include local remeshing, e.g.,
removing the tetrahedron near the triangular face and
remeshing the resulting void, 2-3 swap, 3-2 swap, 2-2
swap, and edge contraction [37, 41, 42, 43].

The fourth vertex of a generated tetrahedron could

be either a new vertex or a pre-existing vertex. Once
the low-order vertex is finalized, we generate the high-
order nodes for the newly-created triangular faces of
the tetrahedron. For a second-order tetrahedron, the
high-order nodes will be the midpoints of each edge of
its triangular faces. Next, we update the active front
by deleting the initially selected triangular face and
adding the newly-created triangle faces. These steps
are repeated until our active front is empty. Algorithm
1 gives the pseudocode for our high-order curvilinear
tetrahedral mesh generation method.

Algorithm 1: High-order tetrahedral mesh gener-
ation
Input: Second-order curvilinear triangular
surface mesh as active front

Output: Second-order curvilinear tetrahedral
mesh

Calculate Aj , Aavg, and h
if active front is not empty then

for each triangular face do

if the face exists in the active front then
1. Calculate the inward surface normal
2. Calculate the position of the
centroid c of the triangular element

3. Insert a vertex a in the inward
direction at distance h from c

4. Search for more candidate vertices
within radius r of a

5. Run element validity tests as
described in Section 2.5

6. Run element quality tests as
described in Section 2.6

if no suitable candidate element
present then

7. Perform mesh modification
end

if tetrahedron selection criteria are
met as shown in Algorithm 2 then

8. Generate tetrahedron
end

9. Insert high-order nodes
10. Update active front

end

end

end

11. Optimize the vertices in the final tetrahedral
mesh

2.5 Validity Tests

Once we have obtained all the candidate tetrahedra
Ci, i = 1, 2, ..., n, we start performing the validity
checks on the candidates. We conduct the checks in
the specified order, so that we can remove the un-
suitable candidates one-by-one and preserve the best
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candidates. Once a test is performed, the candidate
tetrahedra are updated accordingly, e.g., if a candidate
tetrahedron fails a test, that candidate is discarded,
and the remaining candidates are considered for the
next test.

Degenerate and inverted element test: This test
checks the volume of a candidate tetrahedron to en-
sure that it is nonzero (indicating the element is not
degenerate) and nonnegative (indicating the element
is not inverted). For this test,we use the shape func-
tions for a second-order Lagrange tetrahedron and the
11-point Gauss-Lobatto rule [44]. We perform this test
on each candidate tetrahedron. If a candidate tetra-
hedron has four vertices that are nearly coplanar or
collinear, this test will omit that candidate and will
update the candidate tetrahedra list.

Figure 2: A degenerate tetrahedral element.

Figure 2 shows an example of a degenerate tetrahedral
element in which the four vertices are nearly coplanar.

Point inside tetrahedron test: We take the up-
dated candidate tetrahedra from the previous test and
perform the point inside tetrahedron check. This is
done using orientation and incircle tests discussed in
Section 4.2 of [45]. This test examines each candidate
tetrahedron to ensure no existing vertex of the mesh
is located inside the tetrahedron. If there is one such
candidate tetrahedron, it will be discarded. We check
each candidate vertex against other candidate points
that are found within the specified search radius.

Edge-face intersection test: Again, we take the
updated candidates from the previous test and check
for possible edge-face intersections. We conduct this
test to detect intersections between the edges of a can-
didate tetrahedron with the faces of the surrounding
existing tetrahedra. To this end, we check for inter-
sections between the candidate tetrahedron edges with
existing faces that are within distance r of the candi-
date tetrahedron. To check for edge-face intersection,
we use the principles of line-plane intersection. To rep-
resent the curved second-order surface triangles, we
use the shape functions for a two-dimensional second-
order Lagrange element. We first calculate the tangent

Figure 3: Example of edge-face intersection between
element 152 (red) and element 103 (green).

planes to the curves and use them to calculate the sur-
face normal of the face we are checking against. This
normal vector represents the face. Next, we select an
arbitrary point that lies on the face. For the edge, we
take the two endpoints of the selected edge.

Figure 3 shows an example of an edge-face intersec-
tion in which one candidate element edge (element 152
shown in red) intersects with two planes of an existing
element (element 103).

Face-edge intersection test: Next, we perform an-
other test on the updated candidate tetrahedra to de-
tect intersections between the faces of a candidate
tetrahedron and edges of surrounding existing tetra-
hedra that are within distance r of that specific candi-
date. The face-edge intersection test follows the same
principle outlined for edge-face intersection test.

2.6 Element Quality Tests

The candidates that pass the validity tests are consid-
ered for element quality checks. Similar to the validity
tests, the quality checks are performed in the specified
order. If there exists a candidate that does not meet
the minimum quality requirement set for a particular
test, that candidate is discarded, and the rest of the
candidate tetrahedra move forward to the next test.

Dihedral angle: We start the quality checks with a
dihedral angle calculation. We calculate the dihedral
angles between the faces of a candidate tetrahedron
and discard the candidates that have a dihedral an-
gle less than 15�. Since the mesh is curvilinear, we
first calculate the tangent planes to the curves and
use them to calculate the surface normals. The angle
between the normals of the two planes gives us the
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dihedral angle.

(a)

(b)

Figure 4: Example of various dihedral angles: (a) a
dihedral angle of 22� between plane ABC and plane
BCD; (b) a dihedral angle of 45� between plane ABC
and plane BCD.

Figure 4 shows two di↵erent tetrahedra with di↵er-
ent minimum dihedral angle values. Fig. 4(a) shows
a tetrahedron with a dihedral angle of 22� between
plane ABC and plane BCD, and Fig. 4(b) shows a
tetrahedron with a dihedral angle of 45� between the
same planes.

Equiangular skewness: We use the dihedral angles
and measure equiangular skewness of the tetrahedral
element. The equiangular skewness [46] is given by:

max


✓max � ✓e
180� ✓e

,
✓e � ✓min

✓e

�
, (2)

where

✓min = smallest angle of the element,

✓max = largest angle of the element, and

✓e = angle for equiangular element, i.e., 70.52°
for a regular tetrahedron.

A low minimum dihedral angle would result in a higher
skewness value. The tetrahedra shown in Fig. 4(a)
with minimum dihedral angle 22� has an equiangular
skewness of 0.68, and the tetrahedron in Fig. 4(b)
with minimum dihedral angle 45� has an equiangular
skewness of 0.36. We discard candidate tetrahedra
that have an equiangular skewness value greater than
0.9 unless there are no other candidates with a lower
skewness value available.

Edge-face angle calculation: Next, we calculate
the angles between candidate tetrahedral edges and
faces of both surrounding existing tetrahedral ele-

ments and triangular boundary surfaces. If a candi-
date exists that creates an edge-face angle of less than
10�, we discard that candidate. This reduces the possi-
bility of creating low-quality elements, such as slivers,
needles, and caps on future iterations.

Figure 5: Example of an edge-face angle with the
potential to create invalid elements.

In Fig. 5, face 1-2-3 of tetrahedron A is creating an
angle of approximately 8� with edge 3-4 of tetrahedron
B. This narrow angle could generate low-quality ele-
ments on future iterations. We discard candidate the
tetrahedra that might create such angles in the mesh.

Scaled Jacobian: As a final quality metric, we calcu-
late the scaled Jacobian of our candidate tetrahedra.
The scaled Jacobian is defined as:

min J(⇠)
max J(⇠)

, (3)

where J(⇠) = det(@x/@⇠).

This is the Jacobian of the mapping from the refer-
ence coordinate ⇠ to the physical coordinate x. Scaled
Jacobian values can range from �1 to 1, where a
value of 1 indicates a straight-sided element, a value
less than 1 indicates a curved element and a negative
value indicates an inverted element.

We calculate the scaled Jacobian using the shape func-
tions for a second-order Lagrange tetrahedron and the
11-point Gauss-Lobatto rule [44].

2.7 Mesh modification operations

In the event that there are no suitable candidate ele-
ment present after performing the validity and quality
checks, we conduct several mesh modification opera-
tions to generate a valid element. These modification
operations include:

• Local remeshing: We remove the tetrahedron
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near the selected surface triangle and remesh that re-
gion.

• Face swapping and edge contraction: If there
are low-quality elements in the mesh, e.g., sliver,
wedge, needle, or cap elements, we perform face swaps
[42, 43] and/or edge contractions [41] to obtain an el-
ement that has higher quality. If these operations do
not improve the element quality or they reduce the
quality of the adjacent elements, we keep the origi-
nal element in the mesh. Among the various types of
face-swapping operations, our method currently em-
ploys 2-2, 2-3, and 3-2 swaps.

2.8 Selection of the best possible tetrahe-
dral element

Once we have the candidate tetrahedra that passed all
of the validity and quality checks, we use our tetrahe-
dral selection algorithm described in Algorithm 2 to
select the best quality tetrahedron and insert it into
the mesh.

Since a high-order mesh consists of both straight-sided
and curved elements, we use two di↵erent selection
criteria for these two di↵erent types of elements. For
curved elements, the selection criterion is based on the
scaled Jacobian, and for straight-sided elements, it is
based on the equiangular skewness.

Curved elements: Often the candidate with the
highest scaled Jacobian value does not generate the
best tetrahedral element in terms of the overall quality
of the mesh. The candidate vertices can include both
existing vertices from the mesh, as well as one newly
added vertex a as shown in Fig. 1. If the newly added
vertex a gives the highest scaled Jacobian but there are
other existing candidate vertices that are very close to
a, then selecting the element with the highest scaled
Jacobian will create two vertices that are very close to
each other, which will generate low-quality elements,
such as slivers, caps, and needles on future iterations.
Thus, if two such vertices exist in the candidate list,
we select the existing vertex over the new vertex.

Straight-sided elements: For straight-sided ele-
ments, the scaled Jacobian value is always 1. Thus,
we use equiangular skewness to measure the quality
of such elements. We use the same analogy described
above for curved elements and give preference to se-
lection of existing vertices over the addition of new
vertices.

2.9 Mesh Optimization

After generation of the straight-sided quadratic tetra-
hedral meshes is complete, we apply mesh optimiza-
tion. This ensures that the high-order degrees of free-
dom available in each element are utilized and the

Algorithm 2: Selection of the best possible tetra-
hedral element
Input: Candidate tetrahedra Ci, i = 1, 2, ..., n
that pass validity and quality checks

Output: The most suitable candidate
tetrahedron C

if more than one candidate tetrahedron present
then

if scaled Jacobian 2 (0,1) then
if new vertex a is the fourth vertex of the
candidate tetrahedron with highest scaled
Jacobian value then

1. Calculate distance d between a and
the fourth vertex of every other
candidate tetrahedra present
Ci, i = 1, 2, ..., n� 1

if d < h then

select candidate tetrahedron C with
lowest d

else

select the candidate tetrahedron C
with the highest scaled Jacobian
value

end

else

select the candidate tetrahedron C
with the highest scaled Jacobian value

end

else

if scaled Jacobian = 1 then

if new vertex a is the fourth vertex of
the candidate tetrahedron with lowest
equiangular skewness then

1. Calculate distance d between a
and the fourth vertex of every
other candidate tetrahedra present
Ci, i = 1, 2, ..., n� 1

if d < h then

select candidate tetrahedron C
with lowest d

else

select the candidate tetrahedron
C with the lowest equiangular
skewness

end

else

select the candidate tetrahedron C
with the lowest equiangular
skewness

end

end

end

else

select the only candidate tetrahedron available
end

quality of the mesh is further improved. After mesh
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optimization, we obtain quadratic curvilinear tetra-
hedral meshes. We use the mesh optimization algo-
rithm for regularization of high-order meshes available
in Gmsh. We use the disjoint strong strategy with 100
maximum iterations and 25 barrier updates [39].

3. NUMERICAL RESULTS

In this section, we show the results from applying our
mesh generation algorithm to generate several second-
order tetrahedral meshes from second-order triangular
surface meshes. We also report the wall-clock time re-
quired to generate the meshes and to optimize them.
The straight-sided quadratic tetrahedral mesh genera-
tion algorithm was run using Matlab R2019b. The
optimization algorithm available in Gmsh is imple-
mented in C++. All the execution times were mea-
sured on a machine with 16GB of RAM and an In-
tel(R) Core(TM) i7-6700HQ CPU. All mesh visual-
izations were generated using Gmsh.

For our examples, the low-order surface meshes were
generated using Gmsh, Netgen [38], and from bound-
ary representations obtained from segmented medi-
cal images. To show that our method can be used
to generate curvilinear quadratic tetrahedral meshes
from various types of boundary representations, such
as when a CAD model is either available or absent,
we show both types of examples. To this end, we
show examples when the geometry is generated by
us versus when the geometry or the surface mesh is
obtained from other sources. The high-order surface
meshes were generated using Gmsh and meshCurve
[47]. For example 1 and example 3, the geometries and
the second-order surface meshes were directly gener-
ated using Gmsh. For example 2, the geometry was
obtained from Netgen, and for example 4, the linear
surface mesh was obtained from Netgen. For exam-
ple 5, the geometric model of the left ventricle (LV)
myocardium was obtained from cine cardiac magnetic
resonance (MR) images using the Automated Cardiac
Diagnosis Challenge (ACDC) dataset [48]. To gener-
ate the low-order surface mesh, the Lewiner marching
cubes [49] algorithm was used and followed by mesh
simplification in MeshLab [50]. Once we have the low-
order surface meshes for examples 2,4, and 5, we then
use Gmsh to introduce the high-order nodes to the
low-order surface mesh. Finally meshCurve is used to
obtain the curvilinear second-order surface mesh from
the linear surface mesh. Figure 6 shows an overview
of the high-order surface mesh generation process.

For our first example, we generate a curvilinear,
quadratic tetrahedral mesh using the second-order sur-
face mesh of a torus. The 3D mesh generated us-
ing our method has 3852 tetrahedral elements. For
this example, we used a search radius of 1.5h. For
mesh optimization, we used a target Jacobian range

of 0.7 � 2.0. Figure 7(a) shows the volume mesh of
the torus generated using our method. Figures 7(b,c)
show two cross sections of the mesh. The 3D mesh
does not contain inverted elements. The runtime and
element quality information before and after apply-
ing mesh optimization are shown in Fig. 7(d). After
optimization, the minimum scaled Jacobian value in-
creased from 0.541 to 0.681, and the maximum equian-
gular skewness value decreased from 0.864 to 0.857.
Figures 7(e,f) show the histograms of the quality mea-
sures. As seen in Fig. 7(f), only around 0.2 percent of
the total elements have a skewness value higher than
0.85.

For our second example, we generated a second-order
tetrahedral mesh of a screw. The CAD file of the screw
was obtained from Netgen. To generate this mesh, we
used a search radius of 1.8h. The 3D mesh of the
screw has 272 elements. There are several skinny tri-
angular elements present in the surface mesh near the
screw head region that can be seen in the circled ar-
eas in Figs. 8(d,e). The surface mesh also contains
several highly-curved, skinny triangular elements on
the screw end as shown by the circled area in Fig.
8(f). These lower-quality triangular elements initially
resulted in a higher skewness and lower scaled Jaco-
bian value than normal. However, incorporation of the
mesh optimization step further improved the quality
of the meshes. For mesh optimization, we used a tar-
get Jacobian range of 0.1 � 2.0. Figures 8(a-c) show
the 3D mesh of the screw. The runtime and element
quality information are shown in Fig. 8(g). Before
optimization, the minimum scaled Jacobian value of
the mesh was 0.028. After optimization this value in-
creased to 0.278. Similarly, the maximum equiangular
skewness value before optimization was 0.931. After
optimizing the mesh, the maximum skewness value re-
duced to 0.927. Figures 8(h,i) show the histograms of
the quality measures. It can be seen from the his-
tograms that only around 0.3 percent elements have a
skewness value higher than 0.9.

Our third example is a second-order tetrahedral mesh
of a hollow cylinder with no ends. The 3D mesh gen-
erated using our method has 6050 elements. For this
example, we used a search radius of 1.5h. For mesh op-
timization, we used a target Jacobian range of 0.8�2.0.
The tetrahedral mesh generated using our method is
shown in Fig. 9. Figures 9(b,c) show the hollow cylin-
der using various cutting planes. The runtime statis-
tics and mesh quality information are shown in Fig.
9(d). Optimizing the mesh increased the minimum
scaled Jacobian value from 0.504 to 0.618. The maxi-
mum equiangular skewness value decreased from 0.869
to 0.863. The histograms of scaled Jacobian values
and equiangular skewness are shown in Figs. 9(e,f).
Only around 0.4 percent of the mesh elements have a
skewness value greater than 0.85.
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Figure 6: High-order surface mesh generation.

Example
Software

package
Quality metric

Min quality

metric value

Using software package Using our method

Torus Gmsh Scaled Jacobian 0.581 0.681
Torus meshCurve Jacobian determinant -0.002 N/A

Cylinder Gmsh Scaled Jacobian 0.450 0.618
Hinge Netgen Scaled Jacobian -0.214 0.173
Screw N/A Scaled Jacobian N/A 0.278

Myocardium N/A Scaled Jacobian N/A 0.156

Table 1: Comparison of meshes generated using di↵erent software packages.

For our fourth example, we used the geometry of a
hinge obtained from Netgen. The second-order tetra-
hedral mesh of the hinge contains 2996 elements. For
this example, we used a search radius of 1.5h. The sur-
face mesh of the hinge has a combination of very large
and small elements. This initially resulted in a min-
imum scaled Jacobian value of 0.034 and maximum
skewness value of 0.903 for this mesh. Similar to the
screw, the mesh optimization step improved the qual-
ity of the mesh, increasing the scaled Jacobian value to
0.173 and decreasing the skewness value to 0.887. For
mesh optimization, we used a target Jacobian range of
0.1� 2.0. Figure 10 shows the tetrahedral mesh of the
hinge. Figures 10(b-d) show the hinge using various
cutting planes. Figure 10(e) shows the runtime statis-
tics and mesh quality information. The histograms
of the scaled Jacobian values and equiangular skew-
ness are shown in Figs. 10(f,g). In this mesh, only
around 0.6 percent of the elements have a skewness
value greater than 0.85.

Finally, we generated a second-order tetrahedral mesh
of the left ventricle myocardium of a normal human
heart. For this example, we used a search radius of
1.5h. For mesh optimization, we used a target Jaco-
bian range of 0.2 � 2.0. Figures 11(a,b) show the top
and side view of the myocardium. Figure 11(c) shows

the myocardium using a cutting plane. The runtime
statistics and mesh quality information are shown in
Fig. 11(d). Mesh optimization increased the mini-
mum scaled Jacobian value from 0.123 to 0.156 and
decreased the maximum skewness value from 0.895 to
0.883. The histograms of scaled Jacobian values and
equiangular skewness are shown in Figs. 11(e,f). For
this mesh, around 0.8 percent of the elements have a
skewness value greater than 0.85.

For coarser meshes, such as the screw example shown
in Fig. 8, to obtain enough candidate vertices during
the vertex search, the search radius needs to be larger
compared to that of a finer mesh, such as the hollow
cylinder shown in Fig. 9.

We compare meshes generated using our method with
those generated by existing open-source high-order
meshing software such as Gmsh, meshCurve, and Net-
gen. We note that, these software packages use a mesh
generation approach that is di↵erent from ours and re-
quire CAD files to generate their meshes. For the torus
example, we generated the second-order surface mesh
using Gmsh and used it as an input for our method.
We used Gmsh to generate a second-order tetrahedral
mesh from the same surface mesh. The resulting mesh
had 7 elements with a negative scaled Jacobian value.
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(a) (b)

(c)

No.

of

Elements

Runtime (s)

Scaled

Jacobian

Equiangular

skewness

Initial Final Initial Final

Mesh

generation

Mesh

optimization
min min max min max min max

3852 2192 1.542 0.541 1.000 0.681 1.000 0.006 0.864 0.006 0.857

(d)

(e) (f)

Figure 7: Second-order curvilinear tetrahedral mesh of a torus after optimization: (a) torus; (b) cross section 1;
(c) cross section 2; (d) algorithm runtime statistics and mesh quality metrics, and (e,f) histogram plots of scaled
Jacobian and equiangular skewness.
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(a) (b) (c)

(d) (e) (f)

No.

of

Elements

Runtime (s)

Scaled

Jacobian

Equiangular

skewness

Initial Final Initial Final

Mesh

generation

Mesh

optimization
min min max min max min max

272 192 0.469 0.028 1.000 0.278 1.000 0.063 0.931 0.056 0.927

(g)

(h) (i)

Figure 8: Second-order curvilinear tetrahedral mesh of a screw after optimization: (a) and (b) 3D mesh of the screw
(views 1 and 2); (c) cross section of the screw; (d) and (e) zoomed-in views of the screw head; (f) zoomed-in view of
the screw end; (g) algorithm runtime statistics and mesh quality metrics, and (h) and (i) histogram plots of scaled
Jacobian and equiangular skewness.

84



(a) (b)

(c)

No.

of

Elements

Runtime (s)

Scaled

Jacobian

Equiangular

skewness

Initial Final Initial Final

Mesh

generation

Mesh

optimization
min min max min max min max

6050 6570 0.187 0.504 1.000 0.618 1.000 0.031 0.869 0.012 0.863

(d)

(e) (f)

Figure 9: Second-order curvilinear tetrahedral mesh of a hollow cylinder with no ends after optimization: (a) 3D
mesh of the cylinder; (b) cross section 1; (c) cross section 2; (d) algorithm runtime statistics and mesh quality metrics,
and (e,f) histogram plots of scaled Jacobian and equiangular skewness.
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(a) (b)

(c)

(d)

No.

of

Elements

Runtime (s)

Scaled

Jacobian

Equiangular

skewness

Initial Final Initial Final

Mesh

generation

Mesh

optimization
min min max min max min max

2996 3166 0.156 0.034 1.000 0.173 1.000 0.032 0.903 0.008 0.887

(e)

(f) (g)

Figure 10: Second-order curvilinear tetrahedral mesh of a hinge after optimization: (a) 3D mesh of the hinge; (b)
cross section 1; (c) cross section 2; (d) cross section 3; (e) algorithm runtime statistics and mesh quality metrics, and
(f,g) histogram plots of scaled Jacobian and equiangular skewness.
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(a) (b)

(c)

No.

of

Elements

Runtime (s)

Scaled

Jacobian

Equiangular

skewness

Initial Final Initial Final

Mesh

generation

Mesh

optimization
min min max min max min max

3022 3283 0.203 0.123 1.000 0.156 1.000 0.041 0.895 0.013 0.883

(d)

(e) (f)

Figure 11: Second-order curvilinear tetrahedral mesh of the left ventricle (LV) myocardium of a normal human
heart after optimization: (a) top view; (b) side view; (c) cross section 1; (d) algorithm runtime statistics and mesh
quality metrics, and (e,f) histogram plots of scaled Jacobian and equiangular skewness.
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We used mesh regularization with a target Jacobian
range of 0.7� 2.0 in Gmsh to optimize the mesh. The
optimized mesh had a minimum scaled Jacobian value
of 0.581. Next, we tried to generate a second-order
tetrahedral mesh of the same torus using meshCurve.
After the surface curving, the mesh had a minimum
Jacobian value of �0.0018365 resulting in a tangled
mesh. Since meshCurve does not have a mesh opti-
mization option, we could not improve the equality of
this mesh further.

For the hollow cylinder with no end, we obtained the
second-order surface mesh from Gmsh. We attempted
to generate a second-order tetrahedral mesh from the
same surface mesh using Gmsh. The resulting mesh
was valid but had a minimum scaled Jacobian value
of 0.000213. After applying mesh regularization in
Gmsh, the final tetrahedral mesh had a minimum
scaled Jacobian value of 0.450. For mesh optimiza-
tion, we used a target Jacobian range of 0.8� 2.0.

For the hinge example, the surface mesh was obtained
from Netgen. We used Netgen to generate a second-
order mesh of the hinge. The resulting mesh had a
minimum scaled Jacobian value of -0.214. The mesh
optimization algorithm available in Netgen failed to
untangle the mesh.

For the screw example, although the initial geome-
try was obtained from Netgen, we used Gmsh and
meshCurve to obtain the final curved surface mesh
and hence a similar volume mesh was not possible to
generate using Netgen.

For the myocardium example, since it was not gener-
ated from a CAD file, we could not compare it with the
results of any existing high-order mesh generation soft-
ware. Table 1 shows a comparison of the quality of the
meshes generated using the software packages men-
tioned previously and using our method. While Gmsh
successfully generated meshes of the torus and the
cylinder, the scaled Jacobian values of these meshes
were lower than those generated using our method.
Meshes of the torus and the hinge generated using
meshCurve and Netgen had inverted elements and re-
sulted in tangled meshes which the respective software
packages failed to untangle. Overall, the meshes gen-
erated using our method are of better quality.

4. CONCLUSIONS AND FUTURE
WORK

In this paper, we have presented a novel direct method
for generation of high-order tetrahedral meshes based
on use of an advancing front technique. Our method
assumes as input a high-order triangular surface mesh
for the boundary of the geometry. In contrast with a
posteriori mesh generation methods, our method does
not depend on the availability of a CAD file.

The quality of our high-order tetrahedral mesh is
somewhat dependent on the quality of the input high-
order triangular surface mesh. If the input surface
mesh has skinny elements, this will a↵ect the quality of
the 3D mesh. Also, if the surface mesh is composed of
heterogeneous-sized elements, this will also a↵ect the
quality of the 3D mesh generated using our method.
While the meshes generated using our method are ini-
tially mostly of high element quality, examples such as
the screw and the hinge were improved using the mesh
optimization step. Our method has been successfully
used to generate isotropic meshes. In the future, we
plan to extend our method to generate anisotropic
meshes, as well. Also, currently we have implemented
the method to generate quadratic tetrahedral meshes.
In the future, we plan to extend our implementation
to generate meshes of higher orders.

Finally, the method is currently implemented in Mat-
lab and serves as an initial prototype. Our future work
will include implementing the method in C++ to re-
duce the runtime so that it can handle larger, real-
world meshes, such as those required for biomedical
simulations.
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