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ABSTRACT

One of the important features of the arbitrary Lagrangian-Eulerian (ALE) hydrodynamics methods is the appearance
of mesh cells containing fractional amounts of more than one material. To resolve sub-scale material dynamics,
interfaces between materials inside a cell have to be calculated from material moments. The moment-of-fluid (MOF)
method is one of the most accurate interface reconstruction methods. Unlike other methods, it is local and does not
require data from neighboring cells which makes it amenable for emerging computer architectures. We analyze this
method for axisymmetric problems. Our analysis closes a few gaps in its theoretical justification and provides useful
insight on its properties and practical implementation. The theoretical conclusions are confirmed with numerical
experiments.

Keywords: interface reconstruction, axisymmetric geometry, polygonal meshes

1. INTRODUCTION

Lagrangian multi-material hydrodynamics methods
solve the governing equations on a mesh that moves
with the flow and tangles on vorticial and shear flows.
To overcome simulation failure due to mesh tangling,
a three-step ALE approach is used [1]. First, a La-
grangian calculation that deforms the mesh is per-
formed until the mesh quality falls below an accept-
able level. Second, a new mesh with higher quality is
created. Third, the physical fields from the deformed
mesh are transferred conservatively to the new mesh,
a process referred to as remapping. Often it is imprac-
tical to preserve material interfaces in the new mesh,

since this may require its undesirable refinement. For
this reason, many multiphysics codes place multiple
materials inside a single computational cell. Such cells
are called multi-material cells.

Material distribution inside a multi-material cell is
characterized by material moments. Traditionally, hy-
drodynamics codes use volume-of-fluid (VOF) meth-
ods for tracking materials. In these methods only the
zeroth-order moments of materials (i.e. simply ma-
terial volumes) are tracked. Typically, the material
volume is normalized by the cell volume and called
material volume fraction. Materials such as gases, liq-
uids and solids have di↵erent properties, so that ac-
curate simulation of flow requires to resolve dynamics
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of materials inside a multi-material cell. This requires
to find geometric location of materials and calculate
interfaces between them. Recovery of these interfaces
from moment data is done by the interface reconstruc-
tion (IR) methods. Nowadays, the IR methods are
the critical component in predictive ALE modeling of
complex multi-material flows.

Knowledge of only material volume fractions gives lit-
tle information about spatial distribution of materials
and leads to a lot of uncertainty in calculating ma-
terial interfaces. For instance, a linear material in-
terface in a two-material cell cannot be reconstructed
uniquely from two volume fractions, see Fig. 6 later.
Also, the reconstructed interfaces may depend on the
order in which the materials are processed. To reduce
uncertainly, most IR methods use information from
neighboring cells which increases data movement in a
parallel computation and makes the underlying algo-
rithms non-local. The classical VOF method uses gra-
dient of material volume fractions to estimate normal
to a material interface in a multi-material cell [2, 3].
After the normal is known, the interface position is
defined uniquely by the material volume. Since vol-
ume fractions are only weakly connected with the po-
sitions of cell centroids (we can change the centroid
position without changing the volume fraction), the
estimated normal could be quite approximate making
the method only first-order accurate.

To reduce uncertainty further, the least squares vol-
ume interface reconstruction algorithm (LVIRA) has
been developed [4]. This IR method searches for the
interface position that cuts o↵ the right volume frac-
tion in the cell of interest and minimizes (in the least
square sense) the di↵erence between the given volume
fractions in neighboring cells and the volume fractions
calculated using this interface. This leads to a nonlin-
ear optimization problem. The LVIRA preserves lin-
ear interfaces which is the necessary requirement for
a second-order IR method. However, both the VOF
and LVIRA methods cannot resolve interface details
smaller than a characteristic size of the cell cluster in-
volved in evaluation of the interface normal.

The emerging computer architectures force developers
to switch from non-local to local IR methods, prefer-
ably flops-intensive. In addition to zeroth-order mate-
rial moments, these methods use the first-order mate-
rial moments that are nothing else but material cen-
troids. The focus of this paper is on the moment-of-
fluid (MOF) method [5]. Due to data locality, the
computational work is performed in a single mesh cell
without any interaction with neighbors which makes
this IR method amenable for novel computing plat-
forms. The MOF can resolve interface details smaller
than the computational cell such as in thin material
layers.

Other non-local IR methods are the Youngs [6],
ELVIRA [7], and Swartz [8] methods. They have
the same fundamental deficiencies as the VOF and
LVIRA. Other local IR methods are the symmetric
MOF [9] and xMOF [10].

In practice, many important problems can be studied
under assumption of the cylindrical symmetry, e.g. a
liner implosion in ICF simulations [11]. This assump-
tion leads to a 2D problem posed in the RZ (axisym-
metric) coordinate system which saves a lot in compu-
tational cost. A few papers consider extension of the
MOF to the RZ coordinate system [12] without paying
enough attention to its theoretical justification. This

work closes a few gaps in the theory. In particular, the
uniqueness and stability results help development and
analysis of robust converging numerical methods. For
example, the uniqueness result (see Lemma 1) implies
that the underling nonlinear optimization problem has
an unique global minimum. Hence, linear interfaces
can be recovered uniquely which allows us to resolve
accurately thin material layers inside a multi-material
cell. None of the non-local IR methods has this po-
tential existing in the MOF method.

Note that some of the theoretical results considered
here were formulated, but not proven, earlier for the
Cartesian coordinate system, see [5]. Our analysis
closes the existing theoretical gaps and shows the dif-
ferences and commonalities between MOF methods
in the 2D Cartesian and RZ coordinate systems that
could be used in writing e�cient codes.

The MOF method requires three times more data than
the VOF method, both in terms of storage and over-
head with respect to updating the material centroids.
This additional cost should be weighted against the
remap frequency in an ALE simulation, the complex-
ity of this simulation, and additional accuracy pro-
vided by the MOF method. Also, the cost of the MOF
method grows significantly with the number of materi-
als in a cell. To reduce the cost, analytical formulae for
cutting a given volume fraction are derived in [13]. An-
other way to quickly find the position of a cut-o↵ line
is the Newton-type method proposed in [14]. E�cient
analytic formulae for calculating objective functional
on hexahedral meshes are proposed in [15].

All numerical experiments are performed using the
Portage code [16]. This is an open-source, scalable and
extensible data transfer (remap) library for numer-
ical simulations. It supports state-of-the-art remap
schemes for meshes and particles in 2D and 3D up
to a second-order accuracy. Portage ensures criti-
cal properties such as local/global conservation laws
and bounds preservation for remapped fields. It en-
ables multi-material field remap through the use of
a dedicated interface reconstruction plugin, Tangram,
and leverages the hybrid parallelism exposed by ad-
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vanced architectures using multi-processing and multi-
threading.

The paper outline is as follows. In Section 2, we de-
scribe polygonal meshes in the RZ coordinate system.
In Section 3, we formulate and prove a few theoretical
results that underpin the successful behavior of the
MOF method in practice. In Section 4, we summa-
rize the code implementation of the IR methods. In
Section 5, we verify our finding with numerical exper-
iments in the RZ coordinate system.

2. POLYGONAL MESHES IN THE RZ
COORDINATE SYSTEM

Polygonal cells appear naturally in various multi-
physics multi-material simulations ranging from flow
and reactive transport in fractured rock to compress-
ible gas and material flows in hydrodynamics. Polyg-
onal meshes are useful for modeling dynamic opening
(or closure) of fractures via splitting (or merging) cells
of a background mesh. In hydrodynamics, polygonal
cells appear in the ALE framework as a way to compro-
mise between improving mesh quality and preserving
some flow features [17].

Other sources of polygonal meshes are the adaptive
mesh refinement methods. A locally refined mesh may
be considered as the conformal polygonal mesh with
degenerate cells (for instance, when the angle between
two neighboring faces in a cell is zero). Usage of such
degenerate (but shape-regular) polygonal cells allows
us to avoid superfluous mesh refinement. Any defini-
tion of a cell shape-regularity could be used. To be pre-
cise, hereafter, we assume that a shape-regular poly-
gon could be split into the uniformly bounded number
of triangles that are shape-regular in the sense of Cia-
rlet.

In contrast to Voronoi meshes (see e.g., [18] and ref-
erences therein), arbitrary polygonal meshes provide
greater flexibility for meshing complex domains. For
instance, badly shaped (needle-type) triangles could
be simply merged with their neighbors forming a
shape-regular polygon.

Since the RZ coordinate system mimics a 3D geome-
try, we will use volumes in the subsequent discussion.
However, we will use cut-o↵ line since geometric oper-
ations are done in two-dimensions. The volume of cell
⌦ is defined as follows:

|⌦| =
Z

⌦

dV, dV = rdrdz.

Its centroid is defined as

x⌦ =
1
|⌦|

Z

⌦

x dV.

The norm of the position vector x = (r, z) is defined
as

kxk =
p

r2 + z2.

Observe that the only di↵erence with similar defini-
tions in the Cartesian coordinate system is in the use
of the infinitesimal volume dV . This implies that
many algorithms could be written and analyzed in the
geometry-agnostic way.

3. MOMENT-OF-FLUID METHOD

3.1 Two-Material Problem

The case of two materials in a single cell provides
useful insight on the interface reconstruction problem.
For simplicity, we consider a convex cell which is a typ-
ical assumption for many Lagrangian hydrodynamic
applications. It allows us to control (to some extend)
properties of the deformation tensor, such as positiv-
ity of the Jacobian. Throughout this section, we try
to use geometry-independent arguments; so that the
conclusions could be applied to both the 2D Cartesian
and RZ coordinate systems.

We will use the following definitions. The symmet-
ric di↵erence for two polygonal domains !1 and !2 is
defined as follows:

�(!1,!2) = (!1 [ !2)/(!1 \ !2). (1)

3.1.1 Theoretical Background

The theoretical background for interface reconstruc-
tion method is based on the fact that some parts of a
polygonal cell could be uniquely characterized by their
centroid.

Let ⌦ be a convex polygon cut into two polygons !1

and !2 by a cut-o↵ line `. Let x!1 and x!2 be centroids
of the two polygons. The definition of the centroid and
|⌦| = |!1|+ |!2| give

x⌦ =
1

|!1|+ |!2|

✓Z

!1

x dV +

Z

!2

x dV

◆
.

The integrals can be computed exactly by evaluating
x at the centroids two polygons. This leads to the
following formula:

x⌦ = x!1f1 + x!2(1� f1), f1 = |!1|/|⌦|. (2)

Thus, the centroid of cell ⌦ lies on the line connecting
the centroids of its pieces. This is true for any object
split into two pieces. We will use this fact later. Po-
sition of the cut-o↵ line ` is defined by the vector n
normal to it, see Fig. 1. Equivalent definition is the
distance d to the cut-o↵ line which is d = knk and the
angle ' between n and the r-axis.
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Figure 1: The RZ coordinate system: Position of the

cut-o↵ line ` is defined by the normal vector n.

Let µ⇤ be the volume of !1. In analysis, we often
assume that µ⇤ is fixed and

0 < µ⇤ < |⌦|.

Strict inequalities allow us to avoid empty polygons
and one-material cells. We use `(µ⇤) to denote any
line cutting a polygon with volume µ⇤.

In a few papers on IR methods, the following unique-
ness result is formulated without a proof for the Carte-
sian coordinate system. For instance, the following
statement is made in [5]: ”Property 1. Each trunca-
tion volume is uniquely identified by its centroid.” In
our opinion this statement is somewhat intuitive but
not obvious at all.

Lemma 1. Let ⌦ be a convex cell and x!1 be the
centroid of a non-empty polygon !1 cut o↵ by a line
`. Then, the position of centroid x!1 identifies the
unique cut-o↵ line `.

Proof. Let us assume the opposite that there exist two
di↵erent cut-o↵ lines ` and ˜̀ and two di↵erent cut-o↵
polygons !1 and e!1 with the same centroid x!1 . The
left panel in Fig. 2 shows the case when the cut-o↵
lines do not intersect inside ⌦. Since either e!1 includes
strictly !1 or vise versa, the centroids must be di↵erent
due to property (2).

The case of intersecting cut-o↵ lines is more involved.
Let !c be the common part of the two polygons, !c =
!1 \ e!1, with centroid xc. Since !1 = !c [ !a and
e!1 = !c [ e!b, we have

x!1 = xcfc + xa(1� fc) = xcf̃c + xb(1� f̃c), (3)

where f denotes the volume fraction, like in (2), e.g.
fc = |!c|/|!1|. Hence (xa�xc)(1�fc) = (xb�xc)(1�
f̃c). Let p be the intersection point of two cut-o↵ lines
` and ˜̀. Due to convexity of all polygons the line
defined by points p and xc separates strictly !a and
!b. Hence the vectors xa � xc and xb � xc cannot be
collinear. This contradiction proves the assertion of
the lemma. ⇤

Figure 2: Partitioning of cell ⌦ by two cut-o↵ lines ` and
˜̀. The solid bullet is the common centroid of polygons

!1 and e!1.

The above lemma allows us to define a map M:x!1 !
!1, where x!1 2 ⌦ is an interior point. Since for a
given non-empty !1, we have the formula for its cen-
troid, the map is bijective. Let us consider subset
of polygons !1 with fixed volume µ⇤ and denote the
corresponding restriction of the map by M(µ⇤). In
optimization algorithms, mentioned below, we need to
control the inverse of this map.

Lemma 2. The map (M(µ⇤))�1 is continuous.

Proof. Let !1 and e!1 have the same volume µ⇤. Then,
the di↵erence between their centroids is

k�xk = k 1
µ⇤

⇣Z

e!
x dV �

Z

!

x dV
⌘
k  R

µ⇤ |�!|,

where R is the maximum norm of x in ⌦, and �! is the
symmetric di↵erence of !1 and e!1, see (1). Since µ⇤ is
fixed, the assertion of the lemma follows immediately.
⇤
This lemma implies that any numerical implementa-
tion of optimization algorithms that vary orientation
of the normal vector n should take into account sen-
sitivity to small volumes µ⇤. The problem is slightly
mitigated by observing that |�!| ⇠ Sk�nk where is S
is the area of the cut-o↵ line inside ⌦.

Understanding the accuracy of the interface recon-
struction is important for the development of new IR
methods. The above uniqueness result implies that a
linear interface is recovered exactly. This is the neces-
sary condition for a second-order method.

Preservation of material volume is paramount in prac-
tical applications. However, Lemma 1 cannot be gen-
eralized to include volume fraction constraints. We
need to complement it with the following approxima-
tion result.

Lemma 3. Let ⌦ be a convex cell containing two
simply-connected physical material regions e!i with the
C2-continuous interface between them. Furthermore,
let e!1 be star-shaped with respect to its centroid xe!1 .
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Finally, let !1 be a polygonal approximation of e!1

with the same centroid and having the same volume
fraction. Then, !1 is the second-order approximation
of e!1.

Proof. Let us consider the case when the cut-o↵ line `
intersects the material interface in only one point, p,
see the left panel in Fig. 3. We re-use the arguments
from Lemma 1. Formula (3) holds true and implies
that vectors xa � xc and xb � xc must be collinear.
Moreover, if fc > f̃c, then

xc(fc � f̃c) + xa(1� fc) = xb(1� f̃c).

Hence, xb is the convex combination of xc and xa.
This is not possible since !1 is convex and contains
the whole segment from xc to xa. All points of this
segment are separated from xb by the cut-o↵ line.

If fc < f̃c, xa is the convex combination of xc and xb.
Since xe!1 is also the convex combination of xc and
xb, we have four points lying on one line and we know
their order. Indeed,

xe!1 = xcf̃c + xb(1� f̃c),

xa = xc
f̃c � fc
1� fc

+ xb
1� f̃c
1� fc

.

Note that f̃c is bigger than the coe�cient in front of
xc in the second equation. Thus x!1 is closer to xc

than xa. Since the material polygon is star-shaped
with respect to its centroid, points xa and xb are not
separated by the line connecting xe!1 with p, but re-
gions !a and !b are separated by this line. We have a
contradiction, so the one-point intersection case is not
possible.

Figure 3: Cell ⌦ with the curved material interface. The

solid bullet is the common centroid of polygon !1 that

is shaded and material region e!1.

Let now consider the case of two (or more intersec-
tions), see the right panel in Fig. 3. Since the material
interface is C2, any cut-o↵ line intersecting it in at
least two places approximates it with the second order
accuracy. This proves the assertion of the lemma. ⇤
Unfortunately, we cannot drop the C2 interface reg-
ularity assumption. For instance, when the interface

has a sharp kink, its linear approximation will be only
first-order accurate.

3.1.2 Constrained Problem

When the material interface in a cell is a straight line,
the uniqueness result of Lemma 1 implies that the ma-
terial volume is preserved exactly. This is no longer
true for a general curved interface, where the volume
of a cut-o↵ polygon !1 is not guaranteed to match
the volume of the corresponding physical material e!1.
Also, in practice, the material centroid is defined ap-
proximately, upto a discretization error which intro-
duces noise in the input data. In contrast to material
centroid, material volume is directly connected to the
mass conservation law and must be preserved in a dis-
crete algorithm.

Let e!i denote two material regions in cell ⌦ with ap-
proximate centroids xe!i . We call these centroids the
target centroids. The constrained interface reconstruc-
tion problem is to find a cut-o↵ line that cuts the pre-
scribed material volumes |e!1| = µ⇤ and minimizes de-
viation of centroids x!i from the target centroids. For
a two-material problem it is su�cient to consider only
one centroid:

!⇤ = min
!2F(µ⇤)

kx!1 � xe!1k
2, (4)

where F(µ⇤) is the set of admissible polygons:

F(µ⇤) = {!: ! ⇢ ⌦, |!| = µ⇤} .

This is a non-linear optimization problem with 2 un-
knowns, components of vector n, representing the po-
sition of the cut-o↵ line.

The proof of the following result has been sketched in
[5] for the Cartesian coordinate system. Our proof is
more complete and works for both the Cartesian and
axisymmetric coordinate systems.

Lemma 4. The constrained interface reconstruction
problem (4) has a solution.

Proof. Note that ! is defined uniquely by its cut-o↵
line `; hence, by its position vector n. We say that
! = T (n). Then, optimization problem (4) can be
reformulated as the optimization problem over subset
T�1(F(µ⇤)) ⇢ <2. This subset is obviously bounded.
It is also closed since ni ! n implies |T (n)| = µ⇤.
Hence T�1(F(µ⇤)) is compact. Then, the minimum
exists by the Weierstrass theorem. ⇤
The following optimization algorithm searches for a
local minimum of the objective functional. First, we
represent n as the pair (d,'), where d = knk and ' is
the angle between n and the r-axis.

1. Find initial guess '0 using direction x⌦ � x!1 .
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2. Find an interval ('l, 'u) that contains '0 and
has a local minimum of the objective functional.

3. Find the local minimum using a gradient descent
method.

The last two steps require multiple evaluations of the
objective functional. Each such evaluation requires us
to find a cut-o↵ line normal to nk that cuts polygon
!k
1 with volume µ⇤. For a fixed 'k, the volume of

this polygon is a monotone function of d. Thus, the
required value of dk can be found using either analytic
(e.g. [13]) or iterative (e.g. [14]) methods.

3.2 Generalization to Multiple Materials

Consider the case of M materials, M > 2. For the
case of multiple materials, we solve the following local
optimization problem with 2(M � 1) unknowns repre-
senting normals to M � 1 cut-o↵ lines `i:

{!⇤
i }Mi=1 = min

{!i}2G

MX

i=1

kx!i � xe!ik
2,

where G is the set of partitions of ⌦ into M polygons
with prescribed volumes {µ⇤

i }Mi=1. As before, we can
exclude one term from the objective functional.

Note that the MOF method is intrinsically the two-
material IR method. Thus, the problem with many
materials should be reduced to a set of two-material
sub-problems by grouping the materials. To find
the global minimum, we need to consider all possi-
ble groups. For each group, we use formula (2) to
calculate the group centroid.

The grouping algorithm is obviously recursive and the
total number of two-material problems is M !/2. Thus,
the cost of MOF grows quickly for large M which
opens room for future analysis of global optimization
methods such as the simulated annealing and the ac-
tive particles matter.

The MOF method is exact when the interfaces be-
tween all two-material groups are linear. Finally note
that the MOF does not need to know the order of
materials to find their configuration inside a cell; al-
though, this comes with the increased combinatorial
cost.

4. PACKAGE IMPLEMENTATION

The IR methods are implemented in the Tangram
module (available from github.com/larista/tangram)
of the data transfer package Portage (available from
github.com/larista/portage). Software design of this
package can be found in [16].

4.1 Portage

Portage is the actively developed open source library
that implements locally conservative data transfer
(remap) algorithms. It provides a lightweight and
extensible interface that can easily be customized
and integrated into simulation codes. Portage sup-
ports general polytopal meshes and provides second-
order accurate bounds-preserving remap algorithms.
It provides intersection-based, swept-face based and
particle-based remap algorithms.

Portage is designed to scale to thousands of cores on
distributed architectures through MPI and OpenMP,
with support for GPUs in development. Unlike other
similar monolithic libraries, Portage is a framework for
creating custom remappers from interoperable compo-
nents that can be mixed and matched as long as they
adhere to Portage’s API. Finally, its design seeks to
minimize the amount of mesh and field data that must
be copied from client application.

4.2 Tangram

Tangram is the IR module inside Portage and provides
most of the IR methods discussed in the Introduction.
Tangram is also composed of interoperable modules
such as Clipper and Splitter. The Clipper computes
the aggregated moments of materials below the cut-o↵
line. Splitter splits a polygon by a cut-o↵ line. The
result is two sets of convex polygons, one corresponds
to materials above the cut-o↵ line, and the other to
the materials below it. Each set contains the zero-
order and first-order moments.

Tangram provides custom implementation of the Clip-
per and Splitter components using the R2D package
[19] and the nested dissection algorithm. The R2D
package provides the basis capability of clipping a non-
convex polygon with a line.

5. NUMERICAL EXAMPLES

Our primary objective is to verify the conclusions we
made in the theoretical section; hence, we do not per-
form extensive numerical experiments for various ma-
terial configurations. For such experiments, we refer
the reader to the previous papers on the subject. Here-
after, the input moments are computed via exact (or
very accurate) integration over intersection regions be-
tween materials and mesh cells. The secondary ob-
jective is to demonstrate correctness of the Portage-
Tangram implementation of the RZ coordinate sys-
tem.
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5.1 Linearity preservation

Consider the case of three materials (red, cyan, yel-
low) with linear interfaces. In this case there exists
one grouping of materials where the groups are sep-
arated by straight lines. According to Lemma 1, the
MOF method should preserve linear interfaces exactly
provided that the input data (material volume frac-
tions and material centroids) are also exact.

First we consider a square mesh shown in Fig. 4. There
is only one mesh cell with three materials in it. The
VOF method is not expected to be exact in such a
case; however, this cell impacts accuracy of the inter-
face reconstruction algorithms in the neighboring cells.
The MOF algorithm provides exact solution up to the
tolerances specified in Tangram. We did not observe
algorithm sensitivity to small volumes discussed after
Lemma 2, which implies that a sharper result could
be proven.

Figure 4: Comparison of the VOF (left panel) and MOF

(right panel) methods on the square mesh.

Now we repeat the experiment but on a polygonal
mesh built as follows. First, we define a set of points
xi,j = (ri,j , zi,j) for generating the Voronoi tessella-
tion:

ri,j = ⇠i + 0.1 sin(2⇡⇠i) sin(2⇡⌘j),

zi,j = ⌘j + 0.1 sin(2⇡⇠i) sin(2⇡⌘j),

where ⇠i = ih, ⌘j = jh and h = 1/n. Then, a median
mesh is constructed from the Voronoi mesh by moving
each mesh vertex to the center of a triangle formed by
the centers of three Voronoi cells sharing the vertex.

Notice that the VOF produces one material triangle
in three-material cell whose orientation is significantly
misaligned with the bulk material (see red material in
Fig. 6). The MOF method preserves linearity even in
cells attached to the axis of symmetry (r = 0). Using
the sequence of polygonal meshes, we again did not
observe any sensitivity of the IR algorithms to small
volumes.

Figure 5: Comparison of the VOF (left panel) and MOF

(right panel) methods on the polygonal mesh.

Figure 6: Zoom on the interface details in the VOF

method from Fig. 5.

5.2 Second-order accuracy

Now we consider the two-material problem in the RZ
coordinate system. The first material is the disk of
radius 0.3 centered at the middle of the unit square
domain, see Fig. 7.

Figure 7: Approximation of the disk using the VOF (left

panel) and MOF (right panel) methods.

We use a symmetric di↵erence to quantify the IR er-
ror. The total error for material 1 is defined at the
sum of measures of symmetric di↵erences in all multi-
material cells. The results of numerical experiments on
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a sequence of square meshes are collected in Table 1.
We use the linear regression algorithm to calculate the
convergence rates. As expected, VOF is the first-order
method and MOF is the second-order method. We do
not observe any superconvergence of the VOF method
despite high regularity of the underlying mesh.

mesh VOF MOF
11x11 7.26e-3 4.53e-3
22x22 4.12e-3 1.22e-3
44x44 1.98e-3 2.62e-4
88x88 1.18e-3 8.28e-5
rate 0.89 1.95

Table 1: Convergence rates for various IR methods on

the sequence of square meshes.

Now we repeat the experiment on the sequence of
polygonal meshes with the characteristic mesh size
h, see Fig. 8 and Table 2. Note that the VOF
method shows some super-convergence that could be
attributed to mild regularity of the polygonal mesh. In
contrast to the square mesh, smaller number of neigh-
bors participate in calculating interface normals which
leads to sharper results. The MOF is second-order ac-
curate as predicted in Lemma 3.

Figure 8: Approximation of the disk with the VOF (left

panel) and MOF (right panel) methods.

1/h VOF MOF
16 7.87e-3 4.79e-3
32 2.32e-3 1.16e-3
64 8.33e-4 2.58e-4
128 3.78e-4 6.37e-5
rate 1.46 2.09

Table 2: Convergence rates for various IR methods on

the sequence of polygonal meshes.

5.3 Approximate centroids

Now we add random noise to material centroids. This
mimics a flow simulation scenario where the position

of centroids is known upto a discretization error. We
assume the second-order discretization error and per-
turb centroids using random variable between -0.25
to 0.25 multiplied by the material volume. The er-
rors based on measuring the symmetric di↵erences are
shown in Table. 3 The errors are larger than before
but the method remains second-order accurate.

square meshes polygonal meshes
1/h MOF 1/h MOF
11 7.47e-3 16 5.75e-3
22 2.06e-3 32 1.44e-3
44 3.50e-4 64 3.41e-4
88 1.13e-4 128 7.73e-5
rate 2.07 2.07

Table 3: Convergence rates for the MOF with random

perturbation of centroids.

6. SUMMARY

We revisited the theoretical background of the
MOF interface reconstruction method and generalized
known results from the Cartesian to the RZ coor-
dinate system. We proved results that were previ-
ously stated for the Cartesian coordinate system as
unproved propositions. These proofs are novel and
provide useful insight on the properties of the MOF
method.

We compared local (VOF) and non-local (MOF) IR
methods. Although, it is known that VOF’s perfor-
mance is inconsistent and unpredictable, we observed
its super-convergence in a few cases. As the rule of
thumb, we expect good results from the VOF for the
two-material case with a planar interface on a regular
grid and away from the boundary and material cross
points.

The MOF method remained second-order accurate in
all cases including the case of second-order random
perturbation of material centroids. The guaranteed
linearity preservation property of the MOF method in
the case of multiple materials makes this method most
suitable for multi-material ALE simulations.

References

[1] Barlow A., Maire P.H., Rider W., Rieben R.,
Shashkov M. “Arbitrary Lagrangian–Eulerian
methods for modeling high-speed compressible
multimaterial flows.” J. Comput. Phys., vol. 322,
603–665, 2016

[2] Hirt C., Nicholas B. “A computational method
for free surface hydrodynamics.” J. Pressure Ves-

sel Technology, vol. 103, 136, 1981

99



[3] Rider W., Kothe D. “Reconstructing volume
tracking.” J. Comput. Phys., vol. 141, 112–152,
1998

[4] Puckett E.G. “A Volume-of-fluid Interface Track-
ing Algorithm with Applications to Computing
Shock Wave Refraction.” Proceedings of the

Fourth International Symposium on Computa-

tional Fluid Dynamics, pp. 933–38. 1991

[5] Dyadechko V., Shashkov M. “Moment-of-fluid
interface reconstruction.” Tech. Rep. LAUR-05-
7571, Los Alamos National Laroratory, 2005

[6] Youngs D. “Time-dependent multi-material flow
with large fluid deformation.” Numerical Meth-

ods for Fluid Dynamics, pp. 273–285. Academic
Press, 1982

[7] Pilliod J. An analysis of piecewise linear inter-

face reconstruction algorithms for volume-of-fluid

methods. Master’s thesis, Univ. of California,
Davis, 1992

[8] Swartz B. “The second-order sharpening of
blurred smooth borders.” Math. Comput., vol. 52,
no. 186, 675–714, 1989

[9] Hill R., Shashkov M. “The symmetric Moment-
of-Fluid interface reconstruction algorithm.” J.

Comput. Phys., vol. 249, 180–184, 2013

[10] Kikinzon E., Shashkov M., Garimella R. “Estab-
lishing mesh topology in multi-material cells: En-
abling technology for robust and accurate multi-
material simulations.” Computers and Fluids,
vol. 172, 251–263, 2018

[11] Slutz S., Vesey R. “High-gain magnetized inertial
fusion.” Phys. Rev. Letters, vol. 108, 2012

[12] Anbarlooei H., Mazaheri K. “’Moment-of-fluid’
interface reconstruction method in axisymmetric
coordinates.” Int. J. Numer. Meth. Biomed. En-

gng., vol. 27, 1640–1651, 2011

[13] Diot S., Francois M., Dendy E. “An interface re-
construction method based on analytical formu-
lae for 2D planal axisymmetric arbitrary convex
cells.” J. Comput. Phys., vol. 275, 53–64, 2014

[14] Chen X., Zhang X. “A predicted-Newton’s
method for solving the interface positioning equa-
tion in the MoF method on general polyhedrons.”
J. Comput. Phys., vol. 384, 70–76, 2019

[15] Milcen T., Lemoine A. “Moment-of-fluid analytic
reconstruction on 3D rectangular hexahedrons.”
J. Comput. Phys., vol. 409, 109346, 2020

[16] Herring A., Ferenbaugh C., Malone C., Shevitz
D., Kikinzon E., Dilts G., Rakotoarivelo H., Vele-
chovsky J., Lipnikov K., Ray N., Garimella R.
“Portage: a modular remap and code link library
for advanced architectures.” J. Open Research

Software, 2021

[17] Burton D. “Multidimensional discretization of
conservation laws for unstructured polyhedral
grids.” Tech. Rep. UCRL-JC-118306, Lawrence
Livermore National Laboratory, 1994

[18] Okabe A., Boots B., Sugihara K., Chiu S.N.
Concepts and Applications of Voronoi Diagrams.
John Wiley & Sons, New York, 2000

[19] Powell D., Abel T. “An exact general remesh-
ing scheme applied to physically conservative vox-
elization.” J. Comput. Phys., vol. 297, 340–356,
2015

100


