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ABSTRACT

Optimal transportation finds the most economical way to transport one probability measure to another, and it plays
an important role in geometric modeling and processing. In this paper, we propose a moving mesh method to
generate adaptive meshes by optimal transport. Given an initial mesh and a scalar density function defined on the
mesh domain, our method will redistribute the mesh nodes such that they are adapted to the density function. Based
on the Brenier theorem, solving an optimal transportation problem is reduced to solving a Monge-Ampère equation,
which is di�cult to compute due to the high non-linearity. On the other hand, the optimal transportation problem
is equivalent to the Alexandrov problem, which can finally induce an e↵ective variational algorithm. Experiments
show that our proposed method finds the adaptive mesh quickly and e�ciently.

Keywords: Optimal transport, Monge-Ampère equation, Adaptive mesh

1. INTRODUCTION

Motivation The central task in numerical simula-
tion is to solve partial di↵erential equations that model
various physical, chemical or biological processes. For
dynamic processes, it may be advantageous to vary
the resolution dynamically.

Obtaining a numerical approximation to the solution
of such problems usually involves generating a mesh.
Typically, a uniform-resolution mesh is used. How-
ever, if the domain is with complicated geometry, the
mesh cannot adequately resolve the small scale fea-
tures for high curvature regions; or the physical ma-
terial is highly an-isotropic, the uniform mesh can-
not capture the directional feature; or the mesh is
evolving, the initial mesh is not conformal to the dis-
torted shape, then the mesh may lead to computa-
tional results with poor qualities. In such situations,
it is necessary to use dynamic mesh adaptivity to re-
solve evolving small scale features and other aspects

of the solution. Therefore, it is highly desirable to de-
velop a practical computational tool, which can gen-
erate adaptive meshes according to monitor functions
defined on space-time. One approach is local mesh re-
finement in which new samples are added to regions
where greater resolution is needed. Another approach
is mesh relocation, in which the mesh vertices are
moved around preserving the connectivity. This work
proposes a robust and general-purpose algorithm for
generating adaptive meshes based on optimal trans-
portation.

Optimal Transportation Optimal transportation
finds the most economical way to transform one proba-
bility distribution to another. Recently, optimal trans-
portation has become one of the fundamental tools
in geometric modeling and processing. It has been
applied for area-preserving parameterizations [1], 3D
surface registration and comparison [2], medical image
registration [3] and so on. It has been applied broadly
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(a) Source measure (⌦, µ) (b) Target measure (⌦⇤, ⌫) (c) Brenier potential u (d) Brenier potential

Figure 1: The optimal transportation map T : (⌦, µ)! (⌦⇤, ⌫) is the gradient of the Brenier potential u : ⌦! R.

in generative models in deep learning, e.g. WGAN [4],
where the generator computes the optimal transporta-
tion map, and the discriminator calculates the Wasser-
stein distance. It is also used for reflector and refractor
design in optics field [5, 6].

For the application of mesh adaption, suppose we are
given a geometric domain ⌦ ⇢ Rn, and a desired sam-
pling density function ⌫ defined on ⌦. We model ⌫ as
the target probability measure, and the uniform distri-
bution µ as the source measure. Then we can compute
a unique optimal transportation map T : ⌦! ⌦, such
that T maps µ to ⌫. We uniformly sample the domain
⌦ and obtain samples {p1, p2, . . . , pn} and map them
by the optimal transportation map T . The distribu-
tion of the images {T (p1), T (p2), . . . , T (pn)} converges
to the prescribed sampling density ⌫. In this way, we
can transform uniform sampling density to any sam-
pling density. The OT method continuously move
the locations of the mesh vertices without changing
its connectivity. This can e↵ectively avoid the sharp
changes in resolution and it has no spurious wave prop-
agation behavior like other methods [7].

Geometric Variational Approach for OT Ac-
cording to the Brenier’s theorem [8], the optimal trans-
portation map is the gradient of a convex function,
the so-called Brenier potential. The Brenier poten-
tial satisfies the Monge-Ampère equation, which has
deep roots in convex geometry and is intrinsically re-
lated to the Alexandrov problem [9]. This inspires us
to use a geometric variational approach to solve the
OT problem. The work in [9] proves that the Brenier
theorem is equivalent to the classical Alexandrov the-
orem in convex geometry. The Alexandrov theorem
states that a convex polyhedron is fully determined,
uniquely up to a vertical translation, by its face nor-
mals and face areas. The Alexandrov polyhedron is in
fact equivalent to the graph of the Brenier potential.

In more details, the Alexandrov polyhedron can be
constructed as the upper envelope of its supporting
planes with known normals and unknown heights. The

projection of the upper envelope induces a power di-
agram of the plane. We can adjust the heights of the
supporting planes to vary the upper envelope, such
that the area of each cell in the domain ⌦ equals to
the prescribed area. Alexandrov theorem guarantees
the existence and uniqueness (unique up to a verti-
cal translation) of the Alexandrov polyhedron using
algebraic topological argument.

The work in [9] gives a variational approach to com-
pute the heights. Geometrically, the vertical lines
through the boundary of ⌦ form a topological cylin-
der, the xy-plane, the upper envelope and the cylinder
together bound a 3-dimensional domain. The volume
of this domain minus a linear term gives us a convex
energy (Thm. 3.2). The critical point of the energy
gives us the Alexandrov polyhedron, namely the Bre-
nier potential. The gradient of the energy equals to
the di↵erence between the corresponding target cell
areas and the current cell areas, and the each element
of the Hessian matrix consists of the length ratio be-
tween the corresponding weighted Delaunay triangu-
lation and the power diagram. Therefore, we can use
Newton’s method to optimize the energy.

Fig. 1 shows an optimal transportation map computed
using this method. As shown in frame (a), the source
measure µ is the uniform distribution defined on the
unit disk ⌦; (b) shows the target measure ⌫, which
is also the uniform distribution on a seahorse shaped
domain ⌦⇤. ⌫ is discretized as the summation of
Dirac measures, each vertex yi 2 ⌦⇤ is a sample point
with a desired target measure ⌫i. Frame (c) and (d)
show the convex Brenier potential u : ⌦ ! R from
di↵erent viewpoints. Its graph is a convex polyhe-
dron (Alexandrov polyhedron), each face is a plane
⇡i(x) := hx, yii � hi, whose slope is the corresponding
sample yi 2 ⌦⇤, hi is the unknown height parame-
ter. The projection of Alexandrov polyhedron induces
a power diagram of ⌦, and the area of the cell corre-
sponding to ⇡i equals to ⌫i.
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(a) The given density function (b) The adaptive mesh (c) The Brenier potential u (d). The Legendre dual u⇤

Figure 2: The moving adaptive mesh based on the optimal transportation map. (a) shows the original mesh structure

defined on [0, 1]2 and the brightness gives the PDF of the function. (b) gives the computed adaptive mesh, in which the

cell are is proportional to the brightness of (a). (c) shows the Brenier potential u : [0, 1]2 ! R and its projection on the

source domain. (d) shows the Legendre dual u⇤(y) = supx2D2{hx, yi � u(x)}.

Contribution The main contribution of the work is
to propose to use the optimal transportation method
for moving mesh adaption, which maps a uniform
distribution to any sampling density, and converts
the uniform sampling to the desired sampling. The
method has solid theoretic foundation and e�cient al-
gorithm based on geometric variational method. The
method can be generalized to arbitrary dimension as
well.

Notation We define the domain of the fixed com-
putational mesh as ⌦, in which the uniform distribu-
tion dµ = f(x)dx is defined. The target domain is
given by ⌦⇤ where the positive scalar monitor func-
tion g(y) is defined. The monitor function can be
treated as a probability density function defined on
⌦⇤ after normalization and is used to represent some
physical system of interest, like the climate simula-
tion. We also use x and y to represent positions in ⌦
and ⌦⇤, respectively. In the following, we set ⌦ to be
[�1, 1]2, and g is discretized on the grids and repre-
sented by the discrete measure ⌫ =

Pn
i=1 ⌫i�(y � pi),

where ⌫i = 4g(pi)/
Pn

i=1 g(pi). Thus, the total mea-
sure of µ and ⌫ is equal. Here pis are the locations of
the vertex on ⌦⇤.

The work is organized in the following way: in sec-
tion 2, we briefly review the theory, computational
algorithms and direct applications of optimal trans-
portation maps; in section 3, we briefly recall Brenier
theorem in optimal transportation, Alexandrov the-
orems in convex geometry, and the geometric varia-
tional theorem; in section 4, we explain the details for
solving the adaptive mesh generation problem; the ex-
perimental results are reported in section 5. Finally
the work is concluded in section 6.

2. RELATED WORK

This section briefly reviews the solutions of the adap-
tive mesh problem and the algorithms of optimal
transportation. We refer readers to the textbook [7]
for detailed analysis of the moving mesh problem and
to [10, 11] for a comprehensive review of the theory
and [12] for computational algorithms of the optimal
transportation.

2.1 Mesh Generation

There are typically two kinds of methods for the adap-
tive mesh generation problem, especially when we need
the meshes to adequately fit the small scale features.
The first class uses a form of local mesh refinement
called h�adaptivity [13, 14, 15], in which mesh points
are adaptively added to the regions where greater res-
olution is required during the computation. This kind
of methods change the connectivity of the vertices
in the optimization and thus unstable. The second
type method, which is called r�adaptivity, continu-
ously move the locations of the mesh vertices without
changing its connectivity relationship. By avoiding the
sharp changes in resolution, r�adaptivity methods has
no spurious wave propagation behavior. For detailed
reviews, we refer the reader to the textbook [7]. The
redistributin of one-dimensional mesh of r�adaptivity
has been implemented in several software libraries like
the bifurcation package AUTO and the currently used
weather forecasting software [16, 17]. R-adaptivity
has also been applied to the geophysical problems
[18, 19, 20]. There is a long history to solve the two-
dimensional or three-dimensional r�adaptivity prob-
lem through optimal transport or the Monge-Ampère
equation [21, 22, 23, 24, 25]. Given a prescribed scalar
monitor function, these methods find the correspond-
ing adaptive mesh by minimizing a deformation func-
tion. In this paper, we adopt the geometric varia-
tional method [9] to solve such an equidistribution
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problem by computing its corresponding semi-discrete
OT map.

2.2 Optimal Transport

Monge raised the optimal transportation map prob-
lem as finding the most economical way to transfer
one measure to the other in [26]. Kantorovich relaxed
the transportation maps to transportation plans and
solved the problem using linear programming [27, 28].
Brenier [8] discovered the OT map is the gradient of
a convex function, which satisfies the Monge-Ampère
equation. Benamou-Brenier [29] developed the the-
ory for computing the OT maps using fluid dynamics.
Comprehensive theories on optimal transportation can
be found in [11, 30] and so on.

There are many methods for solving the optimal trans-
portation problem, which can be classified into four
main categories: Kantorovich approach, Brenier ap-
proach, Fluid dynamics approach and discretizing the
Monge-Ampère equation approach. The first approach
is based on the Kantorovich theorem, the optimal
transportation problem is solved by linear program-
ming. De Goes [31] proposed point-to-simplex algo-
rithm similar to linear programming. Sinkhorn [32]
method added an entropy regularizer to the Kan-
torovich potential and greatly improved the e�ciency.
The heat kernel was used in [32, 33, 34] to approxi-
mate the Wasserstein distance. The second approach
is based on the Brenier theorem and the Brenier po-
tential can be found by geometric optimization. Au-
renhammer et al. [35] connected the OT map with
the power diagram in computational geometry. Gu
and Yau et al. [36] linked the Brenier theory and the
Alexandrov theory, and proposed a geometric varia-
tional approach. De Goes et al. found the equivalence
between the capacity-constrained Voronoi tessellation
and the OT problem in [37]. Levy [38] and Merigot
et al. [39] proposed the multi-scale approaches to ac-
celerate the computation based on the Brenier theory
for large-scale optimal transportation problems. The
third approach is based on fluid dynamic theory. Be-
namou and Brenier developed a method [40] to solve
the Monge-Ampère equation by minimizing the kinetic
energy of a flow field. Haker and Tananbaum [3] de-
veloped a method to compute the OT maps using fluid
dynamics through removing the curl component from
the vector field. It is still unclear whether Haker’s
method can obtain the optimal transportation map
for high dimensional cases. The last kind of meth-
ods [41, 42] approximated the Monge-Ampère equa-
tion and solve the OT problem by discretizing the Hes-
sian matrix. The optimal transportation methods by
solving the Monge-Ampère equation have been gener-
alized to spherical cases by [5, 6, 43].

3. THEORETICAL FOUNDATION

In this section, we briefly review the theoretical foun-
dation of optimal transportation, concentrating on
the Brenier theorem and the geometric variational
method.

3.1 Equidistribution

To solve the moving adaptive mesh problem, we aim
to find the map

T̂ (x) : ⌦! ⌦⇤

such that the positive scalar function g is equidis-
tributed, as shown in Fig. 2(a) and Fig. 2(b). If
the density function defined on the source domain ⌦
is given by dµ = f(x)dx, then the equidistribution
problem is equivalent to solving the following partial
di↵erential equation (PDE):

g(y) detJ = f(x) (1)

where J is the Jacobian of the map T̂ given by:

J =
@y
@x

The above problem is actually equivalent to finding
a measure preserving mapping from dµ = f(x)dx to
d⌫ = g(y)dy.

Suppose ⌦,⌦⇤
⇢ Rd are domains in an Euclidean

space, with probability measures µ and ⌫ respectively
satisfying the equal total mass condition: µ(⌦) =
⌫(⌦⇤). The density functions are dµ = f(x)dx and
d⌫ = g(y)dy. The transportation map T : ⌦ ! ⌦⇤ is
measure preserving, if for any Borel set B ⇢ ⌦⇤,

Z

T�1(B)

dµ(x) =

Z

B

d⌫(y),

denoted as T#µ = ⌫. The measure preserving map
from µ to ⌫ is not unique. Thus, there are many
solutions to the equidistribution problem Eqn. (1).
To solve this problem, many constraints or regulariza-
tions have been proposed to make the solutions for the
r�adaptive methods unique. One of the commonly
used constraint is to minimize the total transport cost
from µ to ⌫, namely solving the corresponding optimal
transportation problem from µ to ⌫ [42].

3.2 Optimal Transportation

Monge raised the optimal transportation problem:
given the transportation cost function c : ⌦⇥⌦⇤

! R+,
we aim to find a transportation map T : ⌦! ⌦⇤ that
minimizes the total transportation cost,

(MP ) min

⇢Z

⌦

c(x, T (x))dµ(x) : T : ⌦! ⌦⇤ and T#µ = ⌫

�
.
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The above equation gives the Monge problem (MP)
and the minimizer is called the optimal transportation
map (OT map). The transportation cost of the OT
map is called the OT cost between the measures.

Theorem 3.1 (Brenier Theorem [8]). Suppose the
measures µ and ⌫ are with compact supports ⌦,⌦⇤

⇢

Rd respectively, and they have equal total mass µ(⌦) =
⌫(⌦⇤). Assume the corresponding density functions
satisfy f, g 2 L1(Rd), and the cost function is c(x, y) =
1
2 |x� y|2, then the optimal transportation map from µ
to ⌫ exists and is unique. It is the gradient of a convex
function u : ⌦ ! R, the so-called Brenier potential,
and u is unique up to adding a constant. Then the
OT map is given by T = ru.

An example of the Brenier potential is given by Fig.
2(c). If the Brenier potential is C2, then by measure
preserving condition, it satisfies the Monge-Ampère
equation,

detD2u(x) =
f(x)

g � ru(x)
, s.t.ru(⌦) = ⌦⇤, (2)

where detD2u is the determinant of the Hessian matrix
of u and the unique OT map is given by T = ru.

3.3 Geometric Variational Method

The above Monge-Ampère equation requires the Bre-
nier potential to be at least C2. If u is not smooth,
we can still define the Alexandrov solution of it. The
sub-gradient of a convex function u at x is defined as

@u(x) :=
n
p 2 Rd : u(z) � hp, z � xi+ u(x), 8z 2 ⌦

o

The sub-gradient defines a set-valued map: @u : ⌦ !
⌦⇤, x 7! @u(x). We can use the sub-gradient map to
replace the gradient map in the Monge-Ampère equa-
tion Eqn. (2), and define the Alexandrov Solution as
follows:

Definition 3.1 (Alexandrov Solution). If a convex
function u : ⌦! R satisfies the equation (@u)#µ = ⌫,
or equivalently µ((@u)�1(B)) = ⌫(B), for all Borel set
B ⇢ ⌦⇤, then u is called an Alexandrov solution to
the Monge-Ampère equation Eqn. (2).

The work of [36] gives a geometric variational approach
for computing the Alexandrov solution to the semi-
discrete optimal transportation problem.

3.4 Semi-discrete Optimal Transportation

Suppose the source measure is (⌦, µ), ⌦ is a com-
pact convex domain with non-empty interior in Rd,
the density function f(x) is continuous. In practice,
the target measure (⌦⇤, ⌫) is usually discretized as ⌫ =

Pn
i=1 ⌫i�(y � pi), where p1, . . . , pn ⇢ Rd are distinct

n points and ⌫1, . . . , ⌫n > 0 so that
Pn

i=1 ⌫i = µ(⌦).
In this situation, the discrete Brenier potential is a
piecewise linear convex function. In fact, there exists
a height vector h = (h1, . . . , hn) 2 Rn, so that the up-
per envelope uh of the hyper-planes ⇡i(x) := hx, pii+hi

defined as

uh(x) =
n

max
i=1

{hx, pii+ hi}, (3)

gives the discrete Brenier potential. The projection of
the envelope Env({⇡i}

n
i=1) induces a power diagram,

Rd =
n[

i=1

Wi(h), Wi(h) := {x 2 Rd : ruh = pi}.

The µ-volume of each cell µ(Wi(h) \ ⌦) = ⌫i, and
the semi-discrete optimal transportation map is given
by T (x) = ruh(x), or equivalently T : Wi(h) \ ⌦ 7!
pi 8i = 1, 2, . . . , n. The discrete Brenier potential can
be obtained by optimizing the following convex energy.

Theorem 3.2 (Gu et al. [36]). Let ⌦ be a compact
convex domain in Rd, {p1, ..., pn} be a set of distinct
points in Rd and f : ⌦ ! R be a positive continuous
function. Then for any ⌫1, . . . , ⌫n > 0 with

Pn
i=1 ⌫i =R

⌦
f(x)dx, there exists h = (h1, h2, . . . , hn) 2 Rn,

unique up to adding a constant (c, c, . . . , c), so that

µ(Wi(h)\⌦) =

Z

Wi(h)\⌦

f(x)dx = ⌫i 8i = 1, 2, . . . , n.

(4)
The height vector h is exactly the optimal solver of the
following convex function

E(h) =

Z h

0

nX

i=1

µ(Wi(h) \ ⌦)dhi �

nX

i=1

hi⌫i (5)

on the open convex set (the admissible solution space)

H = {h 2 Rn
|µ(Wi(h) \ ⌦) > 0, i 2 {1, 2, . . . , n}}

\

(
nX

i=1

hi = 0

)
.

(6)

Furthermore, the gradient map ruh minimizes the
quadratic cost 1

2

R
⌦
|x � T (x)|2f(x)dx among all the

measure preserving transportation maps T : (⌦, µ) !
(Rd, ⌫ =

Pn
i=1 ⌫i�(y � pi)), T#µ = ⌫.

Finally, we can build the map T̂ : ⌦ ! ⌦⇤ as follows:
for each cell Wi its corresponding mass cell center is
computed as mi =

R
Wi

xdµ(x)/⌫i, then we have the

one-to-one map T̂ induced by the optimal transport
map T from µ to ⌫: T̂ (mi) = pi, i = 1, 2, . . . , n.
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4. COMPUTATIONAL ALGORITHMS

This section explains the algorithmic details to solve
the semi-discrete OT problem. The algorithm is imple-
mented using computational geometric method, hence
we start with the fundamental concepts in computa-
tional geometry [44].

4.1 Basic Concepts from Computational
Geometry

A hyperplane in Rd+1 is represented as ⇡(x) := hp, xi+
h, x 2 Rd, h 2 R. Given a family of hyperplanes
{⇡i(x) = hpi, xi+hi}

n
i=1, their upper envelope denoted

as Env({⇡i}
n
i=1) is the graph of the function

u(x) :=
n

max
i=1

{hpi, xi+ hi} .

The Legendre dual of u is defined as

u⇤(y) := max
x2Rd

{hx, yi � u(x)}.

Each hyperplane ⇡i(x) has a dual point in Rd+1, ⇡⇤
i :=

(pi,�hi), and the graph of u⇤ is the lower convex hull
of the dual points {⇡⇤

i }
n
i=1, which is also the minimal

convex set containing {⇡⇤
i }

n
i=1. The projection of the

upper envelope induces a nearest power diagram D(⌦)
of ⌦ given by

⌦ =
n[

i=1

Wi(u), Wi(u) := {x 2 ⌦|ru(x) = pi} .

The projection of the lower convex hull u⇤ induces a
nearest weighted Delaunay triangulation T (⌦⇤) of ⌦⇤.
D(⌦) and T (⌦⇤) are dual to each other, namely pi
connects pj in T (⌦⇤) if and only if Wi(u) is adjacent
to Wj(u). Fig. 2(c) and Fig. 2(d) show these basic
concepts.

4.2 Algorithm Pipeline

Given the domain ⌦⇤ and the corresponding density
function g, we firstly sample from the grids of ⌦⇤, rep-
resented by {pi}

n
i=1, then the target measure is de-

fined as ⌫ =
Pn

i=1 ⌫i�(y � pi). Here ⌫i is computed
by ⌫i = g(pi), i = 1, 2, . . . , n and then normalized as
⌫i = ⌫i/

Pn
i=1 ⌫i. Fig. 3(b) gives an example of the

target measure, where g is set to be the normal distri-
bution and the intensity of the vertices is given as ⌫is.
The source measure is set to be the Uniform distribu-
tion defined on ⌦ which is slightly larger than ⌦⇤, as
shown in Fig. 3(a).

The algorithm mainly optimizes the energy E(h) of
Eqn. (5) in the admissible solution space H of Eqn. (6)
using Newton’s method. At the beginning, the height
vector h0 is initialized as hi = 1

2 (|pi|
2
� 1) for each

Algorithm 1: Adaptive mesh generation

Input: The source domain ⌦ and the
corresponding Uniform distribution µ; the
density function g and its corresponding
rectangular domain ⌦⇤

Output: The map T̂ and the generated adaptive
mesh.

Construct the target measure
⌫ =

Pn
i=1 ⌫i�(y � pi) on ⌦⇤ with grid vertices

{pi}
n
i=1, set ⌫i = g(pi) and then normalize as

⌫i = µ(⌦) ⌫iPn
i=1 ⌫i

;

Initialize hi = 1
2 (|pi|

2
� 1);

while true do

Compute the lower convex hull of
{(pi,�hi)}

n
i=1;

Compute the upper envelope of the planes
{hpi, xi+ hi}

n
i=1;

Project the upper envelope to the plane to get
a power diagram ⌦ =

Sn
i=1 Wi(h);

Compute the µ-volume of each finite cell
wi(h) = µ(Wi(h)) using Eqn. (7);

Compute the gradient of the energy E(h)
using Eqn. (8), rE(h) = (⌫i � wi(h));

if krE(h)k < " then

return h;
end

Compute the µ-lengths of the power Voronoi
edges Wi(h) \Wj(h) ;

Construct the Hessian matrix of the energy
E(h):

Hess(E(h))ij :=
@2E(h)
@hi@hj

= �
µ(Wi(h) \Wj(h))

|pi � pj |

Hess(E(h))ii :=
@2E(h)
@h2

i

=
X

j⇠i

µ(Wi(h) \Wj(h))
|pi � pj |

Solve the linear system:
Hess(E(h))d = rE(h);

� 1;
repeat

if h+ �d /2 H then

� 1
2�;

continue;

end

Compute the power diagram D(h+ �d);

until no empty power cell ;
Update the height vector h h+ �d;

end

Compute the cell centers {mi}
n
i=1 of {Wi}

n
i=1,

and we have T̂ (mi) = pi ;
Generate the adaptive mesh of {mi}

n
i=1 according

to the connectivity of {pi}
n
i=1;

vertex pi. According to the definition of Power dia-
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(a)Source measure (b) Target measure (c) OT map given by (d). The deformed mesh
(⌦, µ) {(pi, ⌫i)}

n
i=1 Env(⇡i(x)) T̂ (mi) = pi

Figure 3: (a) The source domain ⌦ is with uniform distribution µ. (b) The target measure is defined on the vertices

and given by ⌫ :=
Pn

i=1 ⌫i�(y � pi). (c) The blue grid gives the original mesh where ⌫ is defined, the dotted red mesh

gives the cell decomposition {Wi}
n
i=1 of ⌦, with µ(Wi) = ⌫i. The semi-discrete OT map is given by T : Wi ! pi for all

i = 1, 2, . . . , n. Then we map the cell center mi of Wi (the red stars of ⌦) to the corresponding vertex pi of the target

mesh (the blue stars of ⌦⇤
), given by T̂ (mi) = pi. The map relationship is represented by the green dotted lines. (d) We

generate the deformed mesh by connecting the cell centers mi and mj if the corresponding pi and pj are connected in the

target measure.

gram, it is easy to show that h0 2 H of Eqn. (6).
At each step, the convex hull of {(pi,�hi)}

n
i=1 is con-

structed. The lower convex hull is projected to induce
a weighted Delaunay triangulation T of {pi}

n
i=1. Each

vertex on the convex hull qi = (pi,�hi) corresponds to
a supporting plane ⇡i(h, x) = hpi, xi + hi. Each edge
[qi, qj ] in the convex hull corresponds to the intersec-
tion of the hyperplanes ⇡i and ⇡j . Each face [qi, qj , qk]
in the convex hull is dual to the vertex in the envelope,
which is the intersection point of ⇡i,⇡j and ⇡k. The
lower convex hull u⇤ is dual to the upper envelope u.
The projection of the upper envelope u induces the
nearest power diagram. The relationship is given in
Fig. 2(c) and Fig. 2(d).

To optimize E(h), we compute the µ-volume of each
power cell Wi(h) using

wi(h) :=

Z

Wi(h)

f(x)dx, (7)

and the gradient of the energy is given by

rE(h) = (⌫1 � w1(h), ⌫2 � w2(h), . . . , ⌫n � wn(h)).
(8)

The Hessian matrix Hess(E(h)) for the o↵ diagonal
elements of the energy can be constructed as follows:

@2E(h)
@hi@hj

=
@wi(h)
@hj

=
�1

|pi � pj |

Z

Wi(h)\Wj(h)

f(x)dx

= �
µ(ēij)
|eij |

.

(9)

where f(x) is the Uniform distribution defined on ⌦,
eij is the edge in the weighted Delaunay triangulation

T (h) connecting pi and pj , ēij is the dual edge in the
power diagram D(h), namely the intersection of Wi(h)
and Wj(h). The diagonal elements are given as:

@2E(h)
@h2

i

=
@wi(h)
@hi

=
X

j⇠i

µ(ēij)
|eij |

. (10)

where ⇠ means the neighbourhood relationship. Then
we solve the following linear system to find the update
direction,

Hess(E(h))d = rE(h). (11)

Finally, we need to determine the step length �, such
that h+�d is still in the admissible solution space H,

H = {h 2 Rn
|µ(Wi(h)) > 0, i = 1, 2, . . . , n}. (12)

We initially set the step length � to be �1. If h+ �d
is not in the admissible space H, namely some cells
disappear in the power diagram D(h + �d), then we
cut � to a half, �  1/2�, and iterate again. This
process is repeated until we find an appropriate step
length � so that h + �d is in the admissible space of
Eqn. (12). Then we update h as h + �d. We repeat
the above procedures until the norm of the gradient of
the energy is less than a prescribed threshold ". Each
nearest power cell Wi(h) corresponding to the sample
point pi will be of the desired measure ⌫i. Then we
compute the mass center mi of each cell Wi and build
the map T̂ as T̂ (mi) = pi. Finally, the adaptive mesh
is constructed as follows: we connect mi and mj if pi
and pj is connected in the target mesh. We conclude
our algorithm for solving the moving mesh adaption
problem in Alg. 1.

During the optimization, the connectivity of the power
diagrams D(h) keeps changing. Instead of construct-
ing the convex hull u⇤ from scratch at every step, we
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can locally modify the connectivity such as a variation
of Lawson’s edge flip algorithm [45] can be used to im-
prove the e�ciency. Furthermore, in order to improve
the numerical stability, we can use adaptive arithmetic
during the construction of convex hulls.

Fig. 3(c) gives the computing results of the proposed
algorithm with the source measure in Fig. 3(a) and the
target discrete measure in Fig. 3(b). The blue mesh of
Fig. 3(c) represents the grid structure of {pi}

n
i=1 and

the blue stars are the corresponding vertices of the
mesh. The dotted red mesh represents the induced
cell decomposition {Wi}

n
i=1 of ⌦ with µ(Wi) = ⌫i by

the computed OT map from µ to ⌫. Then we com-
pute the mass center mi of each cell Wi, given by the
red stars. In such a way, we get the one-to-one map
that maps pis to the corresponding mis, and we show
the correspondence relationship by dotted green lines.
Finally, we get the deformed mesh through connect-
ing mi and mj if (pi, pj) is an edge of the given quad
mesh, as shown in Fig. 3(d).

5. EXPERIMENTS

We conduct experiments to test the e�cacy and e�-
ciency of the proposed OT map algorithm on generat-
ing adaptive meshes.

5.1 Experimental setup

All the algorithms are developed using generic C++
compatible with Windows and Linux platforms. We
mainly use Eigen [46] for the numerical computa-
tions and OpenGL for the user interface. The surface
meshes are represented by the half-edge data struc-
ture. All the experiments are conducted on a Win-
dows laptop with Intel Core i7-7700HQ CPU and 16
GB memory.

5.2 Source and Target Measures

In order to test the proposed algorithm Alg. 1, we
conduct several experiments. The source measure µ is
the uniform distribution defined on the planar square
[�1, 1]2. We then set four target measures (⌦⇤, ⌫) with
⌦⇤ = [�0.9, 0.9]2 and ⌫ =

Pn
i=1 ⌫i�(y � pi). Here pis

are defined on the grids of ⌦⇤ and ⌫is come from the
given density function g, namely ⌫i = g(pi). For the
purpose of visualization, ⌦⇤ is meshed as 41⇥ 41 grid.
The first model that comes from [42] is the ring model
given by

g(y) = 1 + 10sech2(200kyk2 � 0.252)

The second is the bell model [42] given by

g(y) = 1 + 50sech2(100kyk2)

The original quad meshes and the corresponding de-
formed meshes of the ring and the bell models are
shown in Fig. 4. It is obvious that the original meshes
are deformed according to their given densities. Basi-
cally, the grids with higher densities will be enlarged,
and those with lower densities will be compressed.

The third asymmetric model comes from the Gaussian
mixture model and is given by

g(y) = 0.3N (µ1,⌃
2
1) + 0.1N (µ2,⌃

2
2) + 0.6N (µ3,⌃

2
3)

where N represents the Gaussian distribution. µ1 =
[�0.5 0.1]T , ⌃1 = diag([0.03 0.1]); µ2 = [0.7 0.3]T ,
⌃2 = diag([0.1 0.03]); µ3 = [0.0 � 0.7]T , ⌃3 =
diag([0.03 0.03]). It has three peaks which can be eas-
ily recognized from the adaptive mesh (the right frame
of the first row of Fig. 5), and the third peak cannot
be easily found from the density function image (the
left frame of the first row of Fig. 5).

The next model comes from the Franke’s function [47],
which has two Gaussian peaks of di↵erent heights, and
a smaller dip:

g(y) = 0.75 exp (�
(9y1 � 2)2

4
�

(9y2 � 2)2

4
)

+ 0.75 exp (�
(9y1 + 1)2

49
�

9y2 + 1
10

)

+ 0.5 exp (�
(9y1 � 7)2

4
�

(9y2 � 3)2

4
)

� 0.2 exp (�(9y1 � 4)2 � (9y2 � 7)2)

The generated adaptive meshes of the Gaussian mix-
ture function and the Franke’s in Fig. 5 also show
that the generated meshes fit the density functions
well, and the adaptive mesh can be used to identify
the small peaks and dips of the given density func-
tions.

Finally, we test on the scalar monitor function given
by the grayscale images from Digital Image Processing
[48]. The sampling resolution of the target mesh is set
to be 400 ⇥ 400. For the purpose of visualization, we
simplify the final mesh to be 40⇥40 (shown in Fig. 6).
For the complex density function with high curvatures,
our method also works well.

To show the performance of the proposed method in
terms of running iterations and running time, we use
di↵erent resolution of the grids (namely di↵erent num-
ber of vertices) for the Franke’s function. The stopping
condition is given as maxi(|wi � ⌫i|/⌫i) < 1e� 8 with
wi = µ(Wi) in Alg. 1. The results are given by Tab.
1. From the table we can find that our method can
easily handle the mesh with 401⇥401 grids with small
running iterations.

Furthermore, we show the evolution of the his-
tograms of {log(wi/⌫i)}

n
i=1 in di↵erent iterations for
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Table 1: The iterations and running time of the proposed

method for di↵erent number of vertices or di↵erent sam-

pling resolution of the Franke’s function [47].

Vertex Iterations Time (s)
1681 8 0.227
10201 10 1.544
40401 12 7.938
160801 12 53.307

the Franke’s function model (401⇥401 grid) in Fig. 7.
If the algorithm converges well, we’ll finally get that
wi = ⌫i for all i = 1, 2, . . . , n, namely log(wi/⌫i) = 0.
Only after seven iterations, the algorithm converges
well and nearly all of log(wi/⌫i) concentrates on 0.
Also, we give the moving meshes of di↵erent itera-
tions in Fig. 8. It is obvious that the mesh moves
consistently and does not change a lot even after 5
iterations.

6. CONCLUSION

In this work, we introduce a practical algorithm to
solve the adaptive mesh generation problem given the
corresponding density function. By dynamically up-
date the locations of the vertices, the proposed method
is fast and stable. Our experimental results demon-
strate that the proposed method works well for dif-
ferent kinds of density functions and high resolution
grids.
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(a) The density functions. (b) The generated adaptive meshes.

Figure 4: The adaptive meshes of the ring and the bell models [42]. Zoom in/out for better visualization.
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(a) The density functions. (b) The generated adaptive meshes.

Figure 5: The adaptive meshes of the Gaussian mixture density function and the Franke’s function [47]. Zoom in/out for

better visualization.
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(a) The density functions. (b) The generated adaptive meshes.

Figure 6: The adaptive meshes of the density function defined by real image in [48]. Zoom in/out for better visualization.

Figure 7: The histograms of the area distortion of the Franke’s function model [47] in di↵erent iterations of the proposed

method. The numbers in the title of each figure shows the corresponding iteration number.
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Iter #1 Iter #3

Iter #5 Iter #7

Figure 8: The moving meshes of the Franke’s function model [47] in di↵erent iterations of the proposed method. The

numbers below each figure shows the corresponding iteration number. Zoom in/out for better visualization.
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