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Improved Bootstrapping by FFT on Encrypted 
Multi Operands Homomorphic Addition 
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Abstract: Bootstrapping is a technique that was introduced by 
Gentry in 2009. It is based on reencryption which allows an 
encryption scheme to perform an unlimited number of processing 
on encrypted data. It is a bottleneck in the practicability of these 
schemes because of multiplication operations which are costly    
in complexity. This complexity was reduced in TFHE by 
processing bootstrapping on the result of a two-bit logic gate in 
thirteen milliseconds using the Fast Fourier Transform. Building 
on this advance, an implementation of the addition of ten (10) 
numbers of 32-bits was performed based on the 32-bit Carry 
Look ahead Adder and was executed in less than 35 seconds 
using the configured SPQLIOS Fast Fourier transform to 
manipulate AVX and FMA instructions. This connector improves 
performance to a higher level than FFTW3 and NAYUKI. 

Keywords: Fast Fourier Transform, libraries, homomorphic 
encryption, binary adder. 

I. INTRODUCTION 

Homomorphic encryption is an encryption which 

performs various processing on encrypted data.  To do this, 
it is based on the bootstrapping technique introduced by 
Gentry which consists in refreshing the noise in the 
encrypted data by a re-encrypting operation [10,11]. In 
bootstrapping, the multiplication operation is a bottleneck 
for better performance.  Since the advent of the encryption 
schemes of Ducas and Micciancio and Ilaria chillota and all  
[9, 28, 29,30],a glimmer of hope hasemerged   for large-
scale and industrial homomorphic  encryption. They 
perform bootstrapping in less than a second and thirteen 
milliseconds respectively. Both schemes reduce 
bootstrapping processing time using implementations of the 
Discrete Fourier Transform called the Fast Fourier 
Transform that processes multiplication through logarithmic 
complexity [32,33]. Apart from the introduction and 
conclusion, this paper is divided into three sections which 
are the Fast Fourier Transform, the Torus Fully 
Homomorphic Encryption scheme and the implementation 
and interpretation of the results. 
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II. THE FAST FOURIER TRANSFORM [32,33] 

The Fast Fourier Transform is the most widely used 
algorithm currently in the analysis and processing of digital 
data in several scientific fields including cryptography. It 
remarkably reduces the multiplication time from 
(𝑛 log 𝑛) to Ο(𝑛2).   It is based on the representation by 
values, the properties of the𝑛𝑖è𝑚𝑒𝑠 roots of unity and the 
"divide and conqueror" strategy. It is an implementation of 
the Discrete Fourier Transform that adapts to the hardware 
for more performance. 

A. Polynomials. 
a. Definitions. 

A polynomial of indeterminate 𝑥, defined on a commutative 
ring 𝐴, is the formal sum 𝑝(𝑥) = ∑ 𝑎𝑖𝑥𝑖 = 𝑎0

𝑛−1
𝑖=0 + 𝑎1𝑥 +

⋯…… . . . +𝑎𝑛−1𝑥
𝑛−1 where 𝑎0, 𝑎1, …… . . , 𝑎𝑛−1 are called 

the coefficients of the polynomial that belongs to the ring 𝐴 
and often to the field of complexes 𝐶.  𝑝(𝑥) is said to be of 
degree 𝑘, if 𝑘 is the largest integer such that 𝑎𝑘is not zero.  

b. Operations on polynomials. 

Let 𝐴(𝑥) =  ∑ 𝑎𝑖𝑥
𝑖𝑛−1

𝑖=0  and 𝐵(𝑥) =  ∑ 𝑏𝑖𝑥
𝑖𝑛−1

𝑖=0  let two 
polynomials of 𝑛 terms. 
Addition of polynomials: the sum of 𝐴(𝑥) and 𝐵(𝑥) is 
polynomial 𝑐(𝑥) of n terms also, such that :𝐶(𝑥) = ∑ 𝑐𝑖

𝑛−1
𝑖=0  

where 𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖.  
Multiplication of polynomials: the multiplication of 𝐴(𝑥) 
and 𝐵(𝑥)is the product 𝐶(𝑥) 𝑜𝑓 2𝑛 − 1  terms such that: 
𝐶(𝑥) = ∑ 𝑐𝑖

2𝑛−1
𝑖=0  where 𝑐𝑖 = ∑ 𝑎𝑘𝑏𝑖−𝑘

𝑖
𝑘=0 . The vector of the 

resulting coefficients 𝑐is called the convolution of the input 
vectors 𝑎 and 𝑏, and denoted 𝑐 = 𝑎 ⊗ 𝑏. 

c. Representations of polynomials. 

A polynomial is represented in two equivalent ways that are 
by coefficients or values. 

i. Representation by coefficients. 

The coefficient representation of a polynomial 𝐴(𝑥) =

 ∑ 𝑎𝑖𝑥
𝑖𝑛−1

𝑖=0 is the vector of the coefficients 𝑎 =
(𝑎0, 𝑎1, … , 𝑎𝑛−1). The evaluation of 𝐴(𝑥) at point 𝑥0 
performs this representation in 𝑂(𝑛) with the Horner 
method. As for the multiplication of two polynomials 𝐴(𝑥) 
and 𝐵(𝑥) takes a time of 𝑂(𝑛2). 

ii. Representation by values. 

The value representation of a polynomial 𝐴(𝑥) =  ∑ 𝑎𝑖𝑥
𝑖𝑛−1

𝑖=0  
is a set of 𝑛 points in the plane, represented by their 
coordinates {(𝑥0, 𝑦0), (𝑥1, 𝑦1), … . , (𝑥𝑛−1, 𝑦𝑛−1)} such that 
the 𝑥𝑘 are all distinct and 𝑦𝑘 = 𝐴(𝑥𝑘), for 𝑘 = 0, 1, … , 𝑛 −
1. This evaluation takes 𝑂(𝑛2)by 
Horner's method. 
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iii. Interpolation. 

The interpolation of a polynomial is the inverse process of 
evaluation. It consists in determining the coefficients of a 
polynomial from its representation by values. 
Theorem: the uniqueness of an interpolation polynomial. A 
distinct set 𝑥𝑖 of 𝑛 coordinates 
{(𝑥0, 𝑦0), (𝑥1, 𝑦1), … . , (𝑥𝑛−1, 𝑦𝑛−1)} has one and only one 
polynomial 𝐴(𝑥) 𝑜𝑓 𝑛 terms such that 𝑦𝑘 = 𝐴(𝑥𝑘)for 𝑘 =
0, 1, … . . , 𝑛 − 1. The fastest algorithm for interpolation on 𝑛 
points is based on Lagrange's formula: 𝐴(𝑥) =

∑ 𝑦𝑘

∏ (𝑥−𝑥𝑗)𝑗≠𝑘

∏ (𝑥𝑘−𝑥𝑗)𝑗≠𝑘

𝑛−1
𝑘=0 . It calculates the coefficients of 

𝐴 𝑖𝑛 𝑂(𝑛2). 

B. Fast Fourier Transform (FFT) [33]. 

The integral Fourier transform 𝑓(𝑥) is the function 𝐹(𝜔) 
such that: 

𝐹(𝑡) = ∫ 𝑓(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡
∞

−∞

 

And the inverse transform is given by the equation: 

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)

∞

−∞

𝑒−𝑖𝜔𝑡𝑑𝜔 

 
Where 𝑖2 = −1 and 𝑒𝑖𝜔 = sin𝜔 + cos𝜔. 𝑓(𝑡) is 
considered to be a signal 𝐹(𝑡) and is called the signal 
spectrum. 
a. Discrete Fourier Transform (DFT). 

The Discrete Fourier Transform of a vector of 𝑛 components 
𝑎 =  (𝑎0, 𝑎1, ………………… . . , 𝑎𝑛) with respect to a 
constant 𝜔, denoted DFT(a), is a new vector 𝐴 =
(𝐴0, 𝐴1, …………………… . . , 𝐴𝑛) such that: 𝐴𝑗 =

∑ 𝑎𝑘𝜔
𝑗𝑘, 0 ≤ 𝑗 ≤ 𝑛 − 1𝑛−1

𝑘=0  where 𝜔 = 𝑒𝑖
2𝜋

𝑛 , 𝑛𝑖è𝑚𝑒  called 
the primitive (or principal) root of unit, and the 𝜔𝑘𝑓𝑜𝑟 𝑘 =

0,… , 𝑛 − 1 are called the 𝑛𝑖è𝑚𝑒roots of unit. 
b. Polynomial interpretation of DFT. 

Given a vector 𝑎 representing by coefficients of a 
polynomial 𝑝(𝑥) = ∑ 𝑎𝑖𝑥

𝑖𝑛−1
𝑖=0 , the calculation of the DFT is 

equivalent to evaluating 𝑝(𝑥)at the points 𝑥𝑖 = 𝜔𝑖  0 ≤ 𝑘 ≤
𝑛 − 1, more precisely the vector 𝐴 = 𝐷𝐹𝑇(𝑎) =
{𝑝(1), 𝑝(𝜔), 𝑝(𝜔2), … . , 𝑝(𝜔𝑛−1)}. 

c. Reverse DFT. 

Given 𝑛 components of vector 𝐴 such as 𝐴 = 𝐷𝐹𝑇(𝑎) the 
original vector  𝑎 can be retrieved by the reverse DFT. The 
inverse DFT of 𝑛 components vector of 𝐴 with respect to a 
constant 𝜔, denoted 𝐷𝐹𝑇−1, is a vector such that 𝑎 =
(𝑎0, 𝑎1, … . , 𝑎𝑛−1). 
Thus 

𝐷𝐹𝑇−1(𝐷𝐹𝑇(𝑎)) = 𝑎 
Since 𝜔 is  𝑛𝑖è𝑚𝑒  root of unit, so 𝜔−1 is it. 
Convolution theorem 1. Let 𝑎 and 𝑏 two vectors of 
𝑛 components where 𝑛 is a power of 2. The convolution of 
𝑎 and 𝑏 is reverse DFT of the product 𝑎 ⊗ 𝑏 =

𝐷𝐹𝑇−1
2𝑛(𝐷𝐹𝑇2𝑛(𝑎). 𝐷𝐹𝑇2𝑛(𝑏)) of their Fourier transform 

where ⊗ is the product term terms of two vectors while is 
their convolution. 
 
 

C. Fast Fourier Transform. 

It was in 1965 that JAMES COOLEY and JOHN TUKEY 
published this method. It was later discovered that the 
algorithm had already been invented by CARL FRIEDRICH 
GAUSS in 1805 and designed several times in different 
forms. 
The Fast Fourier Transform is an algorithm that 
significantly reduces the number of operations to calculate 
the FFT. It is based on the divide-and-conqueror strategy 
and takes advantage of the particular properties of 
𝑛𝑖è𝑚𝑒roots of unit. 
a. nième roots of unit. 

Definition: A constant 𝜔 is said to be the 𝑛𝑖è𝑚𝑒  root of the 
unit if 𝜔𝑛 = 1. In addition, 𝜔 is said to be 𝑛𝑖è𝑚𝑒   root 
principal (or primitive) of the unit 𝜔 if the following 
additional conditions are met:  
(1) 𝜔𝑘 ≠ 1 𝑝𝑜𝑢𝑟 0 < 𝑘 < 𝑛 
(2) ∑ 𝜔𝑗𝑘 = 0 𝑝𝑜𝑢𝑟 0 < 𝑘 < 𝑛𝑛−1

𝑗=1  

Theorem 2. Let be any commutative ring. Let 𝑛 > 1 be a 
power integer of two and let 𝜔 be an element in this ring 

such that 𝜔
𝑛

2 = −1. Then 

(1) 𝜔is a 𝑛𝑖è𝑚𝑒root principal of unit; 
(2) 𝜔−1 is the multiplicative inverse 𝜔 of in the ring; 
(3) 𝜔−1is also a 𝑛𝑖è𝑚𝑒root principal of unit; 
(4) 1 = 𝜔0, 𝜔1, … . , 𝜔𝑛−1, called the 𝑛𝑖è𝑚𝑒root 

principal roots of unit are all distinct; 
(5) If there is a multiplicative 𝑛−1 inverse of 𝑛 in the 

ring, then 𝜔−1 is a consequence of the fact that 𝜔 is 
a 𝑛𝑖è𝑚𝑒root principal of the unit. 

Periodicity property. For all 𝑛 ≥   0 et 𝑘 ≥ 0, 𝜔𝑛+𝑘 = 𝜔𝑘. 

Symmetry property. For any even integer 𝑛, 𝜔
𝑛

2 = −1. 
Bipartition property. For any 𝑛, the squares of 𝑛 𝑛𝑖è𝑚𝑒  roots 

of unit are  
𝑛

2
 (

𝑛

2
)
𝑖è𝑚𝑒

roots of unit. 

b. FFT algorithm. 

The best-known algorithm that requires a number of 
samples that is a power of 2 is that of Cooley-Tukey. It is 
based on the successive decomposition of size 𝑛 input 
vector, into two other identical smaller size corresponding to 
the divide-and-conqueror strategy. It is combined with the 
properties of the nth roots for more efficiency.  
Theorem 3: FFT where the input 𝐴 has a size 𝑁 = 2𝑚,for  
𝑚 ≥ 0 be calculated in 𝑂(𝑁 log𝑁) with the Cooley-Tukey 
recursive algorithm. 
Algorithm 1: FFT(A) 
Input: a vector 𝐴 of size 2𝑚complexes where  𝑚 ≥ 0 
Output: a vector of complexes which is the FFT of the input 
𝐴. 
𝑁 =  𝑠𝑖𝑧𝑒 𝑜𝑓 𝐴 
If 𝑛 ==  1 then return 𝐴 
Else 

            𝜔𝑁 = 𝑒
2𝜋𝑖

𝑁⁄  
𝜔 = 1 

http://www.ijeat.org/
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𝐴𝑝𝑎𝑖𝑟 = (𝐴0, 𝐴2, 𝐴4, ……… . . , 𝐴𝑁−2) 
𝐴𝑖𝑚𝑝𝑎𝑖𝑟 = (𝐴1, 𝐴3, 𝐴3, ……… . . , 𝐴𝑁−1) 
𝑌𝑝𝑎𝑖𝑟 = 𝐹𝐹𝑇(𝐴𝑝𝑎𝑖𝑟) 

𝐴𝑖𝑚𝑝𝑎𝑖𝑟 = 𝐹𝐹𝑇(𝐴𝑖𝑚𝑝𝑎𝑖𝑟) 

𝑓𝑜𝑟 𝑗 = 0 𝑡𝑜 𝑁 2⁄ − 1  
𝑑𝑜 

𝑌[𝑗] = 𝑌𝑝𝑎𝑖𝑟[𝑗] + 𝜔 ∗ 𝑌𝑖𝑚𝑝𝑎𝑖𝑟[𝑗]  

𝑌[𝑗 + 𝑁
2⁄ ] = 𝑌𝑝𝑎𝑖𝑟[𝑗] − 𝜔 ∗ 𝑌𝑖𝑚𝑝𝑎𝑖𝑟[𝑗]  

𝜔 = 𝜔 ∗ 𝜔𝑁  
𝑟𝑒𝑡𝑢𝑟𝑛 𝑌  

The above algorithm splits the input into two parts of 𝑁 2⁄ . 

The splitting operation and updating the result takes in terms 
of complexity 𝑂(𝑁).  From what preceded the following 

recurrence relation is derived 𝑇(𝑁) = 2𝑇(𝑁 2⁄ ) + 𝑂(𝑁) 

showing that the total execution time is  𝑂(𝑁 log𝑁). 

c. Libraries of the Fast Fourier Transform: 
Preprocessors. 

i. Single Instruction on Multiple Data [37]. 

Single Instruction on Multiple Data (SIMD) is one of the 
four categories of architecture defined by  Flynn's taxonomy  
in  1966  and refers to a mode of operating of  computers 
with parallelism processing.  In this mode, the same 
statement is applied simultaneously to multiple data. 
On January 8, 1997,Intel released the first microprocessor 
with  MMX technology, the Pentium MMX at 166  MHz  
(P166MX)  which is the first time that a SIMD is added to a  
Complex Instruction Set Computer (CISC) technology 
processor. Later in  1997,   AMD  also launched an Multiple 
Math eXtension (MMX)-compatible X86 processor 
(licensed to Intel) including an additional set instructions of 
SIMD, the Intel 3DNow  would add a new set instructions 
of SIMD  in  1999 with SSE technology, incompatible with 
3DNow. 

The hardware implementation of the SIMD paradigm can be 
done in various ways: 

• through the use of SIMD instructions, usually in 
micro-code interpreted on CISC or wired on RISC; 

• by vector processors;   
• by  stream  processors; 
• or through systems with multi-core or multiple 

processors. 
In the first three cases, a single processor can perform same 
operation on multiple data. In the latter case, each processor 
will perform a single operation on a data. SIMD parallelism 
therefore comes from the use of several processors. All 
modern processors contain extensions to their instruction 
set, such as MMX, SSE, etc. These extensions have been 
added to modern processors to be able to improve 
processing speed on calculations. SIMD instructions are 
composed in particular of instruction sets: On  x86  
processor:  MMX,  3DNow,  SSE,  SSE2,  SSE3,  SSSE3,  
SSE4,SSE4.1, SSE4.2,  AVX,AVX2 and AVX512. 
Streaming SIMD Extensions, usually abbreviated SSE, is a 
set of 70 additional instructions for x86 microprocessors, 
which appeared in 1999 on the Pentium III in response to 
AMD's 3DNow that appeared one year earlier. Instructions 
is SIMD type. Streaming SIMD Extension 2, usually 
abbreviated SSE2, is composed of 144 instructions and 

made its appearance with Intel's Pentium 4.  It manages 128-
bit registers for integers as well as single and double 
precision floats.  SSE3, also known by its internal codename 
Prescott New Instructions (PNI), is the third generation of 
the SSE instruction set for the IA-32 architecture. Intel 
introduced SSE3 in early 2004 with the Prescott version of 
its Pentium 4 processor. In April 2005, AMD introduced a 
subset of SSE3 in revision E of their Athlon 64 processor 
(Venice and San Diego). Their SIMD instruction set for the 
x86 platform, from the oldest to the newest, are MMX, 
3DNow, SSE, and SSE2. 
Advanced Vector Extensions (AVX) is an instruction set 
of the x86 architecture from Intel and AMD, released by 
Intel in March 2008. It is supported by Intel Sandy Bridge 
processors and AMD Bulldozer processors in 2011. AVX 
offers new features, new instructions and a new "VEX" 
coding scheme.     AVX2 expands most 128-bit SSE and 
AVX commands to 256-bit. AVX-512 expands the number 
of SIMD registers to 32 and expands them to 512 bits. It 
uses new coding using the EVEX prefix proposed by Intel in 
July 2013. The first processors supporting it were the 
Knights Landing. 
Fuse Multiply Add (FMA) is an extension of the SSE 
Streaming SIMD Extensions instructions from 128 to 256 
bits in the x86 microprocessor instruction set to perform 
FMA operations.  These instructions perform addition and 
multiplication operations in a single instruction in a clock 
cycle. There are two variants which are respectively the 
FMA4 which is supported by the AMD processor with the 
Bulldozer architecture and the FMA3 which is supported in 
the AMD processors of the PileDriver architecture and Intel 
with Haswell and Broadwell processors since 2014. 
 

ii. FFTW3[35]. 

Fftw3 is a library that was developed at MIT by Matteo 
Frigo and Steven G. Johnson. This GPL- open-source 
licensed library implements the Fast Fourier Transform at 
one or more dimensions, of arbitrary size and for real as 
well as complex. The latest free version for download on 
http://www.fftw.org  is 3.3.10. Version 3.3 introduced AVX 
support, an implementation with MPI and an interface for 
Fortran 2003. 

iii. Nayuki Project[36]. 

The default processor comes from Project Nayuki, which 
offers two implementations of the Fast Fourier Transform – 
one in portable C and the other using AVX assembly 
instructions. This component is licensed under the MIT 
license, and we have added the code of the reverse FFT 
(both in C and assembly). Original source : 
https://www.nayuki.io/page/fast-fourier-transform-in-x86-
assembly. 

iv. SPQLIOS [28]. 

The last processor named the SPQLIOS is provided by [28]. 
It which is written in AVX and FMA assembly in the style 
of the NAYUKI processor, and which is dedicated to the 
ring for a power of 2. 
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v. FFT processors. 

To run the TFHE needs at least one of the processors listed 
in the table below:  

Table 1: FFT processors 

Name License 
Language 
and 
portability 

Performance Website 

NAYUKI  MIT 
C and 
AVX 

1 www.nayuki.io 

SPQLIOS 
Apache 
2 

AVX and 
FMA 

2 - 3  

FFTW3 GPL 
C and 
FORTRAN 

1 www.fftw.org 

In terms of performance, the SPQLIOS processor performs 
better than the other two. It reduces their execution times by 
a factor of 2 or 3. 

III. HOMOMORPHIC ENCRYPTION: TFHE. 

The homomorphic encryption scheme is an encryption 
scheme that manipulates encrypted data to produce a 
corresponding result on plaintext messages. It is divided into 
three categories that are partial, little and complete. The 
partial homomorphic encryption scheme supports a single 
operation such as addition [38] or multiplication [39] on the 
encrypted data. They are not very useful in dealing with 
arbitrary operations on encrypted data.  The somewhat 
homomorphic encryption scheme simultaneously supports 
addition and multiplication operations of the encrypted data 
but the number of operations is bounded once the threshold 
is reached and decryption fails [8,13] The fully 
homomorphic encryption scheme simultaneously supports 
unlimited addition and multiplication operations on the 
encrypted data. This property allows you to process any 
function on encrypted data [12,9,27]. 
The FHE uses a Learning With Errors problem (LWE) [18] 
where an error called noise is introduced to ensure safety 
(18). This error increases after each operation especially 
multiplication and causes invalid decryption after a number 
of operations. Therefore, this error must be reduced to a 
threshold to support an unlimited number of operations. 
The refresh procedure is called bootstrapping [10,11]. It 
brings an additional number of operations that makes the 
algorithms inefficient [8]. Improvements have been made to 
this procedure to make it effective. Processing of a logical 
function on two encrypted messages corresponding to the 
free bits is performed in less than a second [9] and in 13 
milliseconds [27] respectively.    

A. TFHE [28,29,30]. 

Torus Fully Homomorphic Encryption (TFHE) is a 
homomorphic encryption scheme designed by Illaria 

Chillota and all [28,29,30] that work on the torus 𝑇 = ℝ
ℤ⁄ , 

a set of real numbers modulo 1, as space for plaintext and 
ciphertext. Ciphertexts are built under the LWE problem 
[19,22] and represented as the Torus LWE where an error or 
noise is added to each encrypted message. 
For a given dimension 𝑚 ≥ 1, the secret key  𝑠 ⃗⃗ is drawn in 
ℬ𝑚 𝑤𝑖𝑡ℎ ℬ = {0,1}, and the 𝑒 error is drawn in a 
distribution 𝜒, a sample is defined as (𝑎 , 𝑏) where 𝑎  ∈
Τ such that 𝑎  is a vector of coefficients  drawn from size 

𝑚  and each element 𝑎𝑖 is drawn in a uniform distribution 
under T and The 𝑏 = 𝑎 ∗ 𝑠 + 𝑒. The term 𝑒 in the sample 
increases with the number of operations. Therefore, 
bootstrapping is introduced to decrypt and re-encrypt the 
encrypted message to remove unnecessary noise. 
The space of plaintext in the TFHE is the bit represented by 
the set ℬ = {0,1} and generates encrypted messages of the 
LWE type under the torus. Thus, processing on plaintext 
messages is comparable to processing on the bit. A binary 
vector represents a number in ℕ or ℝ, the same is true of  𝑛 
sample LWE of 𝑛 size represents a numerical number of 
𝑛 size.  In TFHE, the Boolean gates of the addition circuit 
between two numbers correspond to the operations on LWE 
samples.   The motivation for choosing the TFHE is 
summarized through the speed of its bootstrapping in 13 
milliseconds, the acceptable size of the encrypted message 
and the multitude of Boolean operations supported. 
The implementation of TFHE comes with the standard 
cryptography functions (key generation, encryption, 
decryption) and also all the logic gates for performing 
logical operations in ℬ. And its bootstrapping is improved 
by using of the three FFT processors which are the FFTW3, 
the NAYUKI project and the SPQLIOS. 

B. Homomorphic arithmetic addition with TFHE [34,31]. 

The one-bit addition and multiplication operations are 
defined in using the XOR and AND logic gates respectively. 
These gates are the foundation for the implementation of 
increasingly complex circuits.  
This section presents an implementation of arithmetic 
addition by composing the complete binary adder with the 
AND and XOR gates. The adder circuit made it possible to 
build the Carry Lookhead Adder (CLA)[31,34]. This 
addition arithmetic operation will be performed on integers 
with a size of 32 bits using one 32-bit block, two 16-bit 
blocks, four 8-bit blocks, and eight 4-bit blocks, 
respectively. 

a. Adder. 

The adder is a circuit that is made from two basic circuits 
which are the half-adder and the complete adder. These are 
used to make the CLAx adders where x is an integer 
representing the size of the block. 

i. Half adder. 

The half-adder is a circuit that allows the calculation of the 
sum 𝑠𝑖  and the carry 𝑐𝑖  when adding two bits 𝑎𝑖  and 𝑏𝑖, the 
ith bit of a binary representation of 𝑎 and 𝑏 two integers of 
32 bits. 
𝑠𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖  𝑒𝑡 𝑐𝑖 = 𝑎𝑖 ∗ 𝑏𝑖 where  ⊕, ∗ represents 
respectively the addition on a bit: XOR and the 
multiplication on a bit: AND. 

ii. Full adder. 

A full adder is a circuit that allows the calculation of the ith 
sum 𝑠𝑖  and the (i+1) th carry 𝑐𝑖+1 when adding two bits 𝑎𝑖 
, 𝑏𝑖 and 𝑐𝑖 an input carry.  
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It includes half-adders and full adders. The difference is that 
a half-adder does not accept a carry while the adder accepts 
it.  
The implementation can vary as long as the logical 
expressions of different implementations are equivalent. In 
[25], for example, the expressions of sum and carry can be 
written as follows: 

𝑐𝑖+1 = 𝑎𝑖 . 𝑏𝑖⨁𝑐𝑖 . (𝑎𝑖⨁𝑏𝑖) 
𝑠𝑖 = 𝑎𝑖⨁𝑏𝑖⨁𝑐𝑖  

The expression of withholding can be reduced as follows: 
𝑐𝑖+1 = 𝑎𝑖 . 𝑏𝑖⨁𝑐𝑖 . (𝑎𝑖⨁𝑏𝑖) =  (𝑎𝑖⨁𝑐𝑖). (𝑏𝑖⨁𝑐𝑖) ⊕ 𝑐𝑖  

This optimized expression is found in [26]. It uses only for 
each bit an AND gate, and therefore a complete adder of one 
bit at a multiplicative depth that is equivalent to 1(𝐿 =  1) .  

b. Carry Lookahead Adder. 

 In a ripple carry architecture, the addition depends on the 
propagation of carries through stages of the parallel adder 
[34]. To reduce the propagation time and speed up the 
addition process, it is possible to anticipate the output carry 
of each stage and to produce, from the inputs, the carry by 
generation or propagation. This technique is called "carry 
anticipation".  
carry generation occurs when a carry is generated by the full 
adder. A carry can only occur when the two input bits are 1. 
The generated carry is noted 𝑔𝑖 and is equal to 𝑔𝑖  =  𝑎𝑖 ∗ 𝑏𝑖. 
A carry propagation is created when an input carry is passed 
on to output carry. In a full adder, the propagation of an 
input carry can occur when at least one of the bits is 1. The 
propagated carry noted 𝑝𝑖  and is equivalent to 𝑝𝑖  =  𝑎𝑖⨁𝑏𝑖. 
The output carry of full adder can be expressed as a 
propagated carry 𝑝𝑖  or as a generated carry 𝑔𝑖. The noted 
output carry 𝑐𝑖 is 1 if the generated output is 1 or if the 
propagated output is 1 and the input carry (𝑐𝑖−1) is 1. 
In other words, an output carry of 1 is generated by the full 
adder if 𝑎𝑖 = 1 𝑒𝑡 𝑏𝑖 = 1 or by propagation of the additionor 
of the input carry (𝑎𝑖 = 1 𝑜𝑢 𝑏𝑖 = 1) 𝑒𝑡 (𝑐𝑖−1  = 1). The 
expression below summarizes all the cases:  𝑐𝑖  =  𝑔𝑖  +
 𝑝𝑖𝑐𝑖−1. 
Let's illustrate this concept by applying to a thirty-two (32) 
bit parallel adder with k-bits blocks. The stage 𝑖 produces an 
output carry either by generating it or by propagating the 
internal carry to the output carry. For each stage 𝑖, it 
generates 𝑔𝑖 and propagates 𝑝𝑖  as follows: 

- The column 𝑖 produces an output carry if the inputs 𝑎𝑖 
and 𝑏𝑖 are equal to 1 binary: 𝑔𝑖  =  𝑎𝑖  ∗ 𝑏𝑖; 

- The column 𝑖 propagates the internal carry to the 
output carry if one of the inputs is equal to1: 𝑝𝑖  =
 𝑎𝑖  ⊕ 𝑏𝑖; 

- The output carry of column 𝑖 is given by the following 
expression: 

𝑐𝑖  =  𝑎𝑖 ∗ 𝑏𝑖  ⊕ (𝑎𝑖  ⊕ 𝑏𝑖) ∗ 𝑐𝑖−1  =  𝑔𝑖⨁ 𝑝𝑖  𝑐𝑖−1. 

The algorithm of the carry anticipation adder can be 
described in the steps below: 

- Step 1: calculate 𝑔𝑖  and 𝑝𝑖  for all columns for 𝑖 from 0 
to 31; 

- Step 2: calculate the 𝑔𝑘 and 𝑝𝑘  for each 𝑘 −block of 
bits for k = 4, 8, 16; 

- Step 3: The input carry 𝑐0 propagates through the bit 
𝑘 −block by the functions of generating and 
propagating the carry. 

Example for a block of 4 bits ( 𝑝3:0 and 𝑔3:0):  
𝑔3:0 = 𝑔3  +  𝑝3(𝑝2  +  𝑝2(𝑔1  +  𝑝1𝑔0) 

𝑝3:0  =  𝑝3𝑝2𝑝1𝑝0 
In general,  

𝑔𝑖:𝑗 = 𝑔𝑖  +  𝑝𝑖(𝑔𝑖−1  + 𝑝𝑖−1(𝑔𝑖−2 + 𝑝𝑖−2𝑔𝑗)) 
𝑝𝑖:𝑗  =  𝑝𝑖𝑝𝑖−1𝑝𝑖−2𝑝𝑗 

𝑐𝑖  =  𝑔𝑖:𝑗  +  𝑝𝑖:𝑗  𝑐𝑗−1 
The complexity of the algorithm of the added or with Carry 
Lookahead Adder respectively in time is 𝑂(𝑛 𝑙𝑜𝑔 𝑛). The 
CLA of 𝑛 is faster than the Ripple Carry Adder which has a 
complexity 𝑂(𝑛) in time and space of respectively. 

IV. IMPLEMENTATION AND 
INTERPRETATION OF RESULTS 

The implementations were tested on an Intel® Core™ i7-
5500 CPU @ 2.40 Ghz laptop that has a 4096 kilobytes 
cache, 1100 Mhz frequency clock and  8 Gigabyte RAM.  It 
supports the following features: MMX, SSE, SSE2, FMA, 
SSE4_1, SSE4_2, AVX AND AVX2. 

A. Default settings. 

The default settings have been configured. They provide a 
security setting of at least 110 bits that are based on the 
difficult assumptions of the ideal lattices problem.   The 
logical homomorphic AND performs on two bits with a 
secret key of 109 Megabytes and a bootstrapping key of the 
same size provided the results for each FFT type in Table 2. 
The FFT SPQLIOS configured with the AVX or FMA flag 
provides better performance than other FFTs. 

Table 2: Execution time of a two-bit AND operation. 

Duration(
s) 

FFTW
3 

NAYUKI
-

PORTAB
E 

NAYUK
I-AVX 

SPQLIO
S-AVX 

SPQLIO
S-FMA 

AND 0.3 0.2 0.1 0.024 0.03 

B. Performance and interpretation of results. 

Table 3, the column represents the type of FFT used during 
the experiment and the row when it the CLAx where x 
represents the block size.   The intersection between the row 
and the column represents the duration of the execution of 
an addition operation on ten numbers of 32-bits respectively. 

Table 3: Performance of CLAx adders. 

Duration(
s) 

FFTW
3 

NAYUKI
-

PORTAB
E 

NAYUK
I-AVX 

SPQLIO
S-AVX 

SPQLIO
S-FMA 

CLA32 443 288.2 142.5 33.5 32.2 
CLA16 440 284.6 141.6 32.1 31.8 
CLA8 440 284.3 141.2 31.9 31.6 
CLA4 438 282.6 141.0 31.6 31.3 

Ten 32-bit numbers occupy a space of 320 bits on disk or 
about 40 Bytes. These numbers are encrypted in a file with a 
size of 795 Kilo-Bytes. 
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 The expansion between the encrypted message and the 
plaintext message is very high by19 875. From the table 2, 
the FFT SPQLIOS reduces the execution time of the FFT 
NAYUKI-AVX by 343%. While the FFT FFTW3 provides 
poor performance even compared to the default FFT which 
is the FFT NAYUKI-PORTABLE, it increases its execution 
time by 35%. The size of the chosen block in the operation 
improves performance in a very small proportion. It is of the 
order on average of less than 1% for all FFTs used.   

V. CONCLUSION 

TFHE performs a homomorphic AND logical operation on 
two bits in thirteen milliseconds using bootstrapping by 
taking advantage of the implementation of the Discrete 
Fourier Transform called the Fast Fourier Transform.  
The different implementations of the Fast Fourier Transform 
have made it possible to build a homomorphic addition 
circuit of 10 numbers of 32 bits with 9 carry lookahead 
adders that gives a result in 35 seconds with SPQLIOS 
configured with AVX or FMA instructions. In our 
configuration, the FFTW3 did not yield results to 
corroborate the assumptions against NAYUKI.  
To further improve, other Fast Fourier Transform 
implementations such as IPP and OTFFT must be 
configured to evaluate their performance with TFHE with 
the same circuit or others. Another way to be explored is 
shared memory or distributed memory parallelism coupled 
with native MPI or OpenMP instructions from different Fast 
Fourier Transform implementations. 
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