
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN : 2249-8958 (Online), Volume-11 Issue-1, October 2021

124

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.A31771011121
DOI: 10.35940/ijeat.A3177.1011121
Journal Website: www.ijeat.org

Improved Bootstrapping by FFT on Encrypted
Multi Operands Homomorphic Addition

Paulin Boale Bomolo, Simon Ntumba Badibanga, Eugene Mbuyi Mukendi.

Abstract: Bootstrapping is a technique that was introduced by
Gentry in 2009. It is based on reencryption which allows an
encryption scheme to perform an unlimited number of processing
on encrypted data. It is a bottleneck in the practicability of these
schemes because of multiplication operations which are costly
in complexity. This complexity was reduced in TFHE by
processing bootstrapping on the result of a two-bit logic gate in
thirteen milliseconds using the Fast Fourier Transform. Building
on this advance, an implementation of the addition of ten (10)
numbers of 32-bits was performed based on the 32-bit Carry
Look ahead Adder and was executed in less than 35 seconds
using the configured SPQLIOS Fast Fourier transform to
manipulate AVX and FMA instructions. This connector improves
performance to a higher level than FFTW3 and NAYUKI.

Keywords: Fast Fourier Transform, libraries, homomorphic
encryption, binary adder.

I. INTRODUCTION

Homomorphic encryption is an encryption which

performs various processing on encrypted data. To do this,
it is based on the bootstrapping technique introduced by
Gentry which consists in refreshing the noise in the
encrypted data by a re-encrypting operation [10,11]. In
bootstrapping, the multiplication operation is a bottleneck
for better performance. Since the advent of the encryption
schemes of Ducas and Micciancio and Ilaria chillota and all
[9, 28, 29,30],a glimmer of hope hasemerged for large-
scale and industrial homomorphic encryption. They
perform bootstrapping in less than a second and thirteen
milliseconds respectively. Both schemes reduce
bootstrapping processing time using implementations of the
Discrete Fourier Transform called the Fast Fourier
Transform that processes multiplication through logarithmic
complexity [32,33]. Apart from the introduction and
conclusion, this paper is divided into three sections which
are the Fast Fourier Transform, the Torus Fully
Homomorphic Encryption scheme and the implementation
and interpretation of the results.

Manuscript received on October 02, 2021.
Revised Manuscript received on October 07, 2021.
Manuscript published on October 30, 2021.
*Correspondence Author

Paulin Boale B.*, Mathematics and Computer Sciences, University of
Kinshasa, Kinshasa, Democratic Republic of Congo, Email:
Paulin.boale@unikin.ac.cd

Simon Ntumba B., Mathematics and Computer Sciences, University
of Kinshasa, Kinshasa, Democratic Republic of Congo, Email:
eugene.mbuyi@unikin.ac.cd
Eugene Mbuyi M., Mathematics and Computer Sciences, University of
Kinshasa, Kinshasa, Democratic Republic of Congo, Email:
simon.ntumba@unikin.ac.cd

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

II. THE FAST FOURIER TRANSFORM [32,33]

The Fast Fourier Transform is the most widely used
algorithm currently in the analysis and processing of digital
data in several scientific fields including cryptography. It
remarkably reduces the multiplication time from
(𝑛 log 𝑛) to Ο(𝑛2). It is based on the representation by
values, the properties of the𝑛𝑖è𝑚𝑒𝑠 roots of unity and the
"divide and conqueror" strategy. It is an implementation of
the Discrete Fourier Transform that adapts to the hardware
for more performance.

A. Polynomials.
a. Definitions.

A polynomial of indeterminate 𝑥, defined on a commutative
ring 𝐴, is the formal sum 𝑝(𝑥) = ∑ 𝑎𝑖𝑥𝑖 = 𝑎0

𝑛−1
𝑖=0 + 𝑎1𝑥 +

⋯…… . . . +𝑎𝑛−1𝑥
𝑛−1 where 𝑎0, 𝑎1, …… . . , 𝑎𝑛−1 are called

the coefficients of the polynomial that belongs to the ring 𝐴
and often to the field of complexes 𝐶. 𝑝(𝑥) is said to be of
degree 𝑘, if 𝑘 is the largest integer such that 𝑎𝑘is not zero.

b. Operations on polynomials.

Let 𝐴(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛−1

𝑖=0 and 𝐵(𝑥) = ∑ 𝑏𝑖𝑥
𝑖𝑛−1

𝑖=0 let two
polynomials of 𝑛 terms.
Addition of polynomials: the sum of 𝐴(𝑥) and 𝐵(𝑥) is
polynomial 𝑐(𝑥) of n terms also, such that :𝐶(𝑥) = ∑ 𝑐𝑖

𝑛−1
𝑖=0

where 𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖.
Multiplication of polynomials: the multiplication of 𝐴(𝑥)
and 𝐵(𝑥)is the product 𝐶(𝑥) 𝑜𝑓 2𝑛 − 1 terms such that:
𝐶(𝑥) = ∑ 𝑐𝑖

2𝑛−1
𝑖=0 where 𝑐𝑖 = ∑ 𝑎𝑘𝑏𝑖−𝑘

𝑖
𝑘=0 . The vector of the

resulting coefficients 𝑐is called the convolution of the input
vectors 𝑎 and 𝑏, and denoted 𝑐 = 𝑎 ⊗ 𝑏.

c. Representations of polynomials.

A polynomial is represented in two equivalent ways that are
by coefficients or values.

i. Representation by coefficients.

The coefficient representation of a polynomial 𝐴(𝑥) =

 ∑ 𝑎𝑖𝑥
𝑖𝑛−1

𝑖=0 is the vector of the coefficients 𝑎 =
(𝑎0, 𝑎1, … , 𝑎𝑛−1). The evaluation of 𝐴(𝑥) at point 𝑥0
performs this representation in 𝑂(𝑛) with the Horner
method. As for the multiplication of two polynomials 𝐴(𝑥)
and 𝐵(𝑥) takes a time of 𝑂(𝑛2).

ii. Representation by values.

The value representation of a polynomial 𝐴(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛−1

𝑖=0
is a set of 𝑛 points in the plane, represented by their
coordinates {(𝑥0, 𝑦0), (𝑥1, 𝑦1), … . , (𝑥𝑛−1, 𝑦𝑛−1)} such that
the 𝑥𝑘 are all distinct and 𝑦𝑘 = 𝐴(𝑥𝑘), for 𝑘 = 0, 1, … , 𝑛 −
1. This evaluation takes 𝑂(𝑛2)by
Horner's method.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.A3177.1011121&domain=www.ijeat.org

Improved Bootstrapping by FFT on Encrypted Multi Operands Homomorphic Addition

125

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.A31771011121
DOI: 10.35940/ijeat.A3177.1011121
Journal Website: www.ijeat.org

iii. Interpolation.

The interpolation of a polynomial is the inverse process of
evaluation. It consists in determining the coefficients of a
polynomial from its representation by values.
Theorem: the uniqueness of an interpolation polynomial. A
distinct set 𝑥𝑖 of 𝑛 coordinates
{(𝑥0, 𝑦0), (𝑥1, 𝑦1), … . , (𝑥𝑛−1, 𝑦𝑛−1)} has one and only one
polynomial 𝐴(𝑥) 𝑜𝑓 𝑛 terms such that 𝑦𝑘 = 𝐴(𝑥𝑘)for 𝑘 =
0, 1, … . . , 𝑛 − 1. The fastest algorithm for interpolation on 𝑛
points is based on Lagrange's formula: 𝐴(𝑥) =

∑ 𝑦𝑘

∏ (𝑥−𝑥𝑗)𝑗≠𝑘

∏ (𝑥𝑘−𝑥𝑗)𝑗≠𝑘

𝑛−1
𝑘=0 . It calculates the coefficients of

𝐴 𝑖𝑛 𝑂(𝑛2).

B. Fast Fourier Transform (FFT) [33].

The integral Fourier transform 𝑓(𝑥) is the function 𝐹(𝜔)
such that:

𝐹(𝑡) = ∫ 𝑓(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡
∞

−∞

And the inverse transform is given by the equation:

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)

∞

−∞

𝑒−𝑖𝜔𝑡𝑑𝜔

Where 𝑖2 = −1 and 𝑒𝑖𝜔 = sin𝜔 + cos𝜔. 𝑓(𝑡) is
considered to be a signal 𝐹(𝑡) and is called the signal
spectrum.
a. Discrete Fourier Transform (DFT).

The Discrete Fourier Transform of a vector of 𝑛 components
𝑎 = (𝑎0, 𝑎1, ………………… . . , 𝑎𝑛) with respect to a
constant 𝜔, denoted DFT(a), is a new vector 𝐴 =
(𝐴0, 𝐴1, …………………… . . , 𝐴𝑛) such that: 𝐴𝑗 =

∑ 𝑎𝑘𝜔
𝑗𝑘, 0 ≤ 𝑗 ≤ 𝑛 − 1𝑛−1

𝑘=0 where 𝜔 = 𝑒𝑖
2𝜋

𝑛 , 𝑛𝑖è𝑚𝑒 called
the primitive (or principal) root of unit, and the 𝜔𝑘𝑓𝑜𝑟 𝑘 =

0,… , 𝑛 − 1 are called the 𝑛𝑖è𝑚𝑒roots of unit.
b. Polynomial interpretation of DFT.

Given a vector 𝑎 representing by coefficients of a
polynomial 𝑝(𝑥) = ∑ 𝑎𝑖𝑥

𝑖𝑛−1
𝑖=0 , the calculation of the DFT is

equivalent to evaluating 𝑝(𝑥)at the points 𝑥𝑖 = 𝜔𝑖 0 ≤ 𝑘 ≤
𝑛 − 1, more precisely the vector 𝐴 = 𝐷𝐹𝑇(𝑎) =
{𝑝(1), 𝑝(𝜔), 𝑝(𝜔2), … . , 𝑝(𝜔𝑛−1)}.

c. Reverse DFT.

Given 𝑛 components of vector 𝐴 such as 𝐴 = 𝐷𝐹𝑇(𝑎) the
original vector 𝑎 can be retrieved by the reverse DFT. The
inverse DFT of 𝑛 components vector of 𝐴 with respect to a
constant 𝜔, denoted 𝐷𝐹𝑇−1, is a vector such that 𝑎 =
(𝑎0, 𝑎1, … . , 𝑎𝑛−1).
Thus

𝐷𝐹𝑇−1(𝐷𝐹𝑇(𝑎)) = 𝑎
Since 𝜔 is 𝑛𝑖è𝑚𝑒 root of unit, so 𝜔−1 is it.
Convolution theorem 1. Let 𝑎 and 𝑏 two vectors of
𝑛 components where 𝑛 is a power of 2. The convolution of
𝑎 and 𝑏 is reverse DFT of the product 𝑎 ⊗ 𝑏 =

𝐷𝐹𝑇−1
2𝑛(𝐷𝐹𝑇2𝑛(𝑎). 𝐷𝐹𝑇2𝑛(𝑏)) of their Fourier transform

where ⊗ is the product term terms of two vectors while is
their convolution.

C. Fast Fourier Transform.

It was in 1965 that JAMES COOLEY and JOHN TUKEY
published this method. It was later discovered that the
algorithm had already been invented by CARL FRIEDRICH
GAUSS in 1805 and designed several times in different
forms.
The Fast Fourier Transform is an algorithm that
significantly reduces the number of operations to calculate
the FFT. It is based on the divide-and-conqueror strategy
and takes advantage of the particular properties of
𝑛𝑖è𝑚𝑒roots of unit.
a. nième roots of unit.

Definition: A constant 𝜔 is said to be the 𝑛𝑖è𝑚𝑒 root of the
unit if 𝜔𝑛 = 1. In addition, 𝜔 is said to be 𝑛𝑖è𝑚𝑒 root
principal (or primitive) of the unit 𝜔 if the following
additional conditions are met:
(1) 𝜔𝑘 ≠ 1 𝑝𝑜𝑢𝑟 0 < 𝑘 < 𝑛
(2) ∑ 𝜔𝑗𝑘 = 0 𝑝𝑜𝑢𝑟 0 < 𝑘 < 𝑛𝑛−1

𝑗=1

Theorem 2. Let be any commutative ring. Let 𝑛 > 1 be a
power integer of two and let 𝜔 be an element in this ring

such that 𝜔
𝑛

2 = −1. Then

(1) 𝜔is a 𝑛𝑖è𝑚𝑒root principal of unit;
(2) 𝜔−1 is the multiplicative inverse 𝜔 of in the ring;
(3) 𝜔−1is also a 𝑛𝑖è𝑚𝑒root principal of unit;
(4) 1 = 𝜔0, 𝜔1, … . , 𝜔𝑛−1, called the 𝑛𝑖è𝑚𝑒root

principal roots of unit are all distinct;
(5) If there is a multiplicative 𝑛−1 inverse of 𝑛 in the

ring, then 𝜔−1 is a consequence of the fact that 𝜔 is
a 𝑛𝑖è𝑚𝑒root principal of the unit.

Periodicity property. For all 𝑛 ≥ 0 et 𝑘 ≥ 0, 𝜔𝑛+𝑘 = 𝜔𝑘.

Symmetry property. For any even integer 𝑛, 𝜔
𝑛

2 = −1.
Bipartition property. For any 𝑛, the squares of 𝑛 𝑛𝑖è𝑚𝑒 roots

of unit are
𝑛

2
 (

𝑛

2
)
𝑖è𝑚𝑒

roots of unit.

b. FFT algorithm.

The best-known algorithm that requires a number of
samples that is a power of 2 is that of Cooley-Tukey. It is
based on the successive decomposition of size 𝑛 input
vector, into two other identical smaller size corresponding to
the divide-and-conqueror strategy. It is combined with the
properties of the nth roots for more efficiency.
Theorem 3: FFT where the input 𝐴 has a size 𝑁 = 2𝑚,for
𝑚 ≥ 0 be calculated in 𝑂(𝑁 log𝑁) with the Cooley-Tukey
recursive algorithm.
Algorithm 1: FFT(A)
Input: a vector 𝐴 of size 2𝑚complexes where 𝑚 ≥ 0
Output: a vector of complexes which is the FFT of the input
𝐴.
𝑁 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐴
If 𝑛 == 1 then return 𝐴
Else

 𝜔𝑁 = 𝑒
2𝜋𝑖

𝑁⁄
𝜔 = 1

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN : 2249-8958 (Online), Volume-11 Issue-1, October 2021

126

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.A31771011121
DOI: 10.35940/ijeat.A3177.1011121
Journal Website: www.ijeat.org

𝐴𝑝𝑎𝑖𝑟 = (𝐴0, 𝐴2, 𝐴4, ……… . . , 𝐴𝑁−2)
𝐴𝑖𝑚𝑝𝑎𝑖𝑟 = (𝐴1, 𝐴3, 𝐴3, ……… . . , 𝐴𝑁−1)
𝑌𝑝𝑎𝑖𝑟 = 𝐹𝐹𝑇(𝐴𝑝𝑎𝑖𝑟)

𝐴𝑖𝑚𝑝𝑎𝑖𝑟 = 𝐹𝐹𝑇(𝐴𝑖𝑚𝑝𝑎𝑖𝑟)

𝑓𝑜𝑟 𝑗 = 0 𝑡𝑜 𝑁 2⁄ − 1
𝑑𝑜

𝑌[𝑗] = 𝑌𝑝𝑎𝑖𝑟[𝑗] + 𝜔 ∗ 𝑌𝑖𝑚𝑝𝑎𝑖𝑟[𝑗]

𝑌[𝑗 + 𝑁
2⁄] = 𝑌𝑝𝑎𝑖𝑟[𝑗] − 𝜔 ∗ 𝑌𝑖𝑚𝑝𝑎𝑖𝑟[𝑗]

𝜔 = 𝜔 ∗ 𝜔𝑁
𝑟𝑒𝑡𝑢𝑟𝑛 𝑌

The above algorithm splits the input into two parts of 𝑁 2⁄ .

The splitting operation and updating the result takes in terms
of complexity 𝑂(𝑁). From what preceded the following

recurrence relation is derived 𝑇(𝑁) = 2𝑇(𝑁 2⁄) + 𝑂(𝑁)

showing that the total execution time is 𝑂(𝑁 log𝑁).

c. Libraries of the Fast Fourier Transform:
Preprocessors.

i. Single Instruction on Multiple Data [37].

Single Instruction on Multiple Data (SIMD) is one of the
four categories of architecture defined by Flynn's taxonomy
in 1966 and refers to a mode of operating of computers
with parallelism processing. In this mode, the same
statement is applied simultaneously to multiple data.
On January 8, 1997,Intel released the first microprocessor
with MMX technology, the Pentium MMX at 166 MHz
(P166MX) which is the first time that a SIMD is added to a
Complex Instruction Set Computer (CISC) technology
processor. Later in 1997, AMD also launched an Multiple
Math eXtension (MMX)-compatible X86 processor
(licensed to Intel) including an additional set instructions of
SIMD, the Intel 3DNow would add a new set instructions
of SIMD in 1999 with SSE technology, incompatible with
3DNow.

The hardware implementation of the SIMD paradigm can be
done in various ways:

• through the use of SIMD instructions, usually in
micro-code interpreted on CISC or wired on RISC;

• by vector processors;
• by stream processors;
• or through systems with multi-core or multiple

processors.
In the first three cases, a single processor can perform same
operation on multiple data. In the latter case, each processor
will perform a single operation on a data. SIMD parallelism
therefore comes from the use of several processors. All
modern processors contain extensions to their instruction
set, such as MMX, SSE, etc. These extensions have been
added to modern processors to be able to improve
processing speed on calculations. SIMD instructions are
composed in particular of instruction sets: On x86
processor: MMX, 3DNow, SSE, SSE2, SSE3, SSSE3,
SSE4,SSE4.1, SSE4.2, AVX,AVX2 and AVX512.
Streaming SIMD Extensions, usually abbreviated SSE, is a
set of 70 additional instructions for x86 microprocessors,
which appeared in 1999 on the Pentium III in response to
AMD's 3DNow that appeared one year earlier. Instructions
is SIMD type. Streaming SIMD Extension 2, usually
abbreviated SSE2, is composed of 144 instructions and

made its appearance with Intel's Pentium 4. It manages 128-
bit registers for integers as well as single and double
precision floats. SSE3, also known by its internal codename
Prescott New Instructions (PNI), is the third generation of
the SSE instruction set for the IA-32 architecture. Intel
introduced SSE3 in early 2004 with the Prescott version of
its Pentium 4 processor. In April 2005, AMD introduced a
subset of SSE3 in revision E of their Athlon 64 processor
(Venice and San Diego). Their SIMD instruction set for the
x86 platform, from the oldest to the newest, are MMX,
3DNow, SSE, and SSE2.
Advanced Vector Extensions (AVX) is an instruction set
of the x86 architecture from Intel and AMD, released by
Intel in March 2008. It is supported by Intel Sandy Bridge
processors and AMD Bulldozer processors in 2011. AVX
offers new features, new instructions and a new "VEX"
coding scheme. AVX2 expands most 128-bit SSE and
AVX commands to 256-bit. AVX-512 expands the number
of SIMD registers to 32 and expands them to 512 bits. It
uses new coding using the EVEX prefix proposed by Intel in
July 2013. The first processors supporting it were the
Knights Landing.
Fuse Multiply Add (FMA) is an extension of the SSE
Streaming SIMD Extensions instructions from 128 to 256
bits in the x86 microprocessor instruction set to perform
FMA operations. These instructions perform addition and
multiplication operations in a single instruction in a clock
cycle. There are two variants which are respectively the
FMA4 which is supported by the AMD processor with the
Bulldozer architecture and the FMA3 which is supported in
the AMD processors of the PileDriver architecture and Intel
with Haswell and Broadwell processors since 2014.

ii. FFTW3[35].

Fftw3 is a library that was developed at MIT by Matteo
Frigo and Steven G. Johnson. This GPL- open-source
licensed library implements the Fast Fourier Transform at
one or more dimensions, of arbitrary size and for real as
well as complex. The latest free version for download on
http://www.fftw.org is 3.3.10. Version 3.3 introduced AVX
support, an implementation with MPI and an interface for
Fortran 2003.

iii. Nayuki Project[36].

The default processor comes from Project Nayuki, which
offers two implementations of the Fast Fourier Transform –
one in portable C and the other using AVX assembly
instructions. This component is licensed under the MIT
license, and we have added the code of the reverse FFT
(both in C and assembly). Original source :
https://www.nayuki.io/page/fast-fourier-transform-in-x86-
assembly.

iv. SPQLIOS [28].

The last processor named the SPQLIOS is provided by [28].
It which is written in AVX and FMA assembly in the style
of the NAYUKI processor, and which is dedicated to the
ring for a power of 2.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
https://fr.wikipedia.org/wiki/Taxonomie_de_Flynn
https://fr.wikipedia.org/wiki/1966
https://fr.wikipedia.org/wiki/Ordinateur
https://fr.wikipedia.org/wiki/Parall%C3%A9lisme_(informatique)
https://fr.wikipedia.org/wiki/Jeu_d%27instructions_MMX
https://fr.wikipedia.org/wiki/Complex_instruction_set_computing
https://fr.wikipedia.org/wiki/1997
https://fr.wikipedia.org/wiki/Advanced_Micro_Devices
https://fr.wikipedia.org/wiki/X86
https://fr.wikipedia.org/wiki/3DNow!
https://fr.wikipedia.org/wiki/1999
https://fr.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://fr.wikipedia.org/wiki/Processeur_vectoriel
https://en.wikipedia.org/wiki/streams_processors
https://fr.wikipedia.org/w/index.php?title=Processeurs_de_flux&action=edit&redlink=1
https://fr.wikipedia.org/wiki/X86
https://fr.wikipedia.org/wiki/Jeu_d%27instructions_MMX
https://fr.wikipedia.org/wiki/3DNow!
https://fr.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://fr.wikipedia.org/wiki/Streaming_SIMD_Extension_2
https://fr.wikipedia.org/wiki/SSE3
https://fr.wikipedia.org/wiki/SSSE3
https://fr.wikipedia.org/wiki/SSE4
https://fr.wikipedia.org/wiki/Advanced_Vector_Extensions
http://www.fftw.org/

Improved Bootstrapping by FFT on Encrypted Multi Operands Homomorphic Addition

127

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.A31771011121
DOI: 10.35940/ijeat.A3177.1011121
Journal Website: www.ijeat.org

v. FFT processors.

To run the TFHE needs at least one of the processors listed
in the table below:

Table 1: FFT processors

Name License
Language
and
portability

Performance Website

NAYUKI MIT
C and
AVX

1 www.nayuki.io

SPQLIOS
Apache
2

AVX and
FMA

2 - 3

FFTW3 GPL
C and
FORTRAN

1 www.fftw.org

In terms of performance, the SPQLIOS processor performs
better than the other two. It reduces their execution times by
a factor of 2 or 3.

III. HOMOMORPHIC ENCRYPTION: TFHE.

The homomorphic encryption scheme is an encryption
scheme that manipulates encrypted data to produce a
corresponding result on plaintext messages. It is divided into
three categories that are partial, little and complete. The
partial homomorphic encryption scheme supports a single
operation such as addition [38] or multiplication [39] on the
encrypted data. They are not very useful in dealing with
arbitrary operations on encrypted data. The somewhat
homomorphic encryption scheme simultaneously supports
addition and multiplication operations of the encrypted data
but the number of operations is bounded once the threshold
is reached and decryption fails [8,13] The fully
homomorphic encryption scheme simultaneously supports
unlimited addition and multiplication operations on the
encrypted data. This property allows you to process any
function on encrypted data [12,9,27].
The FHE uses a Learning With Errors problem (LWE) [18]
where an error called noise is introduced to ensure safety
(18). This error increases after each operation especially
multiplication and causes invalid decryption after a number
of operations. Therefore, this error must be reduced to a
threshold to support an unlimited number of operations.
The refresh procedure is called bootstrapping [10,11]. It
brings an additional number of operations that makes the
algorithms inefficient [8]. Improvements have been made to
this procedure to make it effective. Processing of a logical
function on two encrypted messages corresponding to the
free bits is performed in less than a second [9] and in 13
milliseconds [27] respectively.

A. TFHE [28,29,30].

Torus Fully Homomorphic Encryption (TFHE) is a
homomorphic encryption scheme designed by Illaria

Chillota and all [28,29,30] that work on the torus 𝑇 = ℝ
ℤ⁄ ,

a set of real numbers modulo 1, as space for plaintext and
ciphertext. Ciphertexts are built under the LWE problem
[19,22] and represented as the Torus LWE where an error or
noise is added to each encrypted message.
For a given dimension 𝑚 ≥ 1, the secret key 𝑠 ⃗⃗ is drawn in
ℬ𝑚 𝑤𝑖𝑡ℎ ℬ = {0,1}, and the 𝑒 error is drawn in a
distribution 𝜒, a sample is defined as (𝑎 , 𝑏) where 𝑎 ∈
Τ such that 𝑎 is a vector of coefficients drawn from size

𝑚 and each element 𝑎𝑖 is drawn in a uniform distribution
under T and The 𝑏 = 𝑎 ∗ 𝑠 + 𝑒. The term 𝑒 in the sample
increases with the number of operations. Therefore,
bootstrapping is introduced to decrypt and re-encrypt the
encrypted message to remove unnecessary noise.
The space of plaintext in the TFHE is the bit represented by
the set ℬ = {0,1} and generates encrypted messages of the
LWE type under the torus. Thus, processing on plaintext
messages is comparable to processing on the bit. A binary
vector represents a number in ℕ or ℝ, the same is true of 𝑛
sample LWE of 𝑛 size represents a numerical number of
𝑛 size. In TFHE, the Boolean gates of the addition circuit
between two numbers correspond to the operations on LWE
samples. The motivation for choosing the TFHE is
summarized through the speed of its bootstrapping in 13
milliseconds, the acceptable size of the encrypted message
and the multitude of Boolean operations supported.
The implementation of TFHE comes with the standard
cryptography functions (key generation, encryption,
decryption) and also all the logic gates for performing
logical operations in ℬ. And its bootstrapping is improved
by using of the three FFT processors which are the FFTW3,
the NAYUKI project and the SPQLIOS.

B. Homomorphic arithmetic addition with TFHE [34,31].

The one-bit addition and multiplication operations are
defined in using the XOR and AND logic gates respectively.
These gates are the foundation for the implementation of
increasingly complex circuits.
This section presents an implementation of arithmetic
addition by composing the complete binary adder with the
AND and XOR gates. The adder circuit made it possible to
build the Carry Lookhead Adder (CLA)[31,34]. This
addition arithmetic operation will be performed on integers
with a size of 32 bits using one 32-bit block, two 16-bit
blocks, four 8-bit blocks, and eight 4-bit blocks,
respectively.

a. Adder.

The adder is a circuit that is made from two basic circuits
which are the half-adder and the complete adder. These are
used to make the CLAx adders where x is an integer
representing the size of the block.

i. Half adder.

The half-adder is a circuit that allows the calculation of the
sum 𝑠𝑖 and the carry 𝑐𝑖 when adding two bits 𝑎𝑖 and 𝑏𝑖, the
ith bit of a binary representation of 𝑎 and 𝑏 two integers of
32 bits.
𝑠𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 𝑒𝑡 𝑐𝑖 = 𝑎𝑖 ∗ 𝑏𝑖 where ⊕, ∗ represents
respectively the addition on a bit: XOR and the
multiplication on a bit: AND.

ii. Full adder.

A full adder is a circuit that allows the calculation of the ith
sum 𝑠𝑖 and the (i+1) th carry 𝑐𝑖+1 when adding two bits 𝑎𝑖
, 𝑏𝑖 and 𝑐𝑖 an input carry.

http://www.ijeat.org/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN : 2249-8958 (Online), Volume-11 Issue-1, October 2021

128

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.A31771011121
DOI: 10.35940/ijeat.A3177.1011121
Journal Website: www.ijeat.org

It includes half-adders and full adders. The difference is that
a half-adder does not accept a carry while the adder accepts
it.
The implementation can vary as long as the logical
expressions of different implementations are equivalent. In
[25], for example, the expressions of sum and carry can be
written as follows:

𝑐𝑖+1 = 𝑎𝑖 . 𝑏𝑖⨁𝑐𝑖 . (𝑎𝑖⨁𝑏𝑖)
𝑠𝑖 = 𝑎𝑖⨁𝑏𝑖⨁𝑐𝑖

The expression of withholding can be reduced as follows:
𝑐𝑖+1 = 𝑎𝑖 . 𝑏𝑖⨁𝑐𝑖 . (𝑎𝑖⨁𝑏𝑖) = (𝑎𝑖⨁𝑐𝑖). (𝑏𝑖⨁𝑐𝑖) ⊕ 𝑐𝑖

This optimized expression is found in [26]. It uses only for
each bit an AND gate, and therefore a complete adder of one
bit at a multiplicative depth that is equivalent to 1(𝐿 = 1) .

b. Carry Lookahead Adder.

 In a ripple carry architecture, the addition depends on the
propagation of carries through stages of the parallel adder
[34]. To reduce the propagation time and speed up the
addition process, it is possible to anticipate the output carry
of each stage and to produce, from the inputs, the carry by
generation or propagation. This technique is called "carry
anticipation".
carry generation occurs when a carry is generated by the full
adder. A carry can only occur when the two input bits are 1.
The generated carry is noted 𝑔𝑖 and is equal to 𝑔𝑖 = 𝑎𝑖 ∗ 𝑏𝑖.
A carry propagation is created when an input carry is passed
on to output carry. In a full adder, the propagation of an
input carry can occur when at least one of the bits is 1. The
propagated carry noted 𝑝𝑖 and is equivalent to 𝑝𝑖 = 𝑎𝑖⨁𝑏𝑖.
The output carry of full adder can be expressed as a
propagated carry 𝑝𝑖 or as a generated carry 𝑔𝑖. The noted
output carry 𝑐𝑖 is 1 if the generated output is 1 or if the
propagated output is 1 and the input carry (𝑐𝑖−1) is 1.
In other words, an output carry of 1 is generated by the full
adder if 𝑎𝑖 = 1 𝑒𝑡 𝑏𝑖 = 1 or by propagation of the additionor
of the input carry (𝑎𝑖 = 1 𝑜𝑢 𝑏𝑖 = 1) 𝑒𝑡 (𝑐𝑖−1 = 1). The
expression below summarizes all the cases: 𝑐𝑖 = 𝑔𝑖 +
 𝑝𝑖𝑐𝑖−1.
Let's illustrate this concept by applying to a thirty-two (32)
bit parallel adder with k-bits blocks. The stage 𝑖 produces an
output carry either by generating it or by propagating the
internal carry to the output carry. For each stage 𝑖, it
generates 𝑔𝑖 and propagates 𝑝𝑖 as follows:

- The column 𝑖 produces an output carry if the inputs 𝑎𝑖
and 𝑏𝑖 are equal to 1 binary: 𝑔𝑖 = 𝑎𝑖 ∗ 𝑏𝑖;

- The column 𝑖 propagates the internal carry to the
output carry if one of the inputs is equal to1: 𝑝𝑖 =
 𝑎𝑖 ⊕ 𝑏𝑖;

- The output carry of column 𝑖 is given by the following
expression:

𝑐𝑖 = 𝑎𝑖 ∗ 𝑏𝑖 ⊕ (𝑎𝑖 ⊕ 𝑏𝑖) ∗ 𝑐𝑖−1 = 𝑔𝑖⨁ 𝑝𝑖 𝑐𝑖−1.

The algorithm of the carry anticipation adder can be
described in the steps below:

- Step 1: calculate 𝑔𝑖 and 𝑝𝑖 for all columns for 𝑖 from 0
to 31;

- Step 2: calculate the 𝑔𝑘 and 𝑝𝑘 for each 𝑘 −block of
bits for k = 4, 8, 16;

- Step 3: The input carry 𝑐0 propagates through the bit
𝑘 −block by the functions of generating and
propagating the carry.

Example for a block of 4 bits (𝑝3:0 and 𝑔3:0):
𝑔3:0 = 𝑔3 + 𝑝3(𝑝2 + 𝑝2(𝑔1 + 𝑝1𝑔0)

𝑝3:0 = 𝑝3𝑝2𝑝1𝑝0
In general,

𝑔𝑖:𝑗 = 𝑔𝑖 + 𝑝𝑖(𝑔𝑖−1 + 𝑝𝑖−1(𝑔𝑖−2 + 𝑝𝑖−2𝑔𝑗))
𝑝𝑖:𝑗 = 𝑝𝑖𝑝𝑖−1𝑝𝑖−2𝑝𝑗

𝑐𝑖 = 𝑔𝑖:𝑗 + 𝑝𝑖:𝑗 𝑐𝑗−1
The complexity of the algorithm of the added or with Carry
Lookahead Adder respectively in time is 𝑂(𝑛 𝑙𝑜𝑔 𝑛). The
CLA of 𝑛 is faster than the Ripple Carry Adder which has a
complexity 𝑂(𝑛) in time and space of respectively.

IV. IMPLEMENTATION AND
INTERPRETATION OF RESULTS

The implementations were tested on an Intel® Core™ i7-
5500 CPU @ 2.40 Ghz laptop that has a 4096 kilobytes
cache, 1100 Mhz frequency clock and 8 Gigabyte RAM. It
supports the following features: MMX, SSE, SSE2, FMA,
SSE4_1, SSE4_2, AVX AND AVX2.

A. Default settings.

The default settings have been configured. They provide a
security setting of at least 110 bits that are based on the
difficult assumptions of the ideal lattices problem. The
logical homomorphic AND performs on two bits with a
secret key of 109 Megabytes and a bootstrapping key of the
same size provided the results for each FFT type in Table 2.
The FFT SPQLIOS configured with the AVX or FMA flag
provides better performance than other FFTs.

Table 2: Execution time of a two-bit AND operation.

Duration(
s)

FFTW
3

NAYUKI
-

PORTAB
E

NAYUK
I-AVX

SPQLIO
S-AVX

SPQLIO
S-FMA

AND 0.3 0.2 0.1 0.024 0.03

B. Performance and interpretation of results.

Table 3, the column represents the type of FFT used during
the experiment and the row when it the CLAx where x
represents the block size. The intersection between the row
and the column represents the duration of the execution of
an addition operation on ten numbers of 32-bits respectively.

Table 3: Performance of CLAx adders.

Duration(
s)

FFTW
3

NAYUKI
-

PORTAB
E

NAYUK
I-AVX

SPQLIO
S-AVX

SPQLIO
S-FMA

CLA32 443 288.2 142.5 33.5 32.2
CLA16 440 284.6 141.6 32.1 31.8
CLA8 440 284.3 141.2 31.9 31.6
CLA4 438 282.6 141.0 31.6 31.3

Ten 32-bit numbers occupy a space of 320 bits on disk or
about 40 Bytes. These numbers are encrypted in a file with a
size of 795 Kilo-Bytes.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/

Improved Bootstrapping by FFT on Encrypted Multi Operands Homomorphic Addition

129

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.A31771011121
DOI: 10.35940/ijeat.A3177.1011121
Journal Website: www.ijeat.org

 The expansion between the encrypted message and the
plaintext message is very high by19 875. From the table 2,
the FFT SPQLIOS reduces the execution time of the FFT
NAYUKI-AVX by 343%. While the FFT FFTW3 provides
poor performance even compared to the default FFT which
is the FFT NAYUKI-PORTABLE, it increases its execution
time by 35%. The size of the chosen block in the operation
improves performance in a very small proportion. It is of the
order on average of less than 1% for all FFTs used.

V. CONCLUSION

TFHE performs a homomorphic AND logical operation on
two bits in thirteen milliseconds using bootstrapping by
taking advantage of the implementation of the Discrete
Fourier Transform called the Fast Fourier Transform.
The different implementations of the Fast Fourier Transform
have made it possible to build a homomorphic addition
circuit of 10 numbers of 32 bits with 9 carry lookahead
adders that gives a result in 35 seconds with SPQLIOS
configured with AVX or FMA instructions. In our
configuration, the FFTW3 did not yield results to
corroborate the assumptions against NAYUKI.
To further improve, other Fast Fourier Transform
implementations such as IPP and OTFFT must be
configured to evaluate their performance with TFHE with
the same circuit or others. Another way to be explored is
shared memory or distributed memory parallelism coupled
with native MPI or OpenMP instructions from different Fast
Fourier Transform implementations.

REFERENCES

1. [Bra12] Brakerski Z.: Fully homomorphic encryption without
modulus switching from classical GapSVP. In: Safavi-Naini R.,
Canetti R., (eds) CRYPTO 2012, LNCS, vol. 7417, pp. 868-886.
Springer, Berlin (2012);

2. [BGV12] Brakerski Z., Gentry C., Vaikuntanathan V., (Leveled) fully
Homomorphic encryption without bootstrapping. In: Goldwasser, S.
(ed) ITCS 2012, pp. 309–325. ACM, New York (2012);

3. [BV11] Brakerski Z., Vaikuntanathan V., Fully encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed)
CRYPTO 2011, CNSL, vol. 6841, pp. 505–524. Springer, Berlin
(2011);

4. [AoM15] Chen, Y., Gong, G.: Integer arithmetic over ciphertext and
homomorphic data aggregation. In: Proceedings of 2015 IEEE
Conference on Communications and Network Security, pp. 628–632.
IEEE, Piscataway, NJ (2015);

5. [CJWY15] Chen X., Jingwei C., Wenyuan W., Yong F.:
Homomorphically Encrypted Arithmetic Operations over Integer
Ring.;

6. [CCKLTY13] Cheon J.H., Coron J.S., Kim J., Lee M.S., Lepoint T.,
Tibouchi M., Yun A.: Batch fully Homomorphic encryption over
integers. In: Johanson, T. Nguyen, P.Q. (eds) EUROCRYPT 2013,
LNCS, vol 7881, pp. 315–335. Springer, Berlin 2013;

7. [CMNT11] Coron J.S., Mandal A., Naccache D, Tibouchi M., : Fully
homomorphic encryption over the integers with shorter public keys.
In: Rogaway, P. (ed) CRYPTO 2011, LNCS, vol 6841, pp. 487–504.
Springer, Berlin 2011;

8. [DGHV10] Van Dijk M., Gentry C., Halevi S., Vaikuntanathan V.:
Fully Homomorphic encryption over the integers. In: Gilbert, H. (ed)
EUROCRYPT 2010, LNCS, vol 6110, pp. 24–43, Springer, Berlin
(2010);

9. [DM15] Léo Ducas and Daniele Micciancio. "FHEW: Bootstrapping
Homomorphic Encryption in Less Than a Second". In: EUROCRYPT
2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056.
CNSL. Springer, Heidelberg, Apr. 2015, pp. 617–640. doi:
10.1007/978-3-662-46800-5_24;

10. [Gen09a] Gentry C.,: A Fully Homomorphic Encryption Scheme.
PhD, thesis, Stanford University, Stanford (2009);

11. [Gen09b] Gentry C.: fully Homomorphic encryption using ideal
lattices. In: Mitzenmacher M. (ed) SOC 2009, pp. 169–178. ACM,
New York (2009);

12. [GHS12] Gentry C., Halevi S., Smart N.P.: Fully Homomorphic
encryption with polylog overhead. In: Pointcheval D., Johansson T.
(eds) EUROCRYPT 2012, LNCS, vol. 7237, pp. 465482. Springer,
Berlin (2012);

13. [GSW13] Genty C., Sahai A., Waters B.: Homomorphic encryption
from learning with errors: Conceptually – simpler, asymptotically-
faster, attribute-based. In: Canetti R., Garay J.A., (eds) CRYPT 2013,
Part I, LNCS, vol 8042, pp. 75–92, Springer, Berlin (2013);

14. [GSH12] Gentry C., Halevi S., Smart N.P.: Fully Homomorphic
Encryption with polylog overhead. In: pointcheval, D., Johanson, T.
(eds) EUROCRYPT 2012, LNCS, vol. 7237, pp. 465–482. Springer,
Berlin (2012);

15. [HS16] Halevi S., Shoup V., : Helib : An Implementation of
Homomorphic encryption https://github.com/shaih/Helib, accessed in
June 2016;

16. [KSS09] Kolesnikov, V., Sadeghi, A.R. Scheinder, T.: Improved
garbled circuit building blocks and application to auctions and
computing minima. In:

17. Garay, J.A., Miyaji, A, Otsuka, A. (eds) CANS 2009, CNSL, vol.
5888, pp. 1–20. Springer Berlin (2009);

18. [RSL10] Lyubashevsky, V., Peiker, C., Regev, O, : On ideal lattices
and learning with errors over rings. In: Gilbert, H, (ed) EUROCRYPT
2010, LNCS, vol. 6110, pp1–23. Springer, Berlin (2010);

19. [Reg05] Regev O.: On lattices, learning with errors, random linear
codes, and cryptography. In: Gabow, H.N.., Fagin, R. (eds) STOC
2005, pp. 84–93. ACM, New York (2005);

20. [Shoup16] Shoup V., NTL: A library for doing number theory.
http://shoup.net/ntl/, accessed in June, 2016;

21. [SV14] Smart N. P., Vercauteren F.,: Fully Homomorphic SIMD
operations. Designs, Codes and Cryptography 71(1), 57-81 (2014);

22. [LP10] V. lyubashevsky, C. Peikert, and O. Regev. On ideal lattices
and Learning With errors over Rings. JACM, 60(6):43, 2013;

23. [AP14] J. Alperin-Sheriff and C. Peikert, "Faster Bootstrapping with
polynomial erros" in Proceedings of the international Cryptology
Conferences, pp. 297-314, Springer, Berlin, Germany, 2014;

24. [RAD78] Ron Rivest, Leonard Adleman, and Michael L. Detrouzos.
On data banks and privacy homomorphisms. In foundations of secure
computations, pp. 169-180, 1978;

25. [YG15] Chen, Y., Gong, G.: Integer arithmetic over ciphertext and
homomorphic data aggregation. In: Proceedings of 2015 IEEE
Conference on Communications and Network Security, pp. 628–632.
IEEE, Piscataway, NJ (2015);

26. [KSS09] Kolesnikov, V., Sadeghi, A.R. Scheinder, T.: Improved
garbled circuit building blocks and application to auctions and
computing minima. In: Garay, J.A., Miyaji, A, Otsuka, A. (eds)
CANS 2009, CNSL, vol. 5888, pp. 1–20. Springer Berlin (2009);

27. [CGGI16a] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.
TFHE: Fast Fully Homomorphic Encryption Library over the Torus.
https://github. com /tfhe/tfhe. 2016;

28. [CGGI16b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and
Malika Izabachène. "Faster Fully Homomorphic Encryption:
Bootstrapping in Less Than 0.1 Seconds". In: ASIACRYPT 2016,
Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10031.
CNSL. Springer, Heidelberg, Dec. 2016, pp. 3–33. doi: 10.1007/978-
3-662-53887-6_1;

29. [CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and
Malika Izabachène. "Faster Packed Homomorphic Operations and
Efficient Circuit Bootstrapping for TFHE". In: ASIACRYPT 2017,
Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624.
CNSL. Springer, Heidelberg, Dec. 2017, pp. 377–408;

30. [Reg05] Oded Regev. "On lattices, learning with errors, random linear
codes, and cryptography". In: 37th ACM STOC. Ed. by Harold N.
Gabow and Ronald Fagin. ACM Press, May 2005, pp. 84–93;

31. [ZIMMERMANN] Binary Adder Architectures for Cell-Based VLSI
and their Synthesis. PhD Thesis Swiss FederaI lnstitute of
Technology Zurich 1998.

32. [YKJH15] Young-so Park, Koo-Rack Park, Jin-Mook Kim, Hwa-
Young Jeong Fast Fourier transform benchmark on X86 Xeon
system for multimedia data processing, Springer Science+Business
Media new York 2015.

33. [Kassem] Kassam Kalach, Implementation de la multiplication de
grands nombres par FFT dans le context des algorithms
cryptographiques, Université de Montréal, 2005.

http://www.ijeat.org/
https://github.com/shaih/Helib
http://shoup.net/ntl/

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN : 2249-8958 (Online), Volume-11 Issue-1, October 2021

130

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijeat.A31771011121
DOI: 10.35940/ijeat.A3177.1011121
Journal Website: www.ijeat.org

34. [BNM21] Paulin Boale Bomolo,Simon Ntumba Badibanga,Eugene
Mbuyi Mukendi, Performance of Adder Architectures on Encrypted
Integers, JEAT, volume-10- Isuue-6, August 2021.

35. [MS] Matteo frigo, Steven G. Johnson, FFTW user's manual,
www.fftw.org, forversion 3.3.10, December 10th, 2010.

36. Project NAYUKI, www.nayuki.io.
37. [Lomont] Chris Lomont, Introduction to Intel Advanced Vector

Extensions, https://hpc.llnl.gov,March 2011.

AUTHORS PROFILE

Paulin BOALE B. is senior lecturer and PhD Student
at university of Kinshasa in Mathematics and
Computers sciences department. his field of research is
cryptography, in particular homomorphic cryptography.
he works to improve algorithms in everyday
applications. he contributed to the publication of
articles respectively in the journal IJCSI and IJSR such

as « Study of Master-Slave Database replication in distributed database »,
IJCSI, 2011.

Simon NTUMBA B. is professor and head of
Mathematic and computers sciences department of the
University of Kinshasa. As publications, Author of
many publications, such as: "Enhanced Parallel
Skyline on multi-core architecture with lax Memory
space Cost", IJCSI, volume 13, Issue 5, September

2016, Data mart approach for stock management model with a calendar
under budgetary constraint, IJCSI, volume 15, Issue 5, September 2018,
Poster et the 2nd International conference on Big Data Analysis and Data
Mining, San Antonio, USA, 30 november- 01 December 2015 "; Data Mart
Approach for Stock Management Model with a calendar Under Budgetary
constraint, IJCSI, volume 15, Issue 5, September 2016,

Eugene MBUYI M. is professor at the Mathematic
and Computers Sciences department of the University
of Kinshasa. Director of informatics laboratory of the
faculty of sciences at the university of Kinshasa. He is
author of many articles in many scientific journals like
in IJCSI. Poster et the 2nd International conference on

Big Data Analysis and Data Mining, San Antonio, USA, 30 november- 01
December 2015.

https://www.openaccess.nl/en/open-publications
http://www.ijeat.org/
http://www.fftw.org/
http://www.nayuki.io/
https://hpc.llnl.gov/

