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Abstract: The classification and recognition of foliar diseases is an increasingly developing field1

of research, where the concepts of machine and deep learning intervene to support agricultural2

stakeholders. Datasets are the fuel for the development of these technologies. In this paper, we3

release publicly available the field-dataset collected to diagnose and monitor plants symptoms, called4

DiaMOS Plant, consisting of 3505 images of pear fruit and leaves affected by four diseases. In addition,5

we perform a comparative analysis of existing literature datasets designed for the classification and6

recognition of leaf diseases, highlighting the main features that maximize the value and information7

content of the collected data. This study provides guidelines that will be useful to the research8

community on data set selection and construction.9

Keywords: Plant Disease Prediction; Classification; Detection; Dataset; Survey; Machine learning;10

Deep Learning;11

1. Introduction12

Direct visual analysis of the leaves provides valuable information on plant health. Leaf symptoms13

are the first warning signs of many diseases, infections, parasites and deficiencies that occur during the14

development and life cycle of the plant. Biotic and abiotic stresses represent the main factors limiting15

agricultural productivity, such as to cause huge production losses.16

An economic-environmental issue that is attracting increasing attention, becoming a hotspot in17

research [1], due to intensifying pressure from climate change and an estimated increase in world18

population of 70% by 2050 that will grow food demand [2]. A challenge that finds a solution in19

innovation and the development of sustainable cultivation practices that make efficient use of available20

resources.21

The promotion of qualitatively and quantitatively sustainable actions is made possible by the22

adoption of recent information and communication technologies, the so-called ICT. The use of23

proximity sensors is driving the entry into the field of operational IT tools capable of assisting the24

farmer in cultivation practices. Mobile and robotic applications are the enabling solutions for the25

digital innovation process needed to safeguard the planet by assisting in monitoring and treatment26

operations. The integration of Artificial Intelligence [3] [4] in these systems is indispensable to support27

the operator in making informed and thoughtful decisions on the real state of the vigour of the plant.28

These tools are able to support stakeholders in both early prediction and diagnosis by recognizing29

symptoms visible to the naked eye. In the first task, the models are categorized into three categories [1]:30

(i) forecast model based on weather data; (ii) forecast models based on image processing; (iii) forecast31
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models based on distinct types of data coming from various heterogeneous sources. The second task,32

diagnosis is mainly performed by processing RGB, multispectral or remote sensing images. In this33

context, Computer Vision [5] finds a relevant application, which by using appropriate networks trained34

on image samples, can detect, recognise and identify situations of crop risk and identify the various35

stages of fruit growth, useful for mechanical harvesting. Recent literature is addressing the problem36

with training single-output or multi-output convolutional neural networks [5], an approach known as37

Multitask learning.38

The accuracy and reliability of integrated artificial intelligence systems is highly influenced by the39

representativeness and completeness of the dataset used in training the algorithm. The development40

of intelligent neural networks needs large quantities of data to be able to learn, from known examples,41

the essential knowledge to obtain a greater generalizability of the model. However, the realisation of a42

dataset, is not a simple and immediate task, due to the efforts and costs required that range from the43

acquisition, annotation and categorisation of the images, which often must be carried out by different44

professional figures expert in the sector. The availability of datasets in Digital Agriculture (DA) has45

become a well-known problem in the literature, slowing down scientific progress [6].46

In recent years, several efforts have been made in data collection. Several datasets have been47

introduced. The best known in this field is PlantVillage [7], consisting of 54,000 images, portrayed on48

the ventral side of the leaf, on a homogeneous background. However,as observed by the literature [8]49

these configurations are not sufficiently representative for the objectives of the final application. The50

datasets created under controlled conditions, i.e. depicting the leaf on a homogeneous background, do51

not realistically reproduce the possible environmental conditions in which the model will operate.52

In this context, the contribution of this paper is articulated on two levels. We introduce a new53

dataset in the literature for the diagnosis and monitoring of plant symptoms, called DiaMOS Plant.54

It is a dataset collected under realistic field conditions, composed of 3505 images depicting 4 leaf55

stresses and 3 stages of fruit development, such as fruit set, growth and ripening. We conduct a survey56

dedicated to public image datasets built for the classification and identification of leaf diseases. We57

focus on datasets released in open format on data sharing platforms. Therefore, we do not deal with58

datasets released under request to authors. The development and release of publicly available datasets59

has a twofold advantage. It allows researchers to save time and resources, and devote more effort to60

objective evaluation and comparison of algorithms. A research work was conducted for various tasks61

related to computer vision in the context of precision agriculture [9]. This survey seeks to cover the62

lack of a complete description for this particular sub-field. We believe that this survey would be a63

useful resource in guiding insightful selection of datasets for future research.64

The rest of the paper is organised as follows. Section II describes the proposed DiaMOS Plant65

dataset and summarizes the characteristics of the publicly available image datasets. Section III provides66

a comparative analysis of the examined datasets. Section IV, provides some recommendations on67

requirements for future creation of datasets and a brief conclusion is drawn.68

2. DiaMOS Plant dataset69

In this section we describe in detail the proposed dataset.70

Description. In this work, we introduce a field dataset to diagnose and monitor plants’ symptoms71

called DiaMOS Plant, an extended dataset analyzed in [5]. DiaMOS Plant is a pilot dataset contains72

images of an entire growing season of pear tree, from February to July, in order to build a representative73

sample which, cover the main cultural aspects of this plant. The dataset is suitable to perform machine74

and deep learning methods in classification and detection tasks. A total of 3505 images were collected,75

including 499 fruit images and 3006 leaves images, respectively. The fruit is portrayed in the following76

4 phases: fruit set, nut fruit, fruit growth, ripening. Similarly, biotic and abiotic stresses fall into 477

categories: leaf spot, leaf curl, slug damage, and healthy leaf. A detailed summary is provided in78

Tables 1, 2.79
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DiaMOS Plant Dataset
Plant Pear
Cultivar Septoria Piricola
Data Source Location Sardegna, Italy
Type of data RGB Images
Annotation csv, YOLO
ROI (Region of Interest) captured leaf, fruit
Total size 3505 images ( 3006 leaves images + 499 fruit images)
Data Accessibility Direct URL to data: https://doi.org/10.5281/zenodo.5557313
Application The images are suitable for different machine and deep learning tasks

such as images detection and classification.
Table 1. Dataset Descirption.

Leaves images Leaf Symptoms Size
Healthy 43
Spot 884
Curl 54
Slug 2025
Severity Levels Size
0 43
1 682
2 1139
3 699
4 389

Table 2. DiaMOSP Plant is a collection of 3505 images of fruits and leaves. The table illustrates the
distribution of classes belonging to the leaf images.

Smartphone camera DSRL camera
Image size 2976 X 3968 3456 X 5184
Model device Honor 6X Canon EOS 60D
Focal length 3,83 mm 50 mm
Focal ratio f/2,2 f/4,5
Color space RGB RGB

Table 3. Acquisition device configurations.

Figure 1. On the first row, from left to the right, images of pear leaves captured under different light
conditions: indirect sunlight, direct sunlight, strong sunlight reflection, distributed light. On the second
row, images of pear fruit in different stages of growth.

https://doi.org/10.5281/zenodo.5557313
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The images belong to three trees have available from the same plot located in Italy. Pictures80

were gathered using different devices including a smartphone (Honor 6x) and DSRL camera (Canon81

EOS 60D), thus the images present two type of resolutions, 2976 X 3968 and 3456 X5184 respectively.82

Table 3 reports the set-up of each device. We employed two different devices because more people83

were involved in collecting data, and it was not feasible have the same devices. Furthermore, the84

different resolution increases the complexity of the dataset and represents an added value to it. The85

choice of using multiple devices is a widely used approach in this field of literature as it allows to86

provide heterogeneous and representative inputs to the models. In the real scenario, agricultural87

and non-agricultural operators have a smartphone that differs in different technical characteristics,88

including resolution.89

The leaves were captured from the adaxial (upper) side of the leaf, in a real-life scenario where90

they were shot in various lighting (cloudy, sunny and windy days), angles, backgrounds (other plants91

and weeds) and noise conditions, at different times of the day throughout the entire growing season.92

This acquisition protocol has made it possible to obtain numerous advantages, such as: (i) capturing93

leaves under realistic lighting conditions that can be classified as: (a) indirect sunlight, (b) direct94

sunlight, (c) strong reflection (d) evenly distributed light (see Fig. 1); (ii) capturing the evolution of95

visual symptoms; (iii) capturing the fruit from the fruit set phase to the ripening phase.96

The disease recognition process for dataset labeling was assisted by an expert. The dataset was97

annotated manually using the LabelImg software 1. Each original image of the entire leaf is labeled98

with the predominant disease. For healthy, leaf spot and slug damage classes, a severity level is99

assigned, where each level is set according to the percent of affected leaf area. The stress severity was100

calculated identifying five classes expressed as no risk (0%), very low (1–5%), low (6–20%), medium101

(21–25%), and high (>50%) in a range from 0 to 4 (see Table 2. The annotated labels are released in a102

csv format, while the bounding boxes are released in YOLO format. The dataset is freely available for103

academic purposes from a repository at https://doi.org/10.5281/zenodo.5557313 where the folder104

has the following structure:105

DiaMOS Plant

description

pear

annotation

csv

YOLO

leaves

spot

curl

slug

healthy

fruits106

• Description: it contains the data description;107

• Pear: it contains the data related pear tree;108

• Annotation: It contains the annotation files;109

• Leaves: it contains the leaves images;110

1 Tzutalin. LabelImg. Git code (2015). https://github.com/tzutalin/labelImg

https://doi.org/10.5281/zenodo.5557313
https://github.com/tzutalin/labelImg
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• Fruits: it contains the fruit images.111

News of dataset updates will be posted on the following site https://francescamalloci.com/category/112

projects/, as we will plan to continue to extend the dataset with additional fruit plants.113

Benchmark dataset. In this section we provide a benchmark dataset, with the aim of providing a114

baseline for the classification task. In this regard, we compared the performances of five well-known115

convolutional neural network architectures, such as VGG19, ResNet50, InceptionV3, MobileNetV2,116

EfficientNetB0, as they are widely adopted in different classification tasks and have shown good117

generalization skills in the literature under review.118

The experiment described here was conducted with the LeafBox toolbox developed and released119

in an open format, more purely for educational purposes and intended to facilitate the reproduction120

of our results and further research in this direction. It can be reached at the following link: https:121

//github.com/mallociFrancesca/leaf-disease-toolbox.git. The experimental framework written in122

Python language exploits the Keras deep learning 2.4.3 library based on TensorFlow 2.2.1 environment,123

executed on a server machine with a 3.000GHz Intel® Xeon® Gold, and 64 Gb of memory [5], .124

The classification task involved four ground truths, such as "healthy", "slug", "curl", "spot". The125

dataset was divided into training, validation, and test datasets with a ratio of 7:2:1, respectively. To126

preserve the percentage of samples for each class, the dataset is split using the ShuffleSplit strategy127

provided by scikit-learn 0.23.2 library. All images were resized to 224x224x3. In the training phase,128

to better manage the unbalance of the classes and minimize overfitting situations, the augmentation129

technique was applied, including horizontal and vertical mirroring, rotation, and color variation. To130

avoid a long training time, the transfer learning method is applied. The training was performed131

by adapting CNN networks trained using ImageNet dataset [10], with a cross-entropy function.132

Furthermore, we monitored the model’s validation loss to reduce the learning rate when it has stopped133

improving, to get out the Plateau phenomenon. A learning-rate of 2e-5, and a Momentum of 0.9, were134

set. The settings were identified by carrying out various tests, and on the basis of the results, those135

were chosen that allow to obtain models that are more robust and less affected by overfitting problems.136

The test was repeated twice, to record the model’s performance with the RMSprop optimizer and the137

Adam optimizer.138

Figure 2 and Table 4 report training, validation and test accuracy obtained with RMSprop139

optimizer; while Figure 3 and Table 5 report the results achieved with the Adam optimizer.140

Comparing Tables 4, and 5 we observe similar performances for both optimizers, but there is a141

slight improvement with the Adam optimizer. However, this improvement is at the expense of the142

robustness of the results. Indeed, comparing the accuracy obtained in the three data sets, there is a143

more marked gap in the latter.144

In general, it can be seen that the three networks EfficientNetB0, InceptionV3, and MobileNetV2145

have a better generalization capacity than the VGG19 and ResNet50 networks. In fact, with reference146

to Table 4, EfficientNetB0, InceptionV3 and MobileNetV2 obtained an accuracy for the test set of 83.38147

%, 82.72 %, 83.06 % respectively, while ResNet50 of 56.67 %, and VGG19 of 71.76 %. Comparing the148

scores recorded between the training, validation and test set, it is not excluded that the models may149

suffer from a slight overfitting bias. All things being equal, MobileNetV2 tends to converge faster. In150

Figure 5 and Table 5, the Precision, the Recall and the F1-score obtained in the test set are reported.151

Also in this case the f1-score ratio does not show notable differences in performance, reporting a high152

value for EfficientNetB0, InceptionV3, and MobileNetV2.153

https://francescamalloci.com/category/projects/
https://francescamalloci.com/category/projects/
https://francescamalloci.com/category/projects/
https://github.com/mallociFrancesca/leaf-disease-toolbox.git
https://github.com/mallociFrancesca/leaf-disease-toolbox.git
https://github.com/mallociFrancesca/leaf-disease-toolbox.git
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RMSprop

CNN Train
Acc(%)

Validation
Acc (%)

Test
Acc (%)

EfficientNetB0 81.13 82.82 83.38
InceptionV3 81.96 79.66 82.72
MobileNetV2 85.38 81.12 83.06
ResNet50 68.49 67.16 68.44
VGG19 72.42 71.68 73.75

Figure 2 & Table 4. Accuracy obtained with RMSprop optimizer respectively in the training set,
validation set and test set in the task of classifying the "healthy", "slug", "curl", "spot" classes.

Adam

CNN Train
Acc(%)

Validation
Acc (%)

Test
Acc (%)

EfficientNetB0 89.02 86.33 86.05
InceptionV3 84.44 80.29 83.39
MobileNetV2 87.70 83.83 84.05
ResNet50 68.38 68.47 69.10
VGG19 76.66 76.53 75.75

Figure 3 & Table 5. Accuracy obtained with Adam optimizer respectively in the training set, validation
set and test set in the task of classifying the "healthy", "slug", "curl", "spot" classes.
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RMSprop

CNN Precision
(%)

Recall
(%)

F1-score
(%)

EfficientNetB0 81.14 83.38 82.23
InceptionV3 80.21 82.72 81.45
MobileNetV2 81.35 83.05 82.07
ResNet50 68.27 68.43 56.67
VGG19 70.47 73.75 71.76

Figure 4 & Table 6. Precision, Recall, and F1-score reported with RMSprop optimizer on test set in the
task of classifying the "healthy", "slug", "curl", "spot" classes.

Adam

CNN Precision
(%)

Recall
(%)

F1-score
(%)

EfficientNetB0 84.42 86.04 85.03
InceptionV3 81.14 83.38 82.23
MobileNetV2 82.37 84.05 83.06
ResNet50 66.38 69.10 59.51
VGG19 72.71 75.74 74.05

Figure 5 & Table 7. Precision, Recall, and F1-score reported with Adam optimizer on test set in the
task of classifying the "healthy", "slug", "curl", "spot" classes.
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3. Open-Dataset for plant disease classification and detection154

In this section we provide a brief description of the datasets presents in the literature.155

3.1. RoCoLe dataset156

RoCoLe is the acronymous of Robusta Coffee Leaf images dataset [11], containing 1560 leaf157

pictures divided into six classes: healthy, red spider mite presence, rust level 1, rust level 2, rust level158

3 and rust level 4. The photos were captured from the adaxial (upper) and abaxial (lower) leaf side,159

under a natural uncontrolled environment, using a smartphone camera at a working distance of 200160

and 300 mm without zoom. In addition, the dataset includes annotations regarding segmentation161

object, processed with the web-tool called Labelbox.162

3.2. BRACOL dataset163

BRACOL is a brazilian arabica coffee leaf images dataset to identification and quantification164

of coffee diseases and pests [12]. it contains 1747 images of arabica coffee leaves affected by the165

following biotic stresses: leaf miner, leaf rust, brown leaf spot, and cercospora leaf spot. The images166

were collected at different times of the year in Santa Maria of Marechal Floreano in the mountains167

regions of the state of Espirito Santo, Brazil. Obtained using five different smartphones the leaves were168

depicted from the abaxial (lower) side under partially controlled conditions and placed on a white169

background. The acquisition of the images was done without much criterion to make the dataset more170

heterogeneous. The process of biotic stresses recognition for dataset labeling was assisted by an expert.171

3.3. Rice Leaf Disease dataset172

The Rice Leaf dataset [13] consist of 120 images collected from a village called Shertha near173

Gandhinagar, Gujarat, India, captured with a white background using a Nikon D90 digital SRL camera174

with 12.3 megapixels in November 2015. The authors collected leaves having varying degree of disease175

spread, where all images have a resolution of 2848 x 4288 pixels.176

3.4. Plant Pathology dataset177

The Plant Pathology dataset [14] is a collection of 3651 RGB images of multiple apple foliar178

disease symptoms captured during the 2019 growing season from commercially grown cultivars in179

an unsprayed apple orchard at Cornell AgriTech (Geneva, New York, USA). Of the 3651 RGB images,180

there are 1200 of apple scab, 1399 of cedar apple rust, 187 of complex disease symptoms (i.e., more181

than one disease on the same leaf), and 865 of healthy leaves. Photos were taken using a Canon Rebel182

T5i DSLR and smartphones under various illumination, angle, surface, and noise conditions, directly183

from the field. The dataset was manually annotated into three classes: cedar apple rust, apple scab,184

multiple diseases, and healthy leaves. An expert plant pathologist confirmed the annotations.185

3.5. Citrus dataset186

The Citrus dataset [15] contain 759 images of healthy and unhealthy citrus fruits and leaves,187

manually acquired using a DSLR with the help of a domain expert. The infected images are classified188

into 4 different diseases of citrus fruits and leaves separately. The diseases present in the datasets are189

black spot, canker, scab, greening, and melanose. All images are resized to the dimension of 256*256190

with 72 dpi resolution. The fruit images were collected directly from the plant, while leaves images191

were acquired under laboratory condition, with an homogeneous gray background.192

3.6. APDA dataset193

The APDA dataset [16] collected by Tea Research Institute, Mansehra, contains 40 images,194

divided into healthly and unhealthily. The diseased subset contains samples of two types of diseases:195
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anthracnose and black spots. Acquired with a Nikon camera D90, the leaves are depicted in indoor196

lighting, maintaining a constant distance of the object from the lens of approximately 9-12 inches.197

3.7. PlantVillage dataset198

The Plant Village is an image-based dataset of 54,309 samples in which foliar diseases are199

portrayed on the ventral side of the leaf, on a homogeneous background (black or gray). For each leaf,200

the authors took 4-7 images with a standard point and shoot camera Sony DSC - Rx100/13 with 20.2201

megapixels, using the automatic mode. The images span 14 crop species: Apple, Blueberry, Cherry,202

Corn, Grape, Orange, Peach, Bell Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, Tomato. In203

containes images of 17 fungal diseases, 4 bacterial diseases, 2 mold (oomycete) diseases, 2 viral disease,204

and 1 disease caused by a mite. 12 crop species also have images of healthy leaves that are not visibly205

affected by a disease.206

4. Comparative Analysis207

In this section we provide a comparative analysis of the examined datasets, including the proposed208

DiaMOS Plant dataset, organized into three sections: (i) dataset acquisition; (ii) symptoms and diseases;209

(iii) technical dataset settings. A summary scheme is shown in the Table 8.210

4.1. Dataset Acquisistion211

The place and mode of dataset acquisition influences how the algorithms learn and make212

predictions. The 62% of the datasets were collected under controlled conditions, using a mobile phone213

camera or DSRL camera. The remainder acquired the images directly in the field. The acquisition214

protocol followed by the laboratory datasets, in some studies was not characterised by certain criteria,215

in others it kept constant both the distance of the object of interest from the camera and the lighting216

conditions, portraying the leaf in the centre of the frame on a homogeneous background, mainly white.217

With regard to the field datasets, the common goal was to maximise variability by adopting218

different techniques. Several acquisition tools were used. The leaf portrayed directly on the plant219

was acquired several times with different angles and illumination scenarios. The majority of cases,220

portrayed the leaf on the upper side, also called adaxial. Two exceptions are represented by BRACOL221

and RoCole, where RoCole portrayed both sides of the leaf (abaxial and adaxial) while BRACOL only222

portrayed the abaxial.223

4.2. Symptoms and Diseases224

In the plant world, there are many different stressful events that can give rise to the same or225

very similar visual symptoms. These events can also overlap and follow each other, making it even226

more complicated to arrive at an accurate and reliable diagnosis of the plant’s condition [1]. Some227

researchers have taken into account the temporal variability in the evolution of the symptom from228

the first to the last stage. During a growing season, symptoms show different morphology, texture229

and colouration depending on the extent of the damage. For this purpose, DiaMOS Plant collected230

images at different times of the day for an entire growing season. This approach was also followed for231

the Plant Pathology dataset, which further enriched the dataset by annotating the presence of several232

diseases on the same leaf surface. Finally, DiaMOS Plant, BRACOL and RoCole labelled four levels of233

severity, useful to train models able to recognise the disease at different stages.234

4.3. Technical Dataset Settings235

Having a large dataset greatly affects the performance of machine and deep learning models. The236

datasets in this field are all small-scale datasets in terms of image number. Figure 6 shows the graphical237

distribution of the examined datasets according to size. PlantVillage is a large-scale dataset. However,238

certain classes contain few instances. As shown in Table 8, the RGB format was adopted by all studies,239
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and the acquisition approach involved the camera of a smartphone or DSRL. No datasets made use240

of drones. The acquired images can be used for the classification task, as they are appropriately241

annotated with labels. DiaMOS Plant, RoCole and BRACOL also feature bounding-box annotation,242

which allows the datasets to be used for the detection task right from the start. The most commonly243

used annotation format is csv. Finally, the data sharing methods were different. The prevailing244

methodology used external services. According to Lu and Young [9], this good practice allows to245

guarantee data availability over time.246

Figure 6. Graphical size distribution of the examined datasets.

Dataset On-line Repository
DiaMOSPlant https://doi.org/10.5281/zenodo.5557313
BRACOL [12] https://data.mendeley.com/datasets/yy2k5y8mxg/1
RoCoLe [11] https://data.mendeley.com/datasets/c5yvn32dzg/2
Plant Pathology [14] https://www.kaggle.com/c/plant-pathology-2020-fgvc7
Rice Leaf Diseases [13] https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases
Citrus [15] https://data.mendeley.com/datasets/3f83gxmv57/2
APDA [16] https://it.mathworks.com/matlabcentral/fileexchange/55098
PlantVillage [7] https://github.com/spMohanty/PlantVillage-Dataset

Table 9. Public image datasets with the related on-line repository.

5. Discussion247

This analysis suggests that the most widely adopted image acquisition set up in the state-of-the-art248

is based on collected data under controlled, laboratory conditions. The analysis of current datasets249

have revealed some limitations including size, rappresentativeness, completness.250

• Dataset size: the most limitations of current dataset is the small number of disease classes and251

samples size. Even our proposed dataset DiaMOS Plant, contains few samples for "healthy" class.252

Inevitably, a strong imbalance of classes leads to the model not generalising well in practical253

applications. This confirms and demonstrates, in agreement with Lu and Young [9], although254

the need for larger datasets is recognised, this task is challenging due to the manual effort and255

cost required, which in some cases is further exacerbated as very few occurrences in the field can256

occur for some classes. A technical problem that can be mitigated by data augmentation, transfer257

learning, and fine tuning techniques;258

• Representativeness: The most widely adopted acquisition protocol is based on data collection259

under controlled, laboratory conditions. The representativeness of the dataset is limited by two260

https://doi.org/10.5281/zenodo.5557313
https://data.mendeley.com/datasets/yy2k5y8mxg/1
https://data.mendeley.com/datasets/c5yvn32dzg/2
https://www.kaggle.com/c/plant-pathology-2020-fgvc7
https://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseases
https://data.mendeley.com/datasets/3f83gxmv57/2
https://it.mathworks.com/matlabcentral/fileexchange/55098
https://github.com/spMohanty/PlantVillage-Dataset
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factors: place of acquisition, mode of acquisition. Controlled conditions are not able to reflect the261

spectrum of variability detectable in the field. As demonstrated by study in [17], algorithms tend262

to achieve near-perfect accuracy when trained on laboratory datasets, but performance degrades263

significantly when trained on field datasets. In addition, few datasets took into account the264

evolution of symptoms during an entire growing season. More efforts should focus on capturing265

symptoms at an early stage of emergency. In fact, at these stages digital aids are essential to take266

timely action to stop the disease proliferation.267

• Completness: Strong et al. [18] define completeness as "the level of breadth, depth, and268

appropriateness of a datum according to its purpose". Although some datasets are well269

constructed, in some cases we found a lack of completeness in providing ground truth labels. The270

annotation of multiple symptoms present in the leaf maximises and completes the informative271

capacity of the data. Similarly, the presence of bounding-boxes and segmentation masks would272

extend their usability.273

• Performance Baseline: The availability of a performance baseline can help the development and274

validation of new methods that can be applied.275

Based on the limitations identified above, we provide some recommendations on creating future276

dataset. The number of sample and variety of diseases needs to be increased so that a learning277

algorithm may generalize on the problem domain. Algorithms are destined for inclusion in field278

applications, which can be categorized in:279

• Disease recognition mobile applications;280

• Robotic applications that recognize and identify the disease and spray chemical or natural inputs281

based on the extent of the damage.282

To maximize the information content that the data can express, the completeness and283

representativeness of the samples, we suggest portraying the leaf using different configurations284

such as:285

• Defer the angle, focus, position of the leaf in individual frames;286

• Portrays the disease for an entire growing season, identifying different levels of severity;287

• Collect the samples at different times of the day, that is with different climatic conditions (sunny,288

cloudy, direct light).289

Finally, the dataset should be published on data sharing platforms, which allow the integrity and290

availability of data to be preserved over time [9].291

6. Conclusion292

In this paper, we released an open-dataset in the literature, called DiaMOS Plant, a self-collected293

dataset in the field, consisting of 3505 images, depicting 4 leaf diseases with 4 level of severity and 4294

fruit stages, reachable at the following link https://doi.org/10.5281/zenodo.5557313. Simultaneously295

with the release of the dataset, we provided a performance baseline, and we reviewed the datasets296

present in the literature built for the classification and recognition of leaf diseases. The analysis297

conducted has highlighted the good practices for the construction of field data sets, which impact the298

information content that the data can express, as functional to its ability to describe the environment299

from which it was drawn or observed. Factors that were taken into consideration when constructing300

the proposed dataset. In this regard, for future works we plan to expand the released dataset, to enrich301

its representativeness and completeness, limited by the small number of samples for the "healthy" and302

"curled" class.303
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