

Frédéric MARCADON

Analysis of eclipsing binaries in multiple stellar systems: the case of V1200 Centauri

PI: Prof. Maciej KONACKI

PLATO mission conference 2021

11-15 October 2021

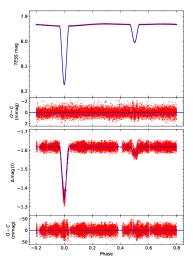
Solaris	Orbital analysis	Modelling	Conclusions
•0			
Solaris network			

- Solaris: network of four autonomous observatories in the Southern Hemisphere (Kozłowski et al. 2014, 2017).
 - Solaris-1 and -2 in the South African Astronomical Observatory (South Africa).
 - Solaris-3 in Siding Spring Observatory (Australia).
 - Solaris-4 in Complejo Astronómico El Leoncito (Argentina).

Solaris-4 site (CASLEO, Argentina)

Frédéric MARCADON

Solaris	Orbital analysis	Modelling	Conclusions
○●	000	00	
Solaris network			

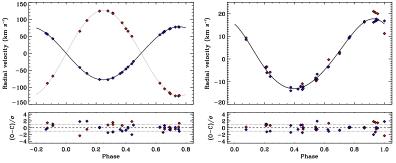

- Goal: detect exoplanets around binaries and multiple stars using high cadence and high-precision photometry (Konacki et al. 2012).
- $\bullet \sim \! 240$ stars observed photometrically by the Solaris network between 2015 June and 2021 April.
- V1200 Centauri observed by Solaris during three main campaigns between:
 - 2017 February and August (~75 observation nights).
 - 2018 March and August (\sim 55 observation nights).
 - 2019 February and April (\sim 25 observation nights).
 - \Rightarrow ~30 000 data points collected both with V and I filters.

Solaris	Orbital analysis	Modelling	Conclusions
	000		
Interest o	f V1200 Centauri		

- V1200 Centauri: eclipsing binary of Algol type (Samus et al. 2017).
- Bright detached system (V = 8.5 mag; Høg et al. 2000) with an orbital period of $\sim 2.5 \text{ d}$ (Coronado et al. 2015).
- Coronado et al. (2015) reported the presence of a third stellar-mass companion in a large orbit ($P \simeq 352 \text{ d}$).
- Coronado et al. (2015): depth of secondary eclipse comparable to the scatter of data.

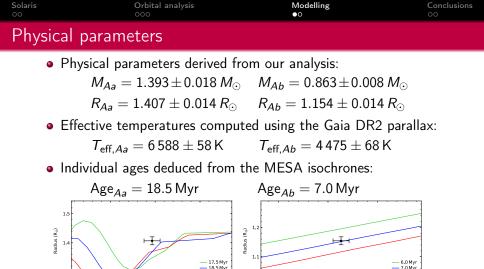
 \Rightarrow Large uncertainties on the resulting parameters (*R*, *T*_{eff}, age).

Solaris	Orbital analysis	Modelling	Conclusions
00	○●○	00	00
LC modelling			



- Photometric data from Solaris and *TESS* (Transiting Exoplanet Survey Satellite).
- Solaris: ~30 000 data points collected with a *I* filter during ~155 nights (2017–2019).
- *TESS*: ~14000 data points obtained in 2min cadence for 27.1 d (sector 11).
- Light curves fitted using the JKTEBOP code (Southworth et al. 2004).

(Marcadon et al. 2020) Frédéric MARCADON


Solaris	Orbital analysis	Modelling	Conclusions
00	००●	00	00
RVs and orbita	al solution		

- Radial velocities obtained with different spectrographs.
 - 18 previous measurements from PUCHEROS and CORALIE.
 - 6 new measurements from CHIRON used in this work.
- Optimal solution found for a 180-d outer period by fitting a double-Keplerian orbit.

RV observations and orbital solution for V1200 Cen (Marcadon et al. 2020)

Frédéric MARCADON

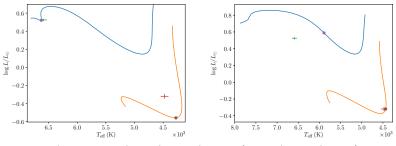
3,63

^{#9}L <u>5</u> 3.65

19 5 Mur

Frédéric MARCADON

1.3

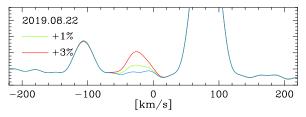

3.81 5 5 3.82

Analysis of the multiple star V1200 Centauri

8.0 Mia

Solaris	Orbital analysis	Modelling	Conclusions
00	000	○●	
Physical p	arameters		

- Stellar parameters determined with a precision better than 1.5%.
- Age difference of 11.5 Myr between the two eclipsing components.
 - \Rightarrow Stars belonging to a multiple system are assumed to have the same age.
 - \Rightarrow Similar results obtained by J. Marques (IAS, France) using CESTAM.
- CESTAM: Code d'évolution stellaire, avec transport, adaptatif et modulaire (Morel and Lebreton 2008; Marques et al. 2013).


Evolutionary tracks in the HR diagram (Marcadon et al. 2020)

Frédéric MARCADON

Analysis of the multiple star V1200 Centauri

Solaris	Orbital analysis	Modelling	Conclusions
00	000	00	●○
Main results			

- V1200 Centauri: quadruple star system with a 180-d outer period.
 - \Rightarrow Minimum mass of the third body: $M_B = 0.871 \pm 0.020 M_{\odot}$.
 - \Rightarrow Consistent with a sub-system B composed of two low-mass stars.
- Dynamical interactions between stars in close multiple systems can explain the observed age difference (Stassun et al. 2014).
 - \Rightarrow Impact on the stellar parameters during the early evolution stage.
 - \Rightarrow Impossible to fit both pre-main-sequence stars with the same age.

Broadening function of V1200 Cen (Marcadon et al. 2020)

Frédéric MARCADON

Analysis of the multiple star V1200 Centauri

Solaris	Orbital analysis	Modelling	Conclusions
			00
Future pro	ospects		
i uture pro	JSPECIS		

- PLATO Planetary transits and oscillations of stars (ESA, 2026).
 - Future space mission dedicated to asteroseismology and exoplanet searches.
- Research proposal: binary and multiple star systems as benchmarks for stellar evolutionary models.
 - \Rightarrow Creating a catalogue of well-characterised binary and multiple systems in preparation for PLATO.
 - \Rightarrow Studying the formation and evolution of stars and planets belonging to binary or multiple systems.