
International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

839

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D7870049420/2020©BEIESP
DOI: 10.35940/ijeat.D7870.049420
Journal Website: www.ijeat.org


Abstract: Image classification algorithms such as

Convolutional Neural Network used for classifying huge image
datasets takes a lot of time to perform convolution operations,
thus increasing the computational demand of image processing.
Compared to CPU, Graphics Processing Unit (GPU) is a good way
to accelerate the processing of the images. Parallelizing multiple
CPU cores is also another way to process the images faster.
Increasing the system memory (RAM) can also decrease the
computational time of image processing. Comparing the
architecture of CPU and GPU, the former consists of a few cores
optimized for sequential processing whereas the later has
thousands of relatively simple cores clocked at approx. 1Ghz. The
aim of this project is to compare the performance of parallelized
CPUs and a GPU. Python’s Ray library is being used to parallelize

multicore CPUs. The benchmark image classification algorithm
used in this project is Convolutional Neural Network. The dataset
used in this project is Plant Disease Image Dataset. Our results
show that the GPU implementation achieves 80% speedup
compared to the CPU implementation.

Keywords: Convolutional Neural Network, parallel computing,
speedup.

I. INTRODUCTION

In recent years, parallel computing and soft computing has
become a rapidly evolving field of study. The demand for
parallel processing in increasing day by day. There are
various software tools and libraries by which we can
parallelize our programs. For example, we have OPENMP in
c++ for parallel computing. OPENMP supports FORTRAN,
C and C++. It is basically an Application Programming
Interface for shared Memory Model programming. Python
has its separate parallel processing module named
Multiprocessing. Multiprocessing module enables to spawn
multiple processes, allowing programmer to fully leverage the
computing power of multiple processors. The main drawback
of Python’s Multiprocessing module is that it cannot be used
for handling large numeric data. It cannot be used in Deep
Learning Frameworks such as Keras as it decreases the

Revised Manuscript Received on April 25, 2020.
* Correspondence Author

Prathamesh Borhade*, Computer science and engineering, Vellore
Institute of Technology, Vellore, India. Email:
prathamesh.borhade29@gmail.com

Rajvardhan Deshmukh, Computer science and engineering, Vellore
Institute of Technology, Vellore, India. Email: rajvardhan1999@gmail.com

Rishav Agarwal, Computer science and engineering, Vellore Institute of
Technology, Vellore, India. Email: rishavagarwal2717@gmail.com

Samridhi Murarka, Computer science and engineering, Vellore
Institute of Technology, Vellore, India. Email: samridhi.m98@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

accuracy of the models. Shared variables cannot be used in
the Multiprocessing Module. Python also has a Parallel and
Distributed computing framework called Ray. Ray can be
used for developing emerging AI applications such as image
classification, face recognition etc. Parallelizing multiple
cores of CPU using Ray can also increase the speedup of the
model significantly. The benchmark image classification
algorithm used in this project is Convolutional Neural
Network. The Dataset used in this project is Plant Disease
Image dataset containing around 30000 images. The system is
configured with 16 GB RAM with 4 CPU Cores and Tesla
P100 GPU. This project compares the performance of 2-core,
3-core and 4-core parallelized CPUs with GPU.

II. COMPARISON OF CPU AND GPU

ARCHITECTURE

A Graphics Processing Unit (GPU) is mostly used in
hardware devices to support applications which require heavy
graphics processing such as 3-D modeling, designing, etc.
GPUs are mostly used in gaming PCs to accelerate gaming
graphics processing. Nowadays, GPGPU (General Purpose
Graphics Processing Unit) are used to accelerate
computational graphics processing workloads. The main
purpose of GPU is to project textured polygons onto the
screen in a fiercely competitive consumer-facing industry.
The design goals of GPU were to increase the throughput and
not focus on single threads. GPUs basically hide memory
latency through parallelism. They let the programmer deal
with raw storage hierarchy. The most important design goal
for GPU is to avoid high frequency clock speed. The GPU
consists of multiple independent CPU cores. The original
design goals of CPU were to make single threads faster,
reduce latency through large caches and use prediction and
speculation for the instruction stream to guard against the
branches in the instruction stream. Modern CPU-Style core
design emphasizes individual thread performance. Each core
of the CPU executes scalar or vector operations whereas each
GPU core only executes vector instructions. CPU uses Single
Instruction Multiple Data (SIMD) parallelism through ILP
and vector execution units whereas GPU uses Single
Instruction Multiple Data (SIMD) parallel execution of all
operations. The GPU cores are designed and engineered to
switch quickly between threads to recover stalls. A GPU has
multiple cores and each core has one or more wide SIMD
vector units. These wide SIMD vector units execute one
instruction stream and also have a pool of shared memory.
Each core of the GPU shares a registry file shared privately
among all the ALUs.

Image Classification using Parallel CPU and
GPU Computing

Prathamesh Borhade, Rajvardhan Deshmukh, Samridhi Murarka, Rishav Agarwal

mailto:samridhi.m98@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijeat.D7870.049420&domain=www.ijeat.org

Image Classification using Parallel CPU and GPU Computing

840

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D7870049420/2020©BEIESP
DOI: 10.35940/ijeat.D7870.049420
Journal Website: www.ijeat.org

Each core quickly switches thread blocks to hide memory
latency. Modern GPUs combine multiple wide vector
processing cores with local and global-shared memory

III. PERFORMANCE COMPARISON OF CPU AND

GPU

We all need to understand that the latency optimization
takes place in CPUs while GPUs are bandwidth optimized.
For Deep Learning, GPUs hide latency via thread parallelism
thus offering high bandwidth. This is the reason why GPUs
are widely used in training deep learning models. Compared
to CPUs, GPUs cannot have more memory capacity. 24GB of
RAM is known to be the highest amount of memory that a
GPU can hold whereas CPUs can have RAM up to 1TB. The
main advantage of using GPUs in Deep Learning is that they
can perform matrix operations faster than CPUs. Deep
Learning largely comprises of large matrix operations.
Researchers say that the GPUs can gain speedup up to 60%
more than that of CPUs.

IV. PARALLELIZING MULTIPLE CPU CORES

To parallelize multiple cores of CPU, the OS has to be a
multiprocessing OS. Multiprocessing OS uses two or more
CPU cores to run a single program. Each core works on
different parts of the same task, or on two or more different
tasks. They are used for high speed computations and to
increase the power of the computer as the execution takes
place in parallel. Python’s Multiprocessing module can be

used to parallelize all the CPU cores present in the machine.
Multiprocessing module uses Pool property to parallelize
CPUs. The pool distributes the workload of the program to
the available processors using First In First Out (FIFO)
scheduling. But this module cannot be used with Deep
Learning frameworks such as Keras as these frameworks are
not multiprocessing safe.

Python has a parallel and distributed framework called Ray
which exclusively used for building AI applications by
parallelizing the CPU cores. Ray automatically detects the
number of CPU and GPU cores present in the system

V. RELATED WORKS

[1] The paper talks about the several types of Leaf Diseases
and the image processing techniques to categorize them. The
paper contains a study of all the different papers that talk
about several techniques for leaf detection techniques. [2]
The paper gives an in depth knowledge of Convolutional
Neural Networks. It tells us about the growth of precision and
results in image classification and detection based on
numerous CNN techniques. This paper tells us about the
simple but effective architecture and several layers of the
Convolutional Neural Networks like convolution layer, ReLu,
pooling, etc and the ways to set them to create a model that
gives excellent results for detecting complex patterns. [3]
This paper gives us a complete overview of the architecture of
the CPU as well as the GPU. The paper has shown
experiments for detecting the edges of an image i.e. creating a
boundary of an image. The authors of this paper have used
CUDA for the parallelizing of the algorithm used for the

above-mentioned purpose and used MATLAB as their
programming language. The paper states that the CUDA
supported GPU gives much faster and better results as
compared to the CPU. [4] The paper compares the GPU and
CPU computations of multiple algorithms by parallelizing
them into independent threads. The paper points out some of
the exceptional cases where the CPU exceeds the expectations
and give better and faster results than the GPU. Thus the
paper gives us a set of guidelines to help us determine when
and in which way should the GPU be used for parallelization.
[5] This paper talks about requirements and necessities that
led to the development of this distributed framework, Ray.
The paper states the applications of Ray in numerous places
like parallelization, complex user and problem specific
computations, etc. with limited resources and a single
execution engine. The paper describes and highlights the
power of Ray by experimenting with 1.8 million tasks per
second. [6] This paper also gives an overview of GPU and
Image processing in general. The paper explains the steps
involved in building a model for a particular image processing
application. It explains steps like RGB to Gray conversion,
Morphology Applications, etc. The paper also compares
normal sequential and CPU image processing with the image
processing using the model that was just built on GPU. [7]
This paper not only talks about image processing of 2D
images but also the 3D images. The paper implements several
techniques like Single Image Transmission and Multi Pixel
Processing, Multi Image Transmission and Single Pixel
Processing, etc. on GPU and CPU. In conclusion the paper
gives the results and comparison of each technique on single
CPU, GPU, multicore CPU and multicore GPGPU.

VI. FRAMEWORK MODEL

A. Approach

The following approach is being followed to compare the
performance of parallelized CPUs and GPUs.

 Downloading the required dataset for our model. In
this case, it is Plant disease image dataset. The dataset
is taken from Kaggle’s dataset library.

 Designing the architecture for Convolutional Neural
Network.

 Preprocessing all the images of the dataset.
 Dividing the given dataset into training set and testing

set.
 Parallelizing CPU cores with Ray and training the

model. Varying the number of CPU cores
 Using GPU to train the model
 Observing the execution time for all the epochs for

GPU and CPU computing
 Observing the accuracy for CPU and GPU computing
 Analysis of results by plotting the appropriate graphs.

B. Architecture of Convolutional Neural Network

Deep learning is a sub domain of machine learning which is
based on neural networks. The architecture of neural network
is based on the anatomy of the human neuron.

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

841

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D7870049420/2020©BEIESP
DOI: 10.35940/ijeat.D7870.049420
Journal Website: www.ijeat.org

That’s the reason these algorithms are called neural
networks. Convolutional neural network is a type of neural
network which is used mostly in visual imagery.

As the name suggests, this neural network uses convolution
operation to process images. Convolution operation of two
functions f and g is defined as the integral product of these two
functions after one is reversed and shifted. The CNN consists
of multiple hidden layers which are bounded by an input layer
and an output layer. These hidden layers are basically a series
of convolution operations. The common operations present in
the hidden layer are Convolution, ReLu, Max pooling,
Flattening and Full connection

Step 1: Convolution layer

In this layer, the feature/filter is moved to each potential
position on the image. Firstly, the features and image are lined
up. Then each image pixel is multiplied by the corresponding
feature pixel. Then these values are added and the sum is
divided by the total number of pixels in the feature/filter.

 Step 2: ReLU Layer

In this layer all the negative values from the filtered images
are replaced with zeros. We do this to avoid summing up of
the values up to zero. ReLU (Rectified Linear Unit) function
activates the node when the input is greater than a certain
threshold value, otherwise it returns 0. The input becomes
linear to dependent variable when it increases after certain
threshold.

Step 3: Pooling Layer

Shrinking of image stack takes place in this layer. First we
choose a window size (usually 2 or 3). Then we pick up a
stride (usually 2) to traverse the whole image. Then the
window is walked across the filtered images. From each
window, the maximum value is found and stored.

 Step 4: Flattening Layer

In this step the 2-D matrix obtained from the pooling layer is
converted into a 1-D matrix (vector) so that it can be fed into
the fully connected layer

 Step 5: Stacking the layers

In order to increase the accuracy of the model, we can repeat
the stack of above layers before feeding the vectors into the
fully connected layer.

 Step 6: Fully connected layer

The actual classification happens in this layer. This is the final
layer of CNN. In this layer the filtered and shrinked images
are put into a single list. This layer connects every node of one
layer to every node of the another layer. The vector obtained
from flattening layer is passed through layer to predict the
class

Figure 1. Layers of CNN

C. Parallelizing CPUs using RAY

Python has a parallel and distributed module called Ray which
is used to build scalable AI applications. Ray helps in easily
parallelizing python applications. Ray is an open source
project built by Machine Learning department of University
of California, Berkeley. OpenMP, Python Multiprocessing
and ZeroMQ are low-level primitive parallel programming
libraries whereas Ray is a high-level parallel and distributed
framework. Ray automatically detects the number of CPU and
GPU cores present in the hardware system. The API ray.init()
initializes the ray context and the number of workers of the
cluster. We can also specify the number of resources such as
number of CPUs and GPUs. By default Ray initializes
number of CPUs as the number of CPU cores present in the
system. We can overwrite the number of CPUs and GPUs
using the following ray.init(num_cpus=2, num_gpus=1).
The decorator @ray.remote(num_cpus=3) is called before a
function. This decorator assigns the resources to the function
for the computation. The API ray.get() returns the output of
the function and the Ids of the objects of the function.

D. About the dataset

The dataset used in this project is Plant Disease Detection
image dataset. The same is available on Kaggle Data Science
Platform. This dataset contains the images of leaf of the plant
having a particular disease. The dataset is divided into
following 15 categories: Pepper bell Bacterial spot, Pepper
bell healthy, Potato Early blight, Potato healthy, Tomato
Spider mites Two spotted spider, Potato Late blight, Tomato
Bacterial spot, Tomato Early blight, Tomato healthy, Tomato
Late blight, Tomato Leaf mold, Tomato Septoria leaf spot,
Tomato target spot, Tomato Tomato mosaic, virus and
Tomato Tomato Yellow Leaf Curl Virus.

VII. RESULTS

To compare the performance of GPU with CPU, we have
configured the following setup.
For CPU: Intel Core i5 7th generation with 16GB RAM and
2GB Nvidia 940MX 2GB graphics card.
For GPU: Intel Core i5 7th generation with 16GB RAM and
Tesla P100 graphics card

The dataset was split into training set and testing set with
80% of the images in the training set.

To record the first observation, we observed the execution
time and the accuracy of the model after training the same for
serial python. We observed the execution time for each epoch.
The accuracy was observed to be 88.75%.

Table 1. Execution time for serial python

Epoch sequence number Execution time (in seconds)

1 538

2 540

3 537

4 535

5 538

Image Classification using Parallel CPU and GPU Computing

842

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D7870049420/2020©BEIESP
DOI: 10.35940/ijeat.D7870.049420
Journal Website: www.ijeat.org

After parallelizing 3 CPU cores using ray.init(num_cpus=3),
we got an accuracy of 92.32%. Following were the execution
time of all the epochs

Table 2. Execution time for 3 CPU cores
Epoch sequence number Execution time (in seconds)

1 620

2 610

3 615

4 612

5 612

After parallelizing 4 CPU cores using ray.init(num_cpus=4),
we got an accuracy of 93.23%. Following were the execution
time of all the epochs.

Table 3. Execution time for 4 CPU cores
Epoch sequence number Execution time (in seconds)

1 577

2 569

3 562

4 572

5 565

Lastly, the model was trained on a GPU (Tesla P100). The
Ray was initialized as ray.init(num_gpus=1)
and following observations were noted down. The accuracy

was observed to be 94.67%

Table 4. Execution time for GPU
Epoch sequence number Execution time (in seconds)

1 50

2 46

3 47

4 46

5 46

Fig 2. Performance comparison

Fig 3. Comparison of accuracy

VIII. CONCLUSION

Training an image classification Convolutional Neural
Network on GPU not only decreased the computation time
but also increased the accuracy of the model compared to
parallelized CPUs. Our results show that the GPU
implementation achieves 80% speedup compared to the CPU
implementation. Most of the existing studies show that the
GPU implementation of deep learning model such as the CNN
can yield significant speedup compared to CPUs. Due to
highly parallel architecture, it helps GPU compute vector
operations, matrix operations and image processing faster
than CPU. The latency is overridden by the number of small
cores present in the GPU. In summary, the results of the
experiment showed that the computation time taken by the
GPU about 80% less than the time taken by CPU to train the
model. CPU is very efficient in handling small data compared
to GPU. A traditional CPU might outperform GPU in some
aspects, so we should not blindly choose for any
computational applications.

 REFERENCES

1. “Image Processing Techniques for Detection of Leaf Disease” by Arti N.

Rathod, Bhavesh Tanawal, Vatsal Shah.
2. “An Introduction to Convolutional Neural Networks” by Keiron Teilo

O'Shea.
3. “Performance Analysis of GPU V/S CPU for Image Processing

Applications” by B. N. Manjunatha Reddy, Dr. Shanthala S. , Dr. B. R.
VijayaKumar.

4. “A Comparative evaluation of the GPU vs. the CPU for Parallelization

of Evaluation Algorithms through multiple independent runs” by Anna

Syberfeldt and Tom Ekblom.
5. “Ray: A Distributed Framework for Emerging AI Applications” by

Philipp Moritz , Robert Nishihara.
6. “Image Processing Application on Graphics processors” by Chouchene

Marwa, Bahri Haythem, Sayadi Fatma Ezahra, Atri Mohamed.
7. “Real-Time Image Processing Applications on Multicore CPUs and

GPGPU” by R. Samet, O.F. Bay, S. Aydın, S. Tural, A. Bayram.

AUTHORS PROFILE

Prathamesh Borhade is a third-year undergraduate

pursuing computer science and engineering from Vellore
institute of technology. He is a machine learning
enthusiast and an aspiring data scientist currently working
at Samsung Prism Project. He has also worked at Rapid

Circle as a Machine Learning Intern. Email:
prathamesh.borhade29@gmail.com

 Rajvardhan Deshmukh is currently pursuing his
B.Tech in Computer Science and Engineering from
Vellore Institute of Technology, Vellore, India. He is a
full stack web-developer with an industrial experience in
Pune Municipal Corporation. He is also a Data Science

and Machine Learning enthusiast and has done several projects based on it
during his three years in college. He is the Projects Head of IEEE Computer
Society, Vellore and has been actively participating in several Hackathon.
He has also conducted a few Hackathons at the university level. Email:
rajvardhan1999@gmail.com

Rishav Agarwal is in third-year. He has developed

several projects in the platform of Web Developement.
Recently, he's been involved in the field of Data Sciences.
He has been an active part of several chapters like IEEE-
Computer Society and also been performing as part of the

VIT Dance Club. Email: rishavagarwal2717@gmail.com

mailto:prathamesh.borhade29@gmail.com
mailto:rajvardhan1999@gmail.com
mailto:rishavagarwal2717@gmail.com

International Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249 – 8958 (Online), Volume-9 Issue-4, April, 2020

843

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication
© Copyright: All rights reserved.

Retrieval Number: D7870049420/2020©BEIESP
DOI: 10.35940/ijeat.D7870.049420
Journal Website: www.ijeat.org

Samridhi Murarka, is currently a third year

undergraduate student pursuing Computer Science from
Vellore Institute of Technology, Vellore. She is a UI/UX
designer. She is an active IEEE Computer Society
member and has led the media and design for the

community in several events. She has a passion for integration of technology
and business. She is currently researching more on Natural Language
Processing and has developed an extractive summarizer as a part of a team of
4 members. Email: samridhi.m98@gmail.com
.

mailto:samridhi.m98@gmail.com

