
 1

Supplementary File 5: Python code for extracting a defined percentage of a curve.

Due to the volume of LiCor light response data, 647 data sets and each containing 120 data

points per trait, a bespoke code was developed to extract the data points on the induction side

of the curve. The code allows you to define a percentage of the maximum value on a curve,

in this case 95% as used in the work by McAusland et al (2016), and extracts all data points

up until this defined percentage (e.g. 0 – 95% of the maximum induction curve).

The code was written in Python, consisting of two files, dataManipulation.py and

configuration.py, which work together. dataManipulation.py pulls parameters from

configuration.py, to dictate the origin of the data file, at what percentage threshold the data is

filtered by (e.g. 95% of the maximum stomatal conductance value), which columns from the

original data file are used and where to save the output file, then executes the task.

The code is sensitive to undulations in the induction curve, the code works very well on

carbon assimilation and NPQ data, which have a smooth and continuous induction curve.

However, stomatal conductance induction (gs) curves are notoriously ‘noisy’ and can

undulate. For example, if this code encounters a downward trend in an undulating gs

induction curve, it will identify that undulating peak as the maximum and pull that portion of

the data up until that point. Thus, a certain degree of manual quality checking, and occasional

editing, is still required when using this code on gs, or noisy, induction curves, though it is

still faster than manually calculating and extracting the data.

This code was kindly developed by Matthew Hartley, a software developer at ESPER, a

world leading 3D scanning and surface capture company. It can be accessed from his GitHub

repository at: https://github.com/mattVHartley/sophieDataProcessor

The code for configuration.py and dataManipulation.py can be seen in the remaining pages of

this document.

 2

Configuration.py:

'''

Column numbers for reference:

R.AccGs.csv

 PAR | time | name | rep # | leaf Width | GS |

 0 | 1 | 2 | 3 | 4 | 5 |

Pracha_data.csv

PAR | Time (sec) | Line | ADNID code | Accession | ADN code | Rep |

Photo | cond | NPQ | ETR | WUE | Trmmol |

 0 | 1 | 2 | 3 | 4 | 5 | 6 |

7 | 8 | 9 | 10 | 11 | 12 |

'''

filter percentage - 95% as 95

filterPercent = 95

column positions in the csv

timeCol = 1

nameCol = 2

repCol = 3

filterCol = 8 #this is the dependant variable

saveOutASubset = True

numToSubset = 5

file names

#inputFileName = '/home/matt/Desktop/testdata.csv' #assume in same

directory as this code, unless you specify a separate pathway

 3

#inputFileName = './Pracha_data.csv' #assume in same directory as

this code, unless you specify a separate pathway

inputFileName = 'NPQ_for_induction.csv' #assume in same directory as

this code, unless you specify a separate pathway

outputFileName = 'NPQ_Induction.csv' #this will get dumped in your

set working directory.

DataManipulation.py:

import csv

from configuration import filterPercent, timeCol, nameCol, repCol,

filterCol, inputFileName, outputFileName, numToSubset,

saveOutASubset

this function does a deal of typechecking and organising of raw

input data

def parseData(data):

 global maxRepNumber

 toReturn = []

 incorrectCount = 0

 for line in data:

 try:

 # make sure everything is of the right variable type

 line[repCol] = int(line[repCol])

 line[filterCol] = float(line[filterCol])

 line[timeCol] = float(line[timeCol])

 # Work out what the maximum repetition number is

 if line[repCol] > maxRepNumber:

 maxRepNumber = line[repCol]

 4

 toReturn.append(line)

 except:

 incorrectCount += 1

 rejectedData.append(line)

 print("")

 if incorrectCount > 0:

 print("Loaded " + str(len(data)) + ' data points from file '

+ inputFileName)

 print("Accepted " + str(len(toReturn)) + " data points")

 print("Discarded " + str(incorrectCount) + ' rows as they

contain incorrect variable types')

 print(" ")

 print(

 'repetition columns can only contain integers, the

column to filter and the time column by must be numeric')

 print(" ")

 print(" ")

 else:

 print("Loaded " + str(len(data)) + ' data points from file '

+ inputFileName)

 print("Accepted " + str(len(toReturn)) + " data points")

 print("---

---------")

 return toReturn

def getUniqueRiceLines(rices):

 # loop through to get all the names of the rice into one big

long list

 allRice = []

 for rice in rices:

 5

 allRice.append(rice[nameCol])

 uniqueRice = list(set(allRice)) # set is a data structure that

cannot have duplicates in, turn it into a set then turn it back into

a list

 return uniqueRice

def filterData(dataArrayArgs):

 # check we have data

 if len(dataArrayArgs) > 0:

 # sort into ascending time order

 dataArray = sorted(dataArrayArgs, key=lambda k:

float(k[timeCol]))

 # get the highest value

 max = 0

 for point in dataArray:

 if point[filterCol] > max:

 max = point[filterCol]

 # calculate the value of the cutoff based on percentage

 cutoff = float(percentile * max)

 prunedData = []

 for i in range(0, len(dataArray)):

 if dataArray[i][filterCol] < cutoff:

 prunedData.append(dataArray[i])

 else:

 6

 print("stopping at data point " + str(i) + '/' +

str(len(dataArray)) + ' - name:' + str(

 dataArray[i][nameCol]) + ', rep:' +

str(dataArray[i][repCol]))

 break

 return prunedData

'r' is read. read as opposed to write, Universal is allowing for

maximum compatibility with each csv format

f = open(inputFileName, 'r')

pass the file to the csv reader

rawdata = csv.reader(f)

allData = []

headings = []

first = True

for row in rawdata:

 if first:

 headings = row

 first = False

 allData.append(row)

maxRepNumber = 0 # initilise this in global scope for the call to

parseData

rejectedData = []

allData = parseData(allData)

percentile = float(filterPercent) / 100

uniqueRice = getUniqueRiceLines(allData)

 7

print('Detected ' + str(len(uniqueRice)) + ' unique data series')

print("---

-----")

dataStack = []

for rice in uniqueRice:

 for i in range(1, maxRepNumber + 1):

 singleDataSeries = []

 for entry in allData:

 if entry[nameCol] == rice and entry[repCol] == i:

 singleDataSeries.append(entry)

 if len(singleDataSeries) > 0:

 dataStack.append(singleDataSeries)

print("separated out into " + str(len(dataStack)) + " unique data

series")

print("filtering by values")

counter = 1

subsetRaw = []

subsetFiltered = []

finished = []

for series in dataStack:

 filtered = filterData(series)

 finished.append(filtered)

 if counter <= numToSubset:

 for raw in series:

 subsetRaw.append(raw)

 for filterpoint in filtered:

 subsetFiltered.append(filterpoint)

 8

 counter += 1

recompiledData = [headings]

for series in finished:

 for point in series:

 recompiledData.append(point)

print(str(len(recompiledData) - 1) + ' data points exported to

export.csv')

print(str(len(allData) - len(recompiledData) + 1) + ' data points

were above ' + str(

 filterPercent) + "% of the maximum for its repetition")

print("")

print("")

print("outputting " + str(len(recompiledData) - 1) + " data points

to csv file " + outputFileName)

print("")

print("")

with open(outputFileName, 'w') as csvFile:

 writer = csv.writer(csvFile)

 writer.writerows(recompiledData)

csvFile.close()

print("Number of rejected data ponts to save: "

+str(len(rejectedData)))

print("")

print("")

with open('rejected.csv', 'w') as rejectData:

 writer = csv.writer(rejectData)

 9

 writer.writerows(rejectedData)

csvFile.close()

if saveOutASubset:

 with open('subsetFiltered.csv', 'w') as filtercsv:

 filterwriter = csv.writer(filtercsv)

 filterwriter.writerows(subsetFiltered)

 filtercsv.close()

 with open('subsetRaw.csv', 'w') as rawcsv:

 rawwriter = csv.writer(rawcsv)

 rawwriter.writerows(subsetRaw)

 rawcsv.close()

