Rotation and flares of M dwarfs with habitable zones accessible to TESS
 M. Bogner ${ }^{1, *}$, B. Stelzer ${ }^{1,2}$ and St. Raetz ${ }^{1}$

[1] Institut für Astronomie und Astrophysik Tübingen (IAAT) [2] INAF - Osservatorio Astronomico di Palermo [*] bogner@astro.uni-tuebingen.de

Sample

- 112 M dwarfs (spectral types K8 to M5)
- listed in TESS Habitable Zone Star Catalog (Kaltenegger+2019)
- TESS can detect planets in the full extent of the habitable zone
- TESS mag $\leqslant 11.5$
- 1276 2-min. cadence light curves (LCs) analyzed; example LC in Fig. 1

Fig. 1: Example of a TESS light curve showing rotational modulation (blue) and flares (red).

Data Analysis

For details, see Stelzer+2016
The algorithm can be briefly summarized as follows:

- rotation period search with 3 methods: Generalized Lomb Scargle Periodogram, autocorrelation function and sine fit
- flare detection based on flattened and cleaned LC with standard deviation $S_{\text {flat }}$: A potential flare is a part of the original LC with 3 or more consecutive data points deviating $>3 S_{\text {flat }}$ from the LC's mean value.
- further validation criteria (e. g. decay time > rise time)
- contamination factor $=\underline{\text { summed up flux of contaminating stars in aperture mask }}$ target flux
- energy completeness limit for flare detection determined from flare energy frequency distribution (FFD) following Hawley+2014

Analysis results

- 35 stars show flares ($\sim 31 \%$ of the sample); 2532 flares detected
- fraction of flaring stars higher for later M SpT subclasses (cf. Fig. 2)
- 12 stars ($\sim 11 \%$ of the sample) show reliable rotation periods (i. e. period search yielded consistent results for all TESS sectors of the star)
- rotational modulations with low amplitudes are hidden in the noise for TESS LCs due to higher standard deviation w. r. t. K2 (Fig. 3)
- $0.28 \mathrm{~d} \leqslant \boldsymbol{P}_{\text {rot }} \leqslant 3.94 \mathrm{~d}$
- 2138 flares occur on the 12 stars with reliable $P_{\text {rot }}$ - only 394 flares on others
- for most flares: peak flare flux at inner HZ boundary is larger than the bolometric flux hitting the top of Earth's atmosphere, i. e. (peak flare flux)I $S_{0}>1$, cf. Fig. 4
- binned flare energy frequency distribution (FFD) for earlier SpT range (M2.5-M3.5) shifted to higher flare energies w.r.t. later SpT range (M4.5-M5) (Fig. 5)
\rightarrow flares on later M subtype stars are less energetic
- stars with higher flare rates have higher energies of their largest flares; stars with reliable $P_{\text {rot }}$ have the highest flare rates (Fig. 6)

Summary

- rotational modulation with low amplitude difficult to detect with TESS due to high standard deviation of the LCs (Fig. 3)
- atmospheres of potential exoplanets at inner HZ boundary are exposed to larger fluxes during flare events than Earth in quiescent solar state (Fig. 4)
- earlier M subtype stars show flares with higher energies (Fig. 5)
- stars with reliable $P_{\text {rot }}$ show higher flare rates; for each SpT, stars with higher flare rates also show higher energies of their largest flare (Fig. 6)

[^0]Fig. 6: Relation btw. flare rate and SpT. Stars in binaries are marked with ' + ', ' x ' denotes those with a flux contamination $>10 \%$.

Fig. 3: Standard deviation of the flattened and cleaned LC as a function of TESS magnitude. For comparison, the values of K2 short cadence LCs from Raetz+2020 are also shown. The figure makes use of an empirical conversion between K2 and TESS magnitudes that we derived based on ~19 000 main-sequence stars. (Bogner et al., in prep.)

Fig. 4: Peak flare flux at the inner (Recent Venus) and outer (Early Mars) habitable zone boundary. Fluxes are normalized by the solar constant. The flare rate of each star is color-coded.

Fig. 5: FFDs of the 7 stars with reliable rotation periods that are not part of a close binary and have a flux contamination factor $<10 \%$. Only data points above the energy detection threshold are plotted. Black curves: binned FFDs in two different SpT ranges and fits.
(Bogner et al., in prep.)

[^0]:

