Hidden in the Haystack: Low-luminosity GCs towards the MW bulge

F. Gran, M. Zoccali, I. Saviane, E. Valenti, A. Rojas-Arriagada, R. Contreras Ramos, J. Hartke, J. Carballo-Bello, C. Navarrete, M. Rejkuba & J. Olivares

Hidden in the Haystack: Low-luminosity GCs towards the MW bulge

Gran et al. 2019 (A&A) arXiv:1904.10872 **Gran et al. 2021** (MNRAS) arXiv:2108.11922

Globular clusters in the Milky Way

★ GCs contribution to the assembly of the Milky Way has been widely explored in numerical simulations (Renzini 2017; Kruijssen 2019; Kruijssen et al. 2019; Carlberg 2020).

★ No consensus has been reached on the total number of bulge GCs (Minniti et al. 2017).

★ Bulge GCs are tracers of the MW formation and evolution: in situ component (Myeong et al. 2018).

Initial mass distribution of GCs in the MW

Initial mass distribution of GCs in the MW

Photometric searches of GCs

Several observational efforts have been done to characterize **new GCs** in the Galaxy.

Most of the recently discovered GCs belong to the **Milky Way halo**.

A NEW DISTANT MILKY WAY GLOBULAR CLUSTER IN THE PAN-STARRS1 3π SURVEY

BENJAMIN P. M. LAEVENS^{1,2}, NICOLAS F. MARTIN^{1,2}, BRANIMIR SESAR², EDOUARD J. BERNARD³, HANS-WALTER RIX², COLIN T. SLATER⁴, ERIC F. BELL⁴, ANNETTE M. N. FERGUSON³, EDWARD F. SCHLAFLY², WILLIAM S. BURGETT⁵, KENNETH C. CHAMBERS⁵, LARRY DENNEAU⁵, PETER W. DRAPER⁶, NICHOLAS KAISER⁵, ROLF-PETER KUDRITZKI⁵, EUGENE A. MAGNIER⁵, NIGEL METCALFE⁶, JEFFREY S. MORGAN⁵, PAUL A. PRICE⁷, WILLIAM E. SWEENEY⁵, JOHN L. TONRY⁵, RICHARD J. WAINSCOAT⁵, AND CHRISTOPHER WATERS⁵

Photometric searches of GCs

Several observational efforts have been done to characterize **new GCs** in the Galaxy.

DISCOVERY OF A FAINT OUTER HALO MILKY WAY STAR CLUSTER IN THE SOUTHERN SKY

DONGWON KIM, HELMUT JERJEN, ANTONINO P. MILONE, DOUGAL MACKEY, AND GARY S. DA COSTA Research School of Astronomy and Astrophysics, The Australian National University, Mount Stromlo Observatory, via Cotter Road, Weston, ACT 2611, Australia; dongwon.kim@anu.edu.au Received 2015 January 1; accepted 2015 February 10; published 2015 April 16

A NEW DISTANT MILKY WAY GLOBULAR CLUSTER IN THE PAN-STARRS1 3π SURVEY

Segue 3: the youngest globular cluster in the outer halo*

S. Ortolani,^{1,2} E. Bica³ and B. Barbuy⁴[†]

¹Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell'Osservatorio 2, I-35122 Padova, Italy
 ²INAF-Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padua, Italy
 ³Universidade Federal do Rio Grande do Sul, Departamento de Astronomia, CP 15051, Porto Alegre 91501-970, Brazil
 ⁴Universidade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, São Paulo 05508-900, Brazil

Gaia 1 and 2. A pair of new Galactic star clusters

Sergey E. Koposov,^{1,2★} V. Belokurov¹ and G. Torrealba¹

¹Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK ²Department of Physics, McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

KIM 3: AN ULTRA-FAINT STAR CLUSTER IN THE CONSTELLATION OF CENTAURUS

DONGWON KIM, HELMUT JERJEN, DOUGAL MACKEY, GARY S. DA COSTA, AND ANTONINO P. MILONE Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia; dongwon.kim@anu.edu.au Received 2015 December 10; accepted 2016 February 12; published 2016 March 29

DISCOVERY OF A FAINT OUTER HALO MILKY WAY STAR CLUSTER IN THE SOUTHERN SKY

DONGWON KIM, HELMUT JERJEN, ANTONINO P. MILONE, DOUGAL MACKEY, AND GARY S. DA COSTA Research School of Astronomy and Astrophysics, The Australian National University, Mount Stromlo Observatory, via Cotter Road, Weston, ACT 2611, Australia; dongwon.kim@anu.edu.au Received 2015 January 1; accepted 2015 February 10; published 2015 April 16

A NEW DISTANT MILKY WAY GLOBULAR CLUSTER IN THE PAN-STARRS1 3π SURVEY

Segue 3: the youngest globular cluster in the outer halo*

S. Ortolani,^{1,2} E. Bica³ and B. Barbuy⁴[†]

¹Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell'Osservatorio 2, I-35122 Padova, Italy ²INAF-Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padua, Italy ³Universidade Federal do Rio Grande do Sul, Departamento de Astronomia, CP 15051, Porto Alegre 91501-970, Brazil

⁴Universidade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, São Paulo 05508-900, Brazil

Gaia 1 and 2. A pair of new Galactic star clusters

udade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, São Paulo 05508-900, Brazil

Gaia 1 and 2. A pair of new Galactic star clusters

Photometric searches of GCs

Exponential growth of globular cluster candidates towards the bulge region: **near-IR photometric surveys**.

Minniti et al. 2017abc, Camargo 2018, Ryu & Lee 2018, Gran et al. 2021, poster presentations: Garro & Obasi!

VVV CL 001

Minniti et al. 2011, Gran et al. 2019

Clustering on a 5-D phase-space

$-10 \le I (deg) \le 10$ $-10 \le b (deg) \le 10$

I, b, $\mu_{I}cos(b)$, μ_{b} , G_{BP} - G_{RP} I, b, $\mu_{I}cos(b)$, μ_{b} , J- K_{s}

Candidate clusters in the 5-D phase space

scikit learn: KDTree and DBScan

Pedragosa et al 2011 Hunt & Reffert 2020 see E. Hunt presentation (day 1)

Map of the new GCs

Clustering requirements: - Grouped in space (ℓ,b)

Clustering requirements:

- Grouped in space (*l*,b)
 Coherent motion (PMs)

Clustering requirements:
Grouped in space (*l*,b)
Coherent motion (PMs)
Old stellar sequences

Cluster parameters:

- Age ~12 Gyr
 Distance ~22 kpc
- [Fe/H] ~ -2.4 dex
- $r_h \sim 1.15 \text{ arcmin}$
- $M_{dyn} \sim 4 \times 10^5 M_{\odot}$

MUSE follow up observations

MUSE follow up observations

MUSE follow up observations

Initial mass distribution of GCs in the MW

Summary and future work

- ★ Bulge GCs are tracers of the MW formation and evolution: in situ component (Myeong et al. 2018).
- ★ No consensus has been reached on the total number of bulge GCs.
- ★ Using a clustering algorithm, we were able to discover 5 new clusters with old stellar sequences.
- ★ Orbital parameters and metallicities from the analysis of 5 MUSE cubes.
- ★ Key observable: proper motions!

Thanks for your attention!

fegran@uc.cl @fegranm fegran.github.io

CONICYT Ministerio de Educación

Gobierno de Chile

INSTITUTO MILENIO DE ASTROFÍSICA

© ESO/VVV Survey/D. Minniti, I. Toledo, M. Kornmesser