
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-4, April 2020

465

Retrieval Number: D6810049420/2020©BEIESP

DOI: 10.35940/ijeat.D6810.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Abstract: Regression testing is a technique which is carried out

to ascertain that the changes that were done in the source code

have not negatively damped its performance. Hence, it is a crucial

and an expensive step of the software development life cycle. It

re-establishes confidence in correctness of the software after

changes were made to it. A test suite is used to test the software,

but often it becomes time consuming to re-execute each test case

every time regression testing is done. Therefore, it becomes

essential to decrease the number of the test cases by prioritizing

them based on some criterion. This ensures maximum detection of

faults in least amount of time. In this paper, author has compared

swarm intelligence techniques with genetic algorithms for such a

test suite prioritization. In particular, by taking a sample GCD

program Ant Colony Optimization (ACO) has been compared with

Genetic Algorithms (GA) for the purpose of test suite

minimization. Unit of comparison has been execution time

required for prioritization of test cases. Further, experimental

results have been compared with time taken by both with random

testing.

Keywords: Test Case Prioritization, Regression Testing, Swarm

Optimization, Ant Colony Optimization, Bee Colony

Optimization, Genetic Algorithm

I. INTRODUCTION

Software Testing Life Cycle defines the steps to be

employed in testing the software and regression testing is a

crucial phase in this. Changes may be made to the application

code if a new feature is added or the user demands a change in

the requirements. Such enhancements may cause the software

to function in an undesirable manner. In order to fix the

software and ensure its smooth functioning, regression testing

is used. Its purpose is to ensure that the changes have not

introduced new faults in the software. Regression testing uses

one of the following three approaches:

i. Retest All: Each test case needs to be executed.

ii. Test Selection: This technique runs a part of the test

suite to satisfy cost constraints.

iii. Test Case Prioritization: Order test cases in the suite in

order to maximize the number of faults detected in least

time.

However, running all test cases is not feasible every time,

considering the resource limitations. In such a scenario, test

case prioritization is the most common of the three

approaches stated.

Test suites play a prominent role in software testing. Test

case is a data set, such as an input data, execution paths,

Revised Manuscript Received on March 16, 2020.

* Correspondence Author

Tina Sachdeva, Department of Computer Science, Shaheed Rajguru

College of Applied Sciences for Women, University of Delhi, Delhi, India.

E-mail: sachdeva_tina@yahoo.com

execution conditions, or testing requirements. Problems

associated with test suite are high volume of test case number,

high manpower cost, test case coverage, etc. Therefore,

efficient management of test suite is a potential research

problem in the domain of software testing.

During recent times, novel approaches of Swarm

Intelligence have begun to be used for prioritization of test

cases. Genetic Algorithms have also found their way into it.

We studied the recent developments in these directions i.e.,

the use of Swarm Intelligence Techniques, particularly, Ant

Colony Optimization and compared its performance with

Genetic Algorithms. Also, some improvements suggested to

the traditional Ant Colony Optimization to enhance its

performance and efficiency have also been discussed in this

paper.

II. RELATED WORK

Over the years, many researchers and scientists have

carried out extensive and in-depth study in the field of

software testing using evolutionary algorithms. Ant Colony

Optimization (ACO) was proposed by Dorigo et al. [13] in his

Ph.D. thesis in 1992. This meta heuristic algorithm draws

inspiration from ants searching for their food. It was in the

year 2003 that ACO was first put forward by McMinn and

Holcombe [14] for generating test cases. Gradually,

researchers analyzed this possibility and came out with tools

for software testing based on Ant Colony Optimization.

Recently, Sharma et al. [1] developed ESCov, a tool based on

ACO generation state transition test sequence and achieved

maximum coverage with least possible redundancy at the

same time.

Suri and Singhal [2] proposed ACO as a promising

technique for test case prioritization. The tool developed by

Suri and Singhal [2] reduced the number of test cases by

62.5%. Singh et al. [3] have also applied ACO on test case

prioritization and their research has yielded successful results.

Shunkun Yang, Tianlong Man, and Jiaqi Xu [4] introduced

improved ACO for software test cases generation and

compared the performance and efficiency of the improved

version with Random Algorithms and Genetic Algorithms.

Kaur and Goyal [5] put forward Genetic Algorithm for

prioritization using code coverage. Ahlam Ansari et. al [6]

also proposed an optimized ACO technique for reducing

resource utilization and uncovering maximum faults at the

same time. Zheng Li, Mark Harman, and Robert M.

Swarm Intelligence Techniques and Genetic

Algorithms for Test Case Prioritization

 Tina Sachdeva

Swarm Intelligence Techniques and Genetic Algorithms for Test Case Prioritization

466

Retrieval Number: D6810049420/2020©BEIESP

DOI: 10.35940/ijeat.D6810.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Hierons[7] studied five search techniques: two

meta–heuristic search techniques together with three greedy

algorithms and the results obtained indicate that Genetic

Algorithms are a promising approach for prioritization.

Suri and Mangal [8] proposed a hybrid approach using Bee

Colony Optimization and Genetic Algorithm for test suite

minimization and implemented the proposed approach

through a tool named HBG_TCS. Thus, above works clearly

indicate the popularity of Swarm Optimization and Genetic

Algorithms for prioritizing test cases.

III. ANT COLONY OPTIMIZATION

Ant Colony Optimization is a population based meta

heuristic algorithm that uses artificial ants for finding

solutions to discrete and continuous problems. It simulates the

behavior of real ants. In real life, ants are blind and

communicate with one another using antennas and pheromone

liquid. While hunting for food, all ants traverse a particular

path and leave behind a chemical substance known as

‘pheromone’. The rest of the ants follow the path by smelling

the pheromone left behind. Hence, the optimal path is decided

through teamwork involving pheromone deposition and

evaporation, and are defined as follows:

i. Pheromone Deposition: In this, all ants add pheromone

liquid by dropping it on the path they traverse.
ii. Pheromone Trail Evaporation: This involves

reducing the degree of pheromone on all paths with due

passage of time.

The generic algorithm for ACO is:

Initialize pheromone trail, number of ants, test cases

and number of iterations.

populate ants
while (condition= =true)
{
 for (l=1; l<=no_ants; ++l)

for each ant, evaluate the fitness function f (k)

and find probabilistically the edge to be

travelled by it

p
k
 xy = ((ᴦ

α
 xy) (ƞ

β
xy)) / ∑z (ᴦ

α
 xz) (ƞ

β
xz)

where z ɛ permissible

update pheromone trail using the formula

 ᴦxy← (1- θ) ᴦxy +∑ Δ ᴦ
k
xy

 end for

 find the best path
}
In the previous algorithm:

i. pk
 xy represents probability of transition from x to y

ii. ᴦxy represents the quantity of pheromone deposited

while going from x to y

iii. α controls the influence of ᴦxy

iv. ƞxy represents the desirability of state transition xy

as computed by the heuristic function

v. β controls the influence of ƞxy

vi. θ pheromone evaporation coefficient

vii. Δ ᴦ
k
xy represents the quantity of pheromone left by k

th

ant

IV. BEE COLONY OPTIMIZATION(BCO)

TECHNIQUE

Bee Colony Optimization is a nature-inspired swarm-based

algorithm that mimics the strategy of foraging honey bees.

This algorithm was proposed by Karaboga in 2005[9]. Honey

bees have the capability to extend in multiple directions over

long distances. This enables them to explore more patches of

flowers with sufficient nectar. During foraging, scout bees are

sent for searching good flower patches. On return, the scout

bees perform ‘waggle dance’ through which they

communicate information to the colony. The waggle dance

communicates three parameters regarding a flower patch: the

direction of the newly discovered patch, its shortest distance

from the hive and the value of its fitness function (quality)

[10]. This information is used by other bees in the colony to

precisely locate these flower patches as the scout bee leads the

follower bees to them. This ensures that the other bees of the

colony collect nectar in an efficient and a quick manner. The

two main steps of BCO are [11]:

i. Foraging: The solution generation phase.

ii. Waggle Dance: The information exchange phase which

checks the quality of the existing solutions and directs

the generation to the new ones.

The generic algorithm for BCO is:

for (l=1 ;l<=s_bees; l++)

bee[l]=create_scout()

 good_site[l]=get_soln(bee[l])

 do{

recruitment();

for(int m=1;m<no_bees;m++)

 good_site[m]=local_search(good_site[m])

good_site[m]=leave_site(good_site[m])

good_site[m]=shrink_solnspace(good_site[m])
for(int n=no_bees;n<no_s_bees;++n)

 good _site[n]=global_search(good_site[n])

 } while(condition==TRUE)

In the previous algorithm:
i. create_scout (): Inserts scout bees into the search

space randomly.

ii. get_soln (): The scout bees evaluate the fitness of the

flower patch on which they land.

iii. recruitment (): After the scout bees performs

waggle dance, the onlooker bees are employed to

search neighborhood patches.

iv. local_search (): Explores the neighborhood flowers

for better fitness value.

v. leave_site(): If a flower patch with better fitness

value is obtained, the previous flower is discarded.

vi. shrink_solnspace (): This function reduces the size

of solution space by discarding patches with a lower

fitness value.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-4, April 2020

467

Retrieval Number: D6810049420/2020©BEIESP

DOI: 10.35940/ijeat.D6810.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

vii. global_search (): Determines the optimized output

out of all local search results.

V. GENETIC ALGORITHMS(GA)

Genetic Algorithm is an adaptive meta heuristic search

procedure based on the concept of biological selection and

evolution. It enhances a population of separate solutions in a

recursive manner. At each step, it randomly chooses

individuals from the present population and uses them as

parents to produce off springs for the next generation. Thus,

the population moves towards an optimized result over

consecutive generations.

The three main underlying processes in this are:

i. Selection: Examines the fitness of an individual

allowing the fit ones to pass on their genes to the next

generation.

ii. Crossover: Interchanging an allele of an individual

with another from a different individual. The

formula mentioned below is a proposed

implementation of crossover [5]:
off spring1 = cr*p1 + (1-cr) *p2 (cr: chromosome)
off spring2 = (1-cr) * p1 + cr*p2

iii. Mutation: Allele of genes is randomly replaced by

another to produce a new individual. The primary

purpose of mutation phase is to maintain diversity in

the population and avoid early untimely

convergence.

// Initialize generation

 x = 0

GP =population of randomly-generated organisms;

Calculate fitness value for each individual ‘x’

belonging to the generation ‘GPx’

do {

create_Nextgeneration();

//Selection

best_pop=elit_rate*p_size

send the best_pop to the next generation

GPx+1 rem _pop=p_size- best_pop;

//Crossover

for (x=1; x<=rem_pop/2; x++)
randomly select 2 organisms Q1 and Q2

from the remaining population

crossover (Q1, Q2) //subparts of 2 parents

//are swapped to produce 2 off springs

end for
//Mutation

for(y=1;y<=no_crossover;y++)
select an individual from the crossover population

and now mutate its each bit using µ

end for

best_soln=eval_pop();//returns the best solution by

//comparing the fitness values of each individual

 }while fitness of fittest individual in GPy is not up to the

mark

VI. RESULTS OF TEST SUIT MINIMIZATION

USING GENETIC ALGORITHMS AND ANT COLONY

OPTIMIZATION

In this section, first Genetic Algorithms and then Ant

Colony Optimization implementation is used for the purpose

of test suite prioritization.

In implementation using Genetic Algorithms, single point

crossover operation was used and the crossover probability

was computed as a scaled pseudorandom number R8 between

0 and 1. Next, the crossover point was taken as a

pseudorandom number I4 falling somewhere between 0 and

number of variables in each individual. In the operation of

mutation, the variable to undergo mutation was picked up in a

random manner and was replaced with another random value

between the upper and lower bound of that variable.

Crossover and mutation were performed provided their

probability of execution was less than the initial pre-set

probability. A user defined function time_count() computed

the time of execution till specified number of generations

were reached. Another user defined function compute ()

evaluated the fitness value of each individual which was taken

as the objective function

During the initial run of this implementation, initial count of

individuals in population, maximum number of generations,

probability of crossover and probability of mutation in the

program were chosen. These variables can be easily

reinitialized to any value suited to the problem under

consideration.

To determine potential effectiveness of this implementation,

a case study of a GCD program as shown in Fig.1 was carried

out.

1. void main (int x, int y) { int z;

2. if(y > x) {

3. z = x;

4. x = y;

5. y =z;

6. z = x % y;

7. while (z != 0) {

8. x = y;

9. y = z;

10. z = x % y;

11. }

12. return y;

13. }

Fig.1: Program to find GCD of two numbers

Fig.1. shows the GCD program (assumes smaller of the two

numbers is inputted first) that accepts two integer parameters

x and y and computes their greatest common divisor or

highest common factor and outputs it as z.

Swarm Intelligence Techniques and Genetic Algorithms for Test Case Prioritization

468

Retrieval Number: D6810049420/2020©BEIESP

DOI: 10.35940/ijeat.D6810.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Fig 2: Control flow graph of the GCD program

The simple independent paths from Fig.2 can be easily

inferred as:

1. P1: 1-2-6-7-11-12-13

2. P2:1-2-6-7-8-9-10-7-11-12-13

3. P3:1-2-3-4-5-6-7-11-12-13

4. P4:1-2-3-4-5-6-7-8-9-10-7-11-12-13

Fitness function for the problem based on path

dependency is given as:

f(x)=∑ Wi for all i =0 to n,

where Wi denotes the weights assigned to the respective

paths.

The implementation was executed for the GCD

program of Fig.1 and it was also executed with randomly

generated test data. The results summarized in Table 1

show that for the same parameter settings of input,

random testing took execution time which was on

average five times or more when compared to

implementation using Genetic Algorithms to reach the

same fitness value for which the associated values of

variables can serve as capable enough test data for the

purpose of error detection.

Table I: Time taken by Genetic Algorithm based

implementation and random testing for GCD program
Testing Number Time taken by GA

implementation (in

msec)

Time taken by

Random Testing

(in msec)

1 2.1 11.5

2 1.06 8.8

3 3.4 13.99

4 2.86 16.07

5 1.1 8

6 3.1 19.66

7 2.8 12.9

Next, for the same GCD program, Ant Colony Optimization

was used.

Table II: Time taken by Ant Colony Optimization based

implementation for GCD program
Testing Number Time taken by ACO

implementation (in

msec)

1 2

2 1.1

3 2.9

4 2.4

5 1.0

6 2.98

7 2.5

Fig 3: Execution time comparison of three techniques

VII. DISCUSSION OF COMPARISON OF SWARM

INTELLIGENCE AND GENETIC ALGORITHMS

Experimental results of the previous section show that

Genetic Algorithms and Ant Colony Optimization are far

better in terms of execution time for test case prioritization as

compared to naive prioritization techniques. Moreover, this

execution time for Genetic Algorithm based implementation

is quite close to Ant Colony Optimization based

implementation with former performing slightly better.

However, random testing approach takes time which is almost

five times or even more.

Further, quite a few studies have been done on the

application of Swarm Optimization and GA in generating

prioritized test suites. Research scholars have devised tools

that employ improved variations of ACO, BCO and GA.

Shunkun Yang, Tianlong Man, and Jiaqi Xu[4] have

proposed enhanced versions of Ant colony Optimization

namely- : better local pheromone update logic for ant colony

optimization, better pheromone volatilization coefficient for

ant colony optimization (IPVACO), and better global path

pheromone update strategy for ant colony optimization

(IGPACO).

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-4, April 2020

469

Retrieval Number: D6810049420/2020©BEIESP

DOI: 10.35940/ijeat.D6810.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Also, they have suggested a comprehensive Improved Ant

Colony Optimization (ACIACO) which is based on the above

mentioned three techniques. The authors then came out with a

comparison between the proposed technique Random

Algorithm (RND) and Genetic Algorithm in terms of both

efficiency and coverage. Their results showed that

performance of GA, ILPACO and IGPACO was almost

comparable in terms of statement coverage. The coverage of

test cases by IPVACO was better than ILPACO. IGPACO

picked up best ant to update pheromone and had a good

astringency. The minimum number of iterations, where

branch coverage achieved 100%, was much smaller than

IPVACO and IGPACO. ACIACO, which is based on all the

above three methods, enhanced the search efficiency, showed

promising level of coverage and greatly reduced the number

of iterations. Bharti Suri et al. [2] have designed a tool named

ACO_TCSP which prioritizes the test suite to ensure total

fault detection at minimized cost. The results are promising as

the tool reduces the size of the test suite by 25%. Moreover;

there is no requirement to travel through all paths for

detecting all faults in a specified time. Mitras and Adeeba

Khaboo [12] approach unites GA and Continuous Ant Colony

Optimization (CACO) to produce optimized solutions. The

hybrid algorithm uses Continuous Ant Colony Algorithm as a

mutation of Genetic Algorithm. The authors evaluate the

efficiency of the suggested approach using a set of standard

functions.

Suri and Mangal [8] have also suggested a novel technique

of combing BCO with GA. In their study, they develop a tool

named HBG_TCS that implements the proposed approach.

This hybrid approach comes out be much faster than the

native ACO technique.

VIII. CONCLUSION AND FUTURE WORK

From the above discussion, it is evident that Swarm

Optimization Techniques and Genetic Algorithms prove to be

more beneficial than the traditional prioritization methods

being used earlier. Also, it is evident that hybridized

algorithms perform better than the stand-alone Swarm

Intelligence Techniques. ACO and GA, both have some

inherent disadvantages. Because of these, it is preferable to

use Genetic Algorithm, Artificial Bee Colony, or other

heuristic algorithms in combination with Ant Colony

Optimization so that two algorithms mutually complement

each other. Such comprehensive techniques will enhance the

capability of the software test suite generated effectively.

Also, much work has not been done in test case

prioritization using artificial intelligence techniques namely,

Intelligent Water Drops, Gravitational Search Algorithm,

Simulated Annealing, Stochastic Diffusion Search etc. It

would be worthwhile to explore test case prioritization using

these techniques too.

REFERENCES

1. B. Sharma, I. Girdhar, M. Taneja, P. Basia, S. Vadla, and P. R.
Srivastava, “Software coverage: a testing approach through ant colony
optimization,” in Proceedings of the 2nd International Conference on
Swarm, Evolutionary, and Memetic Computing (SEMCCO '11), pp.
618–625, 2011.

2. B. Suri and S. Singhal, “Implementing Ant colony optimization for test
case selection and prioritization,” International Journal on Computer
Science and Engineering, vol. 3, no. 5, pp. 1924–1932, 2011.

3. Y. Singh, A. Kaur, and B. Suri, “Test case prioritization using ant
colony optimization,” ACM SIGSOFT Software Engineering Notes,
vol. 35, no. 4, pp. 1–7, 2010.

4. Shunkun Yang, Tianlong Man, and JiaqiXu, “Improved Ant Algorithms
for Software Testing Cases Generation,” The Scientific World Journal,
vol. 2014, Article ID 392309, 9 pages, 2014. doi:10.1155/2014/392309

5. A. Kaur, and S. Goyal, “A Genetic Algorithm For Regression Test Case
Prioritization Using Code Coverage”, International Journal on
Computer Science and Engineering, vol 3, no 5, pp. 1839-1847, 2011.

6. A. Ansari, A. Khan, A. Khan, and K. Mukadam, “Optimized Regression
Test using Test Case Prioritization”, Proceedings of International
Conference on Communication,Virtualization (ICCCV), Volume 79,
Pages152-160, 2016

7. Zheng Li,Mark Harman, and Robert M.Hierons,”Search Algorithms for
Regression Test Case Priortization”, IEEE Transactions on Software
Engineering, Vol.33, No.4,pp.225-237,2007

8. Bharti Suri, and Isha Mangal, “Analyzing Test Case Selection using
Proposed Hybrid Technique based on BCO and Genetic Algorithm and
a comparison with ACO”,International Journal of Advanced Research
in Computer Science and Software Engineering, Volume 2, Issue 4,
April 2012.

9. D. Karaboga,B. Basturk, “Artificial Bee Colony(ABC) Optimization
Algorithm for Solving Constraint Optimization Problems”, Advances in
Soft Computing: Foundations of Fuzzy Logic and Soft Computing,
Vol:4529/2007, pp: 789-798,Springer- Verlag,2007,IFSA 2007

10. Camazine S,Denebourg J,Franks NR,Sneyd J, Theraula G and
Bonabeau E.Self-Organization in Biological
Systems.Princeton:Princeton University Press 2003

11. Tatjana DAVIDOVIC, Dusan TEODOROVIC, and Milica SELMIC,
“Bee Colony Optimization Part 1:The Algorithm Overview”,Yugoslav
Journal of Operations Research 25(2015), Number 1,33-56

12. Ban A. Mitras and AdeebaKH.Aboo,”Hybrid of Genetic Algorithm and
Continous Ant Colony Optimization for Optimum Solution”,
International Journal of Computer Networks and Communications
Security, VOL.2, NO.1, jANUARY 2014,pp 1-6

13. M.Dorigo, V.Maniezzo, and A.Colorni,”Ant system: optimization by a
colony of cooperating agents,”IEEE Transactions on Systems,Man and
Cybernetics B:Cybernetics, vol.26,no 1,pp29-41,1996

14. P.McMinn and M.Holcombe, “The state problem for evolutionary
testing,” in proceedings of the Genetic and evolutionary Computation
Conference(GECCO’03),pp.2488-2498,Springer,Chicago,111,USA,Ju
ly 2003.

AUTHORS PROFILE

Tina Sachdeva, is currently working as an Assistant

Professor in the Department of Computer Science of

Shaheed Rajguru College of Applied Sciences for

Women, University of Delhi with about 12 years of

teaching experience. She has authored several

National and International research publications.

