Homogeneous investigation of lithium in globular clusters

Nicoletta Sanna INAF- OA Arcetri

In collaboration with E. Pancino, E. Franciosini, A. Mucciarelli, M. Tsantaki & the GES Consortium

- Li is mostly created during the Big Bang nucleosynthesis
- Li is rapidly destroyed in the stellar interior owing to proton capture reactions at ${\sim}2.5 \ x \ 10^6 \ K$
- Li traces mixing processes: it should be "primordial" in dwarf stars and diluted in evolved stars

GCs in iDR6 GES

GES consists of ~10⁵ stars spectroscopically investigated using UVES + GIRAFFE (new observations + archive data)

Releases consist of reduced spectra, RVs, parameters, abundances homogenously analysed Gilmore+2012; Randich+2013

https://www.gaia-eso.eu

Instrument	Setup	λ_{\min}	λ_{\max}	R
		(Å)	(Å)	$(\lambda/\Delta\lambda)$
UVES	520 ^{<i>a</i>,<i>d</i>}	4140	6210	47000
UVES	$580^{b,d}$	4760	6840	47000
UVES	860 ^c	6600	10600	47000
GIRAFFE	$HR3^{a,d}$	4033	4201	24800
GIRAFFE	$HR4^{a,e}$	4188	4297	24000
GIRAFFE	$HR5A^{a,d}$	4340	4587	18470
GIRAFFE	$HR6^{a,d}$	4538	4759	20350
GIRAFFE	$HR9B^d$	5143	5356	25900
GIRAFFE	HR10 ^f	5339	5619	19800
GIRAFFE	$HR14A^{a,d}$	6308	6701	17740
GIRAFFE	$HR15N^{d}$	6470	6790	17000
GIRAFFE	$HR21^{f}$	8484	9001	16200

Pancino+2017

GCs in iDR6 GES

As calibrators GCs have been observed/analysed (Pancino+2017): giant stars 15 GCs + dwarf stars for 2

M12	NGC 104*	NGC 1851	NGC 4372	NGC 5927
M15	NGC 362	NGC 1904	NGC 4590	NGC 6553
M2	NGC 1261	NGC 2808	NGC 4833	NGC 6752*

Abundances homogenously analysed, including Li

Membership selections done with Gaia: we used the probabilities by Vasilev and Baumgardt 2021 (probability > 0.9)

Membership selections done with Gaia: we used the probabilities by Vasilev and Baumgardt 2021 (probability > 0.9)

Li analysis described in Franciosini+ in prep.

GES gives us the possibility to explore Li for ~1200 stars in a very large sample of GCs.

Li analysis described in Franciosini+ in prep.

GES gives us the possibility to explore Li for ~1200 stars in a very large sample of GCs.

Li analysis described in Franciosini+ in prep.

GES gives us the possibility to explore Li for ~1200 stars in a very large sample of GCs.

Stetson+2019 for photometry

Li-rich GCs stars

Li-rich GCs stars

Different mechanisms suggested:

- Contamination from ejecta of novae;
- Accretion of planets and/or brown dwarf;
- Li produced by Cameron-Fowler mechanism in AGB star;
- Contamination from ejecta of super-AGB star;
- Binary system with a massive star;
- Extra mixing process ...

but still matter of debate

Conclusions

- GES will provide abundances for several elements (including Li) for hundreds of stars at different evolutionary stages in GCs (but not only in GCs)
- GES will significantly improve our knowledge about Li in GCs
- We need more data and different elements to investigate both MP and Li-rich stars in GCs