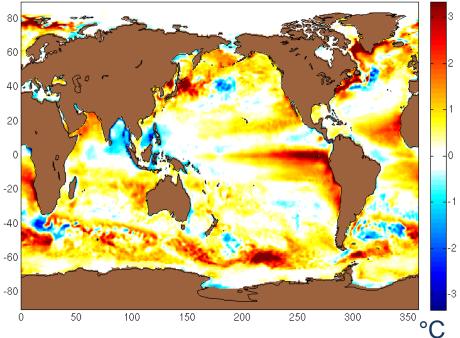


Impact of Satellite Observations on SST Forecasts via Variational Data Assimilation and Heat Flux Calibration

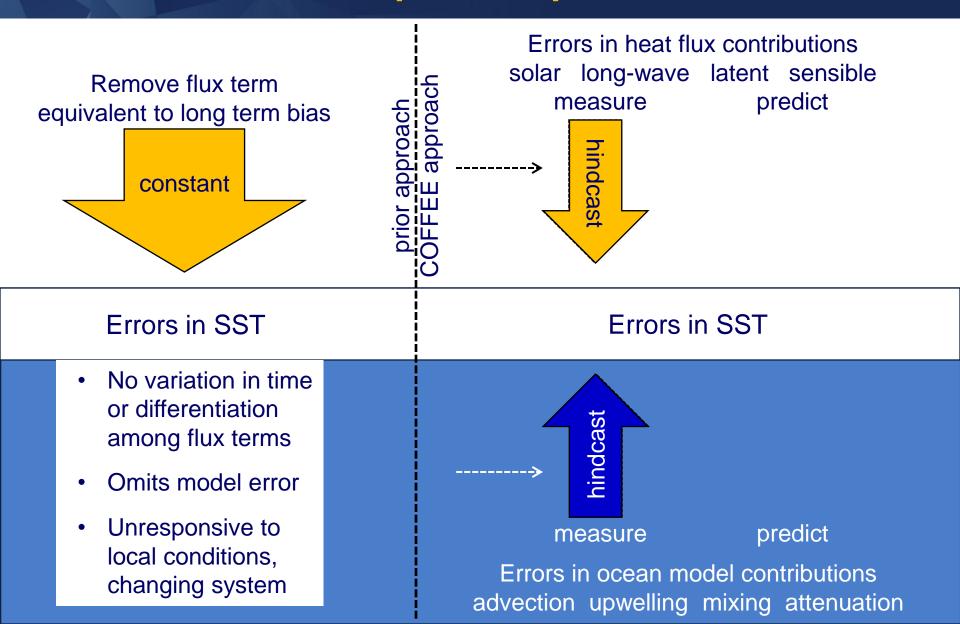

Charlie N. Barron¹, Clark Rowley¹, Scott R. Smith¹, Jackie May¹, Jan M. Dastugue¹, Peter L. Spence², and Silvia Gremes-Cordero³ ¹Naval Research Laboratory, ²Vencore, ³University of New Orleans GHRSST XVII Science Team Meeting Washington DC, USA 6-10 June 2016

U.S.NAVAL RESEARCH

Motivation: Non-assimilative ocean simulations have temperature bias

Calculate bias by running the global ocean model for an extended period, using forcing from the global atmospheric model. Compare to observed mean SST.

annual Sea Surface Temperature (SST) bias



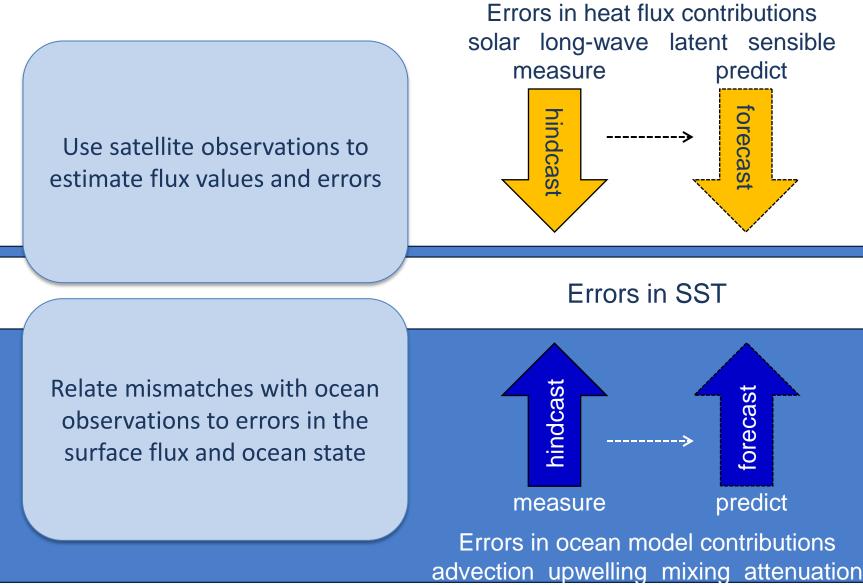
Without assimilation, simulations exhibit a significant SST bias

We could change the mean heat flux to account for the long term bias, but this would be unrealistic ...

Paradigm shift: from constant bias to time-dependent partition

U.S. NAVA

USNA


Use satellite observations, 4DVAR to estimate flux error, guide correction

predict

recas

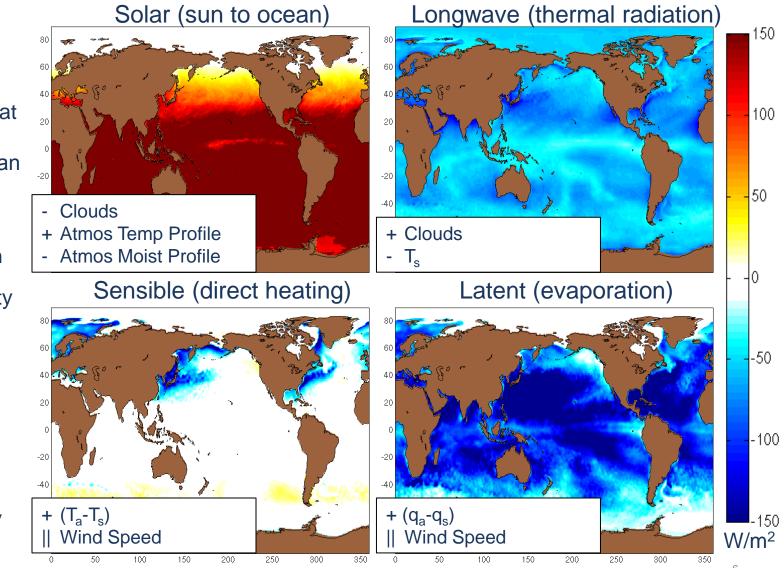
<u>forecast</u>

predict

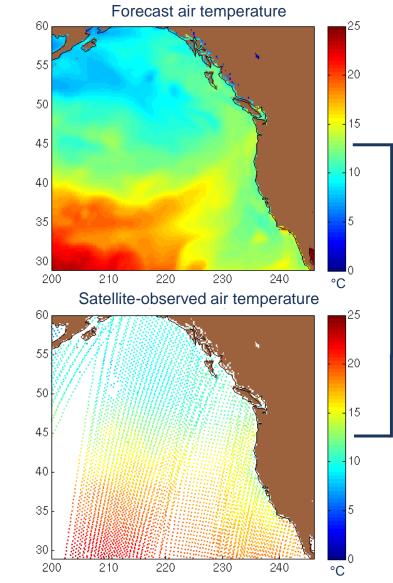
Heat Flux Components

Mean January surface heat flux

Use convention that positive flux is atmosphere→ocean

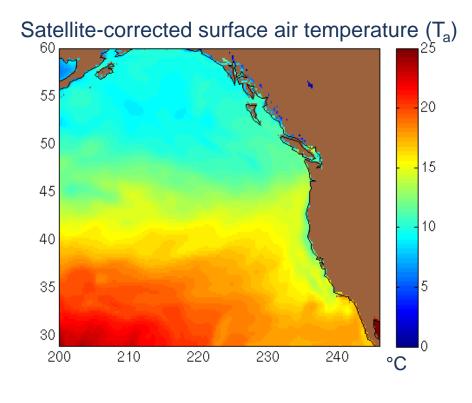

Positive (red) warms ocean; (blue) cools ocean

Quantify sensitivity of flux errors to errors in ocean, atmospheric properties

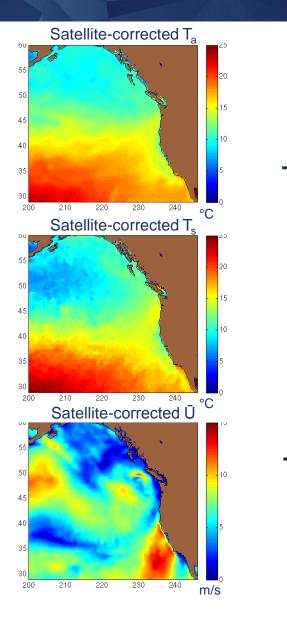

Flux sensitivity:

- + positive
- negative

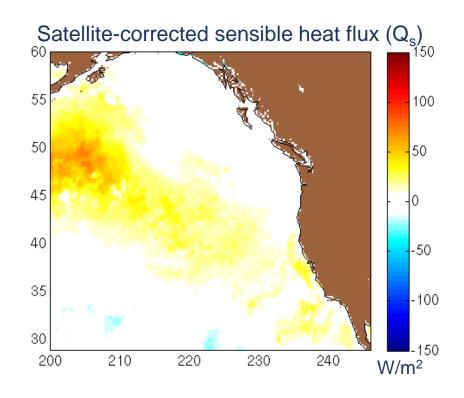
|| magnitude only



Use satellite measurements to correct estimates of contributing fields

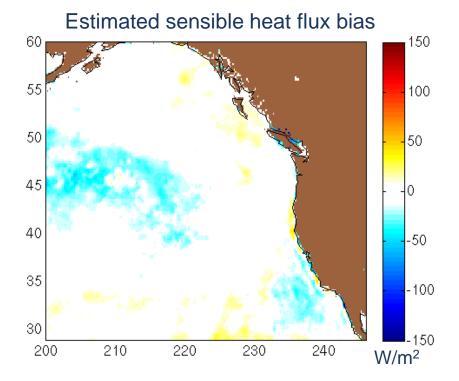

U.S. NAVA

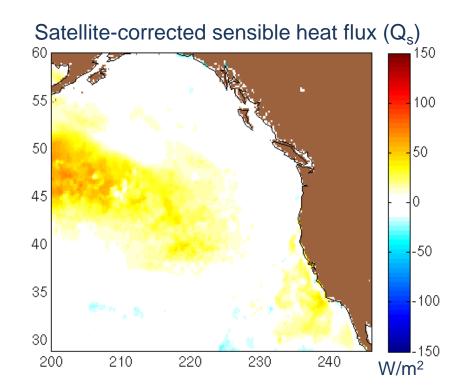
Combine satellite, in situ, and model data to make satellite-corrected estimates of properties used to calculate heat flux: temperatures, humidity, wind speed, etc.


1 July 2010 12Z

Use satellite measurements to correct estimates of contributing fields, heat flux

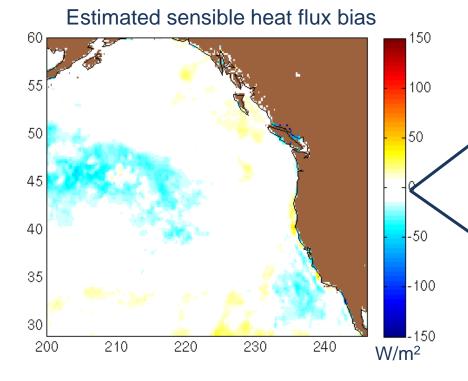
U.S.NAVA


Satellite-corrections in surface properties lead to satellite-corrected surface fluxes.



1 July 2010 12Z

Prepare a time series of satellite corrected heat fluxes to estimate error covariance


The time series of sensible heat flux bias provides a basis for automatically estimating the flux error covariance.

Use flux error covariance to relate hindcast observations to flux corrections

The time series of sensible heat flux bias provides a basis for automatically estimating the flux error covariance.

Decompose hindcast corrections into persistent and transient modes to inform forecast corrections

- Persistent bias correction
- 20-day running average
- Apply in full over forecast
- Transient bias correction
- Daily running average of remaining bias
- Weight by decorrelation scale

NFLUX reduces turbulent flux errors

U.S.NAVAI

RES

Flux or Co	Flux or Constituent		St. Dev.	RMSE	R ²	Ν	
Air temp	NFLUX	0.24	1.22	1.24	0.98	100.044	
T _a (°C)	NAVGEM	-0.30	1.21	1.25	0.98	199,944	
Humidity	NFLUX	0.25	1.18	1.21	0.96	117,298	
q _a (g kg⁻¹)	NAVGEM	-0.50	1.19	1.29	0.96	117,290	
Wind speed Ū (m s⁻¹)	NFLUX	0.21	2.06	2.07	0.64	194,649	
	NAVGEM	-0.33	2.14	2.17	0.63	194,049	
Latent Flux	NFLUX	-17.41	59.31	61.81	0.49	15,707	
Q _{LH} (W m ⁻²)	NAVGEM	14.28	62.70	64.30	0.49		
Sensible Flux	NFLUX	-2.06	19.21	19.32	0.48	15,707	
Q _{SH} (W m ⁻²)	NAVGEM	2.28	19.71	19.84	0.51	13,707	
Shortwave Flux	NFLUX	23.98	150.00	151.90	0.74	10,066	
Q _{SW} (W m ⁻²)	NAVGEM	25.58	153.98	165.96	0.69	10,000	
Longwave Flux	NFLUX	-5.41	28.75	29.25	0.75	17,138	
Q _{LW} (W m ⁻²)	NAVGEM	-10.72	33.05	34.75	0.72	17,130	

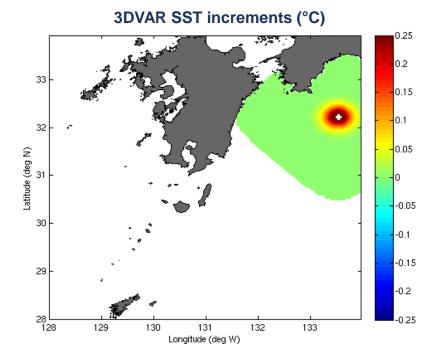
Sat-estimated heat flux: NFLUX prepared daily; similar NASA products are delayed

NFLUX is prepared daily

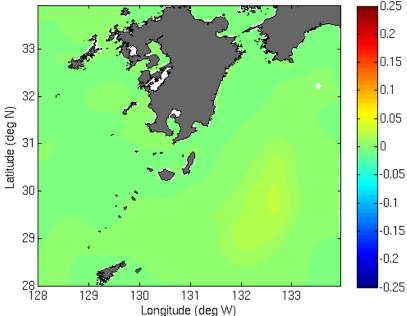
- · for operational short-medium forecasts
- real-time satellite data
- See May et al., Applied Meteorology and Climatology, 2016

NASA products are delayed weeks-months

- for long-term climatological forecasts
- use delayed-mode satellite data
- CERES (Kratz et al., 2010) delayed 6+ months
- FLASHFlux (Kratz et al., 2014) delayed 1 week


NFLUX gives us the capability to use satellite observations to estimate flux values and errors

4DVAR data assimilation gives us the capability to relate mismatches with ocean observations to errors in the surface flux and ocean state


Variational data assimilation: 3DVAR, 4DVAR adjust the model state

3DVAR corrects the initial state only

4DVAR extends observation correction in time and space along model flow Extended 4DVAR includes boundary-layer with ocean in adjoint, TLM

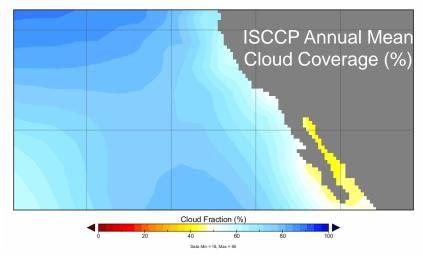
4DVAR SST increments (°C)

RELO NCOM: Rowley and Mask, 2014

NCOM 4DVAR: Ngodock et al., 2014

COFFEE experiments using NFLUX and variational assimilation

		Assimilation Type					
	Fluxes	3DVAR	4DVAR standard	4DVAR ocn + bdry layer			
Ś	unmodified	-	-				
COAMPS	NFLUX-corrected hindcast	-	-				
Ŭ	NFLUX-corrected forecast						
Σ	unmodified	-	-				
NAVGEM	NFLUX-corrected hindcast	-	-				
Z	NFLUX-corrected forecast						


COFFEE has completed year-long May 2013-April 2014 experiments marked with the I, the period coinciding with the MIRS cloud data.

U.S. Naval Research Laboratory

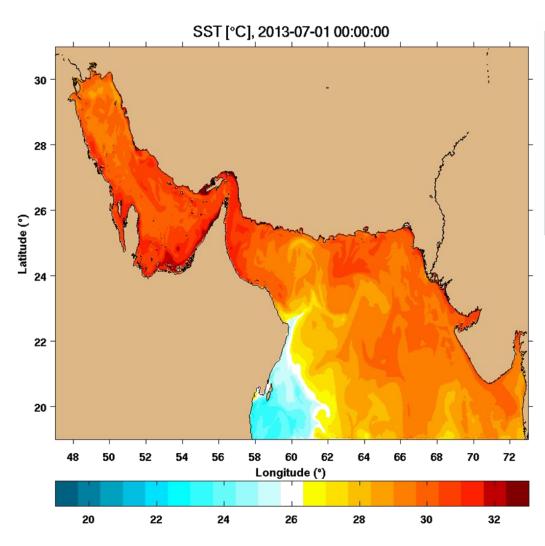
Southern California Current: cloud gradients, eastern boundary upwelling

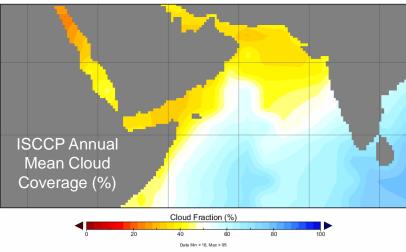
SST [°C], 2013-07-01 00:00:00 32 30 Longitude (°) 10 12 14 16 18 20 22

ISCCP Annual Mean Cloud Coverage

- Positive equivalent annual heat flux bias
- High cloud coverage, decreasing shoreward
- Eastern boundary current system with upwelling
- Results from 3DVAR NFLUX COAMPS

COFFEE experiment results (VIIRS) California Current May 2013 – Apr. 2014


			NAVGEM								
		bias (°C)				rms error (°C)				Ν	
	SOCAL case	24 h	48 h	72 h	96 h	24 h	48 h	72 h	96 h	42123179	
	3DVAR original	-0.15	-0.15	-0.15	-0.15	0.74	0.79	0.83	0.85	42123179	
RS	3DVAR NFLUX 4DVAR original	-0.14	-0.13	-0.12	-0.11	0.77	0.82	0.85	0.88	42123179	
=	4DVAR original	-0.17	-0.19	-0.20	-0.21	0.64	0.70	0.75	0.78	42123179	
	4DVAR NFLUX	-0.13	-0.15	-0.15	-0.15	0.64	0.70	0.74	0.78	42123179	


U.S.NA

			COAMPS								
			bias (°C)				rms error (°C)				
	SOCAL case	24 h	48 h	72 h	96 h	24 h	48 h	72 h	96 h	42123179	
	3DVAR original		-0.31	-0.32	-0.31	0.79	0.84	0.88	0.90	42123179	
RS	3DVAR NFLUX 4DVAR original	-0.23	-0.25	-0.25	-0.25	0.79	0.84	0.87	0.89	42123179	
∣₹	4DVAR original	-0.20	-0.25	-0.28	-0.28	0.66	0.73	0.78	0.81	42123179	
	4DVAR NFLUX	-0.18	-0.21	-0.23	-0.23	0.65	0.72	0.77	0.79	42123179	

NFLUX reduces forecast bias and RMS error. 4DVAR outperforms 3DVAR in 3 of 4 cases, similar in fourth.

Northern Arabian Sea: Low mean cloud coverage, monsoon effects, upwelling

ISCCP Annual Mean Cloud Coverage

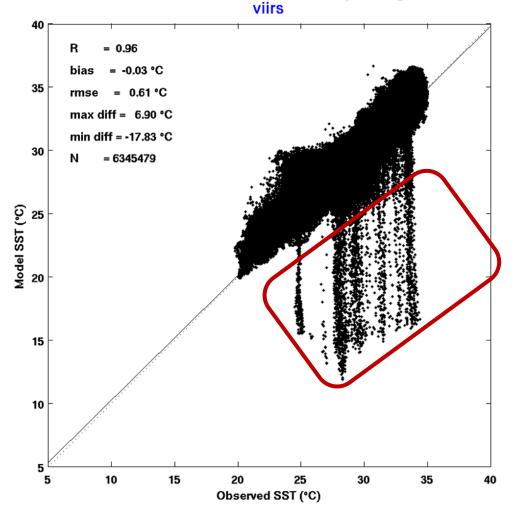
- Low mean cloud coverage
- Monsoon cycle
- Upwelling east of Oman
- Differences between Persian Gulf and Arabian Sea
- Results from 3DVAR NFLUX NAVGEM

U.S.NAVAI

RESEARCH

COFFEE experiment results (VIIRS) North Arabian Sea May 2013 – Apr. 2014

			NAVGEM								
			bias	(°C)			Ν				
	NAS case	24 h	48 h	72 h	96 h	24 h	48 h	72 h	96 h	52156075	
RS	3DVAR original	-0.05	-0.08	-0.09	-0.08	0.43	0.50	0.53	0.55	52156075	
\geq	3DVAR NFLUX	-0.05	-0.08	-0.09	-0.08	0.42	0.50	0.53	0.55	52156075	


			COAMPS								
			bias	(°C)			Ν				
	NAS case	24 h	48 h	72 h	96 h	24 h	48 h	72 h	96 h	52156075	
RS	3DVAR original	-0.08	-0.13	-0.14	-0.14	0.45	0.53	0.57	0.60	52156075	
\geq	3DVAR NFLUX	-0.06	-0.10	-0.11	-0.10	0.44	0.52	0.55	0.57	52156075	

NFLUX reduces forecast bias and RMS error. 12-month 4DVAR results are incomplete.

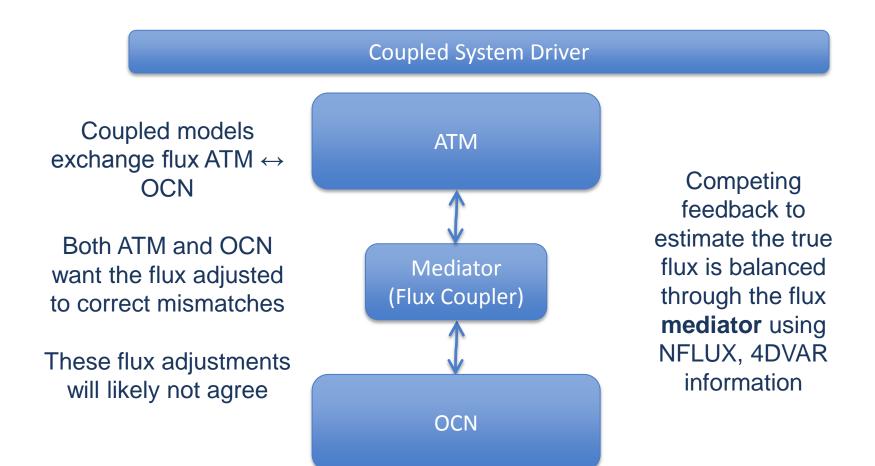
COFFEE experiment results (VIIRS) North Arabian Sea May 2013 – Apr. 2014

North Arabian Sea Model Comparsion with All viirs Observations, for NAS_4DV_NFLUX_COAMPS NCOM 24-Hour Forecast, May -August 2013

U.S. NAVA

Small bias and RMS error in bulk statistcs over 6M matchups May-August 2016 obscures large errors occurring in a small number of comparisons

Identify nearshore NFLUX COAMPS error apparently due to mismatch in SST/land T


Spurious low values in May 2013, around 12°C

NFLUX_COAMPS longwave – NFLUX_NAVGEM longwave Isolated discrepancies along the boundaries (including the coast of Qatar where the cold spot is)

Ongoing examination in extrapolating NFLUX longwave corrections nearshore

Payoff for coupled systems: capability to determine errors, balance of fluxes

NRL SSC is recruiting postdocs interested in

- SST/radiance/flux data assimilation in coupled air/ocean/ice/wave forecast systems
- Velocity data assimilation in ocean models
- Automated guidance for unmanned observing systems (floats, gliders, Remus)

More info for postdocs: stipend ~\$75K/year

ASEE: https://nrl.asee.org/

NRC: <u>http://sites.nationalacademies.org/pga/rap/</u>

(both open to US citizens or US permanent residents)

COFFEE - Conclusions

Errors in heat flux are significant for ocean forecasts

Assimilation of satellite retrievals relating to air, water temperatures and wind speed near the air-sea interface reduces errors in forecast turbulent heat flux

Assimilation of additional satellite observations reduces errors in forecast radiant heat flux

Using satellite-corrected heat fluxes reduces forecast errors of sea surface temperature

The combination of flux corrections with 4DVAR assimilation reduces errors more than either approach alone

Use of satellite-corrected fluxes or additional satellite retrievals relating to nearsurface properties will likely be important in guiding coupled forecast systems