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Without assimilation, simulations exhibit a 
significant SST bias 

 

We could change the mean heat flux to 
account for the long term bias, but this 
would be unrealistic … 

Motivation: Non-assimilative ocean 
simulations have temperature bias 

Calculate bias by running the global ocean model for an extended period, 

using forcing from the global atmospheric model. 

Compare to observed mean SST. 
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Paradigm shift: from constant bias  
to time-dependent partition 
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Errors in ocean model contributions 

advection  upwelling  mixing  attenuation 
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Relate mismatches with ocean 
observations to errors in the 
surface flux and ocean state 

Use satellite observations to 
estimate flux values and errors 

Use satellite observations, 4DVAR to 
estimate flux error, guide correction 



Mean January 

surface heat flux 

Use convention that 

positive flux is 

atmosphere→ocean 

Positive (red) 

warms ocean;   

(blue) cools ocean 

 Quantify sensitivity 

of flux errors to 

errors in ocean, 

atmospheric 

properties 

Flux sensitivity: 

+ positive 

- negative 

|| magnitude only 

Solar (sun to ocean) 

Sensible (direct heating) Latent (evaporation) 

W/m2 

Longwave (thermal radiation) 

Heat Flux Components 

- Clouds 

+ Atmos Temp Profile 

- Atmos Moist Profile 

+ Clouds 

- Ts 

+ (Ta-Ts) 

|| Wind Speed 

+ (qa-qs) 

|| Wind Speed 
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Use satellite measurements to correct 
estimates of contributing fields 

Combine satellite, in situ, and model data 

to make satellite-corrected estimates of 

properties used to calculate heat flux: 

temperatures, humidity, wind speed, etc. 

°C 

°C 

Satellite-corrected surface air temperature (Ta)  

°C 

Forecast air temperature 

Satellite-observed air temperature 

1 July 2010  12Z 



Satellite-corrected sensible heat flux (Qs)  

W/m2 
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Use satellite measurements to correct 
estimates of contributing fields, heat flux 

Satellite-corrections in surface properties 

lead to satellite-corrected surface fluxes. 

1 July 2010  12Z 

Satellite-corrected Ta  

Satellite-corrected Ts  

Satellite-corrected Ū  

m/s 

°C 

°C 
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Prepare a time series of satellite corrected 
heat fluxes to estimate error covariance 

The time series of sensible heat flux bias provides a basis for automatically 

estimating the flux error covariance. 

W/m2 W/m2 

Satellite-corrected sensible heat flux (Qs)  Estimated sensible heat flux bias  



10 

Use flux error covariance to relate 
hindcast observations to flux corrections 

The time series of sensible heat flux bias provides a basis for automatically 

estimating the flux error covariance. 

W/m2 

Estimated sensible heat flux bias  

• Persistent bias correction 

• 20-day running average 

• Apply in full over forecast 

• Transient bias correction 

• Daily running average of 

remaining bias 

• Weight by decorrelation scale 

Decompose hindcast corrections into 

persistent and transient modes to 

inform forecast corrections 
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NFLUX reduces turbulent flux errors 

Flux or Constituent Bias St. Dev. RMSE R2 N 

Air temp 

Ta (°C) 

NFLUX 0.24 1.22 1.24 0.98 
199,944 

NAVGEM -0.30 1.21 1.25 0.98 

Humidity 

qa (g kg-1) 

NFLUX 0.25 1.18 1.21 0.96 
117,298 

NAVGEM -0.50 1.19 1.29 0.96 

Wind speed 

𝐔 (m s-1) 

NFLUX 0.21 2.06 2.07 0.64 
194,649 

NAVGEM -0.33 2.14 2.17 0.63 

Latent Flux 

QLH (W m-2) 

NFLUX -17.41 59.31 61.81 0.49 
15,707 

NAVGEM 14.28 62.70 64.30 0.49 

Sensible Flux 

QSH (W m-2) 

NFLUX -2.06 19.21 19.32 0.48 
15,707 

NAVGEM 2.28 19.71 19.84 0.51 

Shortwave Flux 

QSW (W m-2) 

NFLUX 23.98 150.00 151.90 0.74 
10,066 

NAVGEM 25.58 153.98 165.96 0.69 

Longwave Flux 

QLW (W m-2) 

NFLUX -5.41 28.75 29.25 0.75 
17,138 

NAVGEM -10.72 33.05 34.75 0.72 
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NFLUX is prepared daily 

• for operational short-medium forecasts 

• real-time satellite data 

• See May et al., Applied Meteorology and Climatology, 2016 

 

NASA products are delayed weeks-months 

•  for long-term climatological forecasts 

• use delayed-mode satellite data 

• CERES (Kratz et al., 2010) delayed 6+ months 

• FLASHFlux (Kratz et al., 2014) delayed 1 week 

 

 

NFLUX gives us the capability to use satellite observations to estimate flux 
values and errors 

4DVAR data assimilation gives us the capability to relate mismatches with 
ocean observations to errors in the surface flux and ocean state 

 

 

Sat-estimated heat flux: NFLUX prepared 
daily; similar NASA products are delayed 
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Variational data assimilation: 
3DVAR, 4DVAR adjust the model state 

3DVAR corrects the initial state only 

4DVAR extends observation correction in time and space along model flow 

Extended 4DVAR includes boundary-layer with ocean in adjoint, TLM 

3DVAR SST increments (°C) 4DVAR SST increments (°C) 

NCOM 4DVAR: Ngodock et al., 2014 RELO NCOM: Rowley and Mask, 2014 
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Assimilation Type 

Fluxes 

3DVAR 4DVAR 

standard 

4DVAR ocn 

+ bdry layer 

C
O

A
M

P
S

 unmodified ■ ■ 

NFLUX-corrected 

hindcast 
■ ■ 

NFLUX-corrected forecast 

N
A

V
G

E
M

 unmodified ■ ■ 

NFLUX-corrected 

hindcast 
■ ■ 

NFLUX-corrected forecast 

COFFEE experiments using NFLUX 
and variational assimilation 

COFFEE has completed year-long May 2013-April 2014 experiments 

marked with the  ■, the period coinciding with the MIRS cloud data. 



  15 U.S. Naval Research Laboratory 

Southern California Current: cloud 
gradients, eastern boundary upwelling 

ISCCP Annual Mean 

Cloud Coverage (%) 

• Positive equivalent annual 

heat flux bias 

• High cloud coverage, 

decreasing shoreward 

• Eastern boundary current 

system with upwelling 

• Results from 3DVAR NFLUX 

COAMPS 
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COFFEE experiment results (VIIRS) 
California Current     May 2013 – Apr. 2014 

NFLUX reduces forecast bias and RMS error. 

4DVAR outperforms 3DVAR in 3 of 4 cases, similar in fourth. 



  17 U.S. Naval Research Laboratory 

 
Northern Arabian Sea: Low mean cloud 
coverage, monsoon effects, upwelling 
 

ISCCP Annual 

Mean Cloud 

Coverage (%) 

• Low mean cloud coverage 

• Monsoon cycle 

• Upwelling east of Oman 

• Differences between Persian 

Gulf and Arabian Sea 

• Results from 3DVAR NFLUX 

NAVGEM 
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COFFEE experiment results (VIIRS) 
North Arabian Sea    May 2013 – Apr. 2014 

NFLUX reduces forecast bias and RMS error. 

12-month 4DVAR results are incomplete. 
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COFFEE experiment results (VIIRS) 
North Arabian Sea    May 2013 – Apr. 2014 

Small bias and RMS 

error in bulk statistcs 

over 6M matchups May-

August 2016 obscures 

large errors occurring in 

a small number of 

comparisons 
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Identify nearshore NFLUX COAMPS error 
apparently due to mismatch in SST/land T 

Ongoing examination in extrapolating NFLUX longwave corrections nearshore 

Spurious low values in 

May 2013, around 12°C  

NFLUX_COAMPS longwave  – 

NFLUX_NAVGEM longwave 

Isolated discrepancies along the 

boundaries (including the coast of 

Qatar where the cold spot is) 
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Payoff for coupled systems: capability to 
determine errors, balance of fluxes 

Coupled System Driver 

Coupled models 

exchange flux ATM ↔ 

OCN 

 

Both ATM and OCN 

want the flux adjusted 

to correct mismatches 

 

These flux adjustments 

will likely not agree 

Competing 

feedback to 

estimate the true 

flux is balanced 

through the flux 

mediator using 

NFLUX, 4DVAR 

information 

Mediator 
(Flux Coupler) 

ATM 

OCN 
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NRL SSC is recruiting postdocs interested in 

• SST/radiance/flux data assimilation in coupled 
air/ocean/ice/wave forecast systems 

• Velocity data assimilation in ocean models 

• Automated guidance for unmanned observing 
systems (floats, gliders, Remus) 

 

More info for postdocs: stipend ~$75K/year 

 ASEE: https://nrl.asee.org/ 

 NRC: http://sites.nationalacademies.org/pga/rap/ 

 (both open to US citizens or US permanent residents) 

 

 

NRL SSC postdoc opportunities 

https://nrl.asee.org/
https://nrl.asee.org/
https://nrl.asee.org/
http://sites.nationalacademies.org/pga/rap/
http://sites.nationalacademies.org/pga/rap/
http://sites.nationalacademies.org/pga/rap/
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Errors in heat flux are significant for ocean forecasts 

Assimilation of satellite retrievals relating to air, water temperatures and wind 

speed near the air-sea interface reduces errors in forecast turbulent heat flux 

Assimilation of additional satellite observations reduces errors in forecast 

radiant heat flux 

Using satellite-corrected heat fluxes reduces forecast errors of sea surface 

temperature 

The combination of flux corrections with 4DVAR assimilation reduces errors 

more than either approach alone 

Use of satellite-corrected fluxes or additional satellite retrievals relating to near-

surface properties will likely be important in guiding coupled forecast systems 

COFFEE - Conclusions 


