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ABSTRACT 21 

Climate change is drastically changing the timing of biological events across the globe. Changes 22 

in the phenology of seasonal migrations between the breeding and wintering grounds have been 23 

observed across biological taxa, including birds, mammals, and insects. For birds, strong links 24 

have been shown between changes in migration phenology and changes in weather conditions at 25 

the wintering, stopover, and breeding areas. For other animal taxa, the current understanding 26 

of, and evidence for, climate (change) influences on migration still remains rather limited, 27 

mainly due to the lack of long-term phenology datasets. Bracken Cave in Texas (USA) holds one 28 

of the largest bat colonies of the world. Using weather radar data, a unique 23-year (1995-2017) 29 

long time series was recently produced of the spring and autumn migration phenology of 30 

Brazilian free-tailed bats (Tadarida brasiliensis) at Bracken Cave. Here, we analyse these 31 

migration phenology time series in combination with gridded temperature, precipitation, and 32 

wind data across Mexico and southern USA, to identify the climatic drivers of (changes in) bat 33 

migration phenology. Perhaps surprisingly, our extensive spatiotemporal search did not find 34 

temperature to influence either spring or autumn migration. Instead, spring migration 35 

phenology seems to be predominantly driven by wind conditions at likely wintering or spring 36 

stopover areas during the migration period. Autumn migration phenology on the other hand, 37 

seems to be dominated by precipitation to the east and north-east of Bracken Cave. Long-term 38 

changes towards more frequent migration-favourable wind conditions have, furthermore, 39 

allowed spring migration to occur 16 days earlier. Our results illustrate how some of the 40 

remaining knowledge gaps on the influence of climate (change) on bat migration and abundance 41 

can be addressed using weather radar analyses.    42 

INTRODUCTION 43 

Every year, many billions of animals migrate across the globe in search of conditions that increase 44 

survival and reproductive success. In doing so, they contribute to the ecosystem functioning and 45 

provide invaluable ecosystem services, such as pest control and pollination, at the many locations 46 

along their migratory route (Bauer et al., 2019; Bauer & Hoye, 2014; Bowlin et al., 2010). Many 47 

populations of migratory animals have been steeply declining (Vickery et al., 2014; Wilcove & 48 

Wikelski, 2008), compromising their role in the ecosystems along their way. Knowledge on the timing 49 

of migration is a crucial factor in determining the relative impacts of migratory animals on those 50 

ecosystems, but also for implementing efficient conservation actions (Bauer & Hoye, 2014; Dechmann 51 

et al., 2017; Wilcove & Wikelski, 2008). Over the past decades, many species have changed their 52 

migratory timing in response to climate change (Thackeray et al., 2016). The direction and magnitude 53 

of these changes, however, vary across geographic locations and taxa (Charmantier & Gienapp, 2014; 54 

Chmura et al., 2019; Hurlbert & Liang, 2012).  55 



To understand why species and populations differ in their phenological response to climate change, we 56 

first need to identify the environmental drivers of migration timing (Haest et al., 2018b, 2019; Shaw, 57 

2016). Such an endeavour would not only advance our fundamental understanding of animal 58 

migration, but, more importantly, allow us to predict the consequences of ongoing and future climate 59 

change (Bowlin et al., 2010; Pettit & O‟Keefe, 2017), identify the species most at risk (Bauer et al., 60 

2011; Hurlbert & Liang, 2012; Wilcove & Wikelski, 2008), and support their conservation. While 61 

drivers of migration have been extensively studied in some taxa, e.g., birds, other taxa, e.g., bats and 62 

insects, are remarkably understudied (Bauer et al., 2011; Liechti & McGuire, 2017; Moussy et al., 63 

2013; Popa-Lisseanu & Voigt, 2009; Wilcove & Wikelski, 2008).        64 

The majority of bat species are considered sedentary (Hutterer et al., 2005). For many temperate bat 65 

species, this includes a winter hibernation period close to the summer habitat, even at higher latitudes 66 

(Fleming, 2019). With increasing latitude, however, an increasing number of species travel 67 

considerable distances (i.e. some hundreds up to perhaps three thousand kilometers) between winter 68 

and summer habitats. Particularly for bat species living in highly seasonal (temperate) environments, 69 

migration is an essential part of their ecology (Fleming & Eby, 2003; Hutterer et al., 2005). Because of 70 

their cryptic nocturnal activity patterns and often secretive roosting, bat behaviour (including 71 

migration) has remained notoriously difficult to study (Fleming, 2019; Krauel & McCracken, 2013; 72 

Liechti & McGuire, 2017; Smith & McWilliams, 2016; Weller et al., 2016). In Europe and North 73 

America, some knowledge on migratory and other movement patterns has been gathered over the past 74 

century using ringing (or banding) (Ellison, 2008; Hutterer et al., 2005; Petersons, 2004). Further 75 

insights into rough spatiotemporal movement patterns have also been gained from museum specimens 76 

(Cryan, 2003), stable isotope analyses (Britzke et al., 2009; Lehnert et al., 2018), acoustics (Rydell et 77 

al., 2014; Smith & McWilliams, 2016), and genetic analyses (Russell et al., 2005; Russell & 78 

McCracken, 2006). Gaining detailed insights into the migratory behaviour of individuals or 79 

populations has, however, proven difficult due to the lack of appropriate monitoring tools or 80 

technology to either: (a) mark and track individual bats (Holland & Wikelski, 2009; Krauel & 81 

McCracken, 2013; Roby et al., 2019); or (b) study the spatiotemporal dynamics of entire populations. 82 

Many bat species are rather small (and light-weight), limiting possibilities for long-term tracking 83 

devices (Moussy et al., 2013; but see Weller et al., 2016). Monitoring (seasonal) bat abundance at a 84 

single location such as large roosting colonies (e.g. maternity caves) is also far from straightforward 85 

(McCracken, 2003). In fact, studies taking advantage of technological (and algorithmic) developments, 86 

e.g. thermal imaging, have indicated that quantitative estimates in historical abundance census records 87 

are probably highly questionable (Hristov et al., 2010). Over the past decade, a handful of radio-88 

tagging studies have produced the first insights into relationships between weather and bat migration 89 

phenology that go beyond the anecdotal (Dechmann et al., 2017; Jonasson & Guglielmo, 2019; 90 

McGuire et al., 2012; Roby et al., 2019). Reliable long-term datasets on bat migration phenology are, 91 

however, extremely rare (Stepanian & Wainwright, 2018; but see Pettit & O‟Keefe, 2017 for a notable 92 



exception). As such, potential effects of climate change on bat migration phenology have hitherto 93 

remained largely speculative. 94 

Using weather radar data, a unique 23-year (1995-2017) continuous time series was recently produced 95 

of nightly population estimates of Brazilian free-tailed bats at Bracken Cave in Texas (USA) 96 

(Stepanian & Wainwright, 2018). Brazilian free-tailed bats are one of the most abundant (Davis et al., 97 

1962) and probably best-studied bat species (Russell & McCracken, 2006). Long-term, often severe, 98 

declines in their abundance have repeatedly been reported (McCracken et al., 1994), although the 99 

magnitude of declines may have been overestimated due to inaccurate historical census data (Hristov 100 

et al., 2010). While much research has been dedicated to Brazilian free-tailed bats, many questions 101 

remain, especially pertaining to their variation in abundance and timing of life-history activities 102 

(Stepanian & Wainwright, 2018). Every summer, millions of female Brazilian free-tailed bats gather 103 

in large maternity colonies across the USA, with Bracken Cave being one of the biggest. Very little is 104 

known, however, on the exact locations and the ecology of Brazilian free-tailed bats during winter or 105 

migration periods, with the proportion of the North American population accounted for in suspected 106 

winter roosts estimated at less than 1% (López-González & Best, 2006) or perhaps up to 5% 107 

(Wiederholt et al., 2013).  108 

Here, we use yearly spring and autumn migration phenology at Bracken Cave over the period 1995-109 

2017, derived from the nightly abundance estimated by weather radar (Stepanian & Wainwright, 110 

2018), in combination with gridded temperature, precipitation and wind data to first identify which 111 

weather at which location and over which time window is most likely influencing inter-annual 112 

phenology of Brazilian free-tailed bats. Subsequently, we show to what extent these drivers may have 113 

caused the observed long-term temporal trends in migration phenology.  114 

MATERIALS AND METHODS 115 

Spring and autumn migration phenology at Bracken Cave 116 

Weather surveillance radars regularly detect large numbers of Brazilian free-tailed bats as they emerge 117 

from their roosts at dusk and take flight into the airspace (Frick et al., 2012; Stepanian & Wainwright, 118 

2018). A previous study used radar observations of the dusk exodus flights of the bat colony 119 

inhabiting Bracken Cave (Texas, USA) to produce nightly colony population estimates over a 120 

continuous period spanning 20 March 1995 through 30 November 2017 (Stepanian & Wainwright, 121 

2018). These high temporal resolution population estimates revealed cyclic seasonal changes in the 122 

Bracken Cave colony size that are indicative of migration phenology, and were used to extract 123 

quantitative annual phenophases corresponding with spring and autumn migration timing (Stepanian 124 

& Wainwright, 2018). The resulting dataset (Stepanian et al., 2020) provides annual dates on which 125 

50% of the mean summer population is first detected at the cave (i.e., a quantitative metric for the 126 

onset of spring migratory arrivals to the cave), as well as the final dates on which 50% of the mean 127 



summer population is detected (i.e., a quantitative metric for autumn dispersal out of the cave). These 128 

spring and autumn migration timings were obtained for 23 consecutive years (1995-2017; Figure 1). 129 

Spring migration showed a clear advancement over the study period (-0.64 days/year, standard error = 130 

0.29, p-value t-test = 0.04), while autumn migration timing remained rather stable (-0.24 days/year, 131 

standard error = 0.49, p-value t-test = 0.63).  132 

  
(a) Spring migration (b) Autumn migration 

Figure 1  Spring (a) and autumn (b) migration timing of the bats at Bracken Cave over the period 1995-2017 as 133 
determined by Stepanian & Wainwright (2018). Lines represent estimated linear temporal trends (and grey areas 134 
the 95% confidence intervals). Spring migration (a) temporal slope coefficient = -0.64, standard error = 0.29, p-135 
value (t-test) = 0.04; Autumn migration (b) temporal slope coefficient = -0.24, standard error = 0.49, p-value (t-136 
test) = 0.63.  137 

Weather data 138 

We used the R package RNCEP (Kemp, van Loon, et al., 2012) to gather National Center for 139 

Environmental Prediction (NCEP) Reanalysis I data (Kalnay et al., 1996; Kanamitsu et al., 2002) on 140 

temperature, precipitation, and wind in an area from about 119° to 83° W, and 11° to 38° N (see maps 141 

in Appendix S1), which includes the entire countries of Honduras, El Salvador, Guatemala, Belize, 142 

and Mexico, and twenty south-western states of the USA partly or entirely. Ocean grid cells were 143 

masked from the analysis. While bats have been observed to migrate offshore (Hüppop & Hill, 2016), 144 

this is unlikely for bats passing through Bracken Cave (Wiederholt et al., 2013). The spatial resolution 145 

of a grid cell was 1.905° (latitude) x 1.875° (longitude) for temperature/precipitation and 2.5° x 2.5° 146 

for wind. At the northern edge of the analysed area, these resolutions correspond to 212 (latitude) x 147 

164 (longitude) km, and 278 (latitude) x 217 (longitude) km, respectively. At the southern range of the 148 

studied area, the areas covered by the grid cells are somewhat larger, i.e. 212 (latitude) x 204 149 

(longitude) km for temperature/precipitation and 278 (latitude) x 272 (longitude) km for wind. We 150 

derived eight variables from the NCEP data: mean daily air temperature at 2 meters above ground 151 



level, daily accumulated precipitation at surface, daily mean wind direction at the 925, 850, and 700-152 

hPa pressure levels, and daily mean wind assistance at the same three pressure levels (Appendix S1). 153 

The 925, 850, and 700-hPa atmospheric pressure levels roughly correspond to altitudes of 750, 1500, 154 

and 3000 m above-sea-level (asl), depending on geographic location and environmental conditions. In 155 

the time window analysis, the wind directions were used to calculate the number of days that wind at 156 

that location was in the direction towards, or coming from, Bracken Cave (at each of the atmospheric 157 

pressure levels), hence resulting in eleven variables in total being analysed. We did this by counting 158 

every day with a mean wind direction between -45° and 45° of the angle between Bracken Cave and 159 

the centre of the focal grid cell. Depending on the location of the grid cell relative to Bracken Cave, 160 

these winds were then interpreted as tail- or headwinds. In terms wind direction effects, we thus 161 

analysed two different potential hypotheses separately, i.e. days with headwinds delay migration and 162 

tailwinds advance migration. Additionally, we also analysed wind assistance to check for a joint effect 163 

of wind direction and wind speed. We calculated the wind assistance at each of the three atmospheric 164 

pressure levels with the RNCEP package (Kemp, van Loon, et al., 2012) using the „M.Groundspeed‟ 165 

equation (Kemp, Shamoun-Baranes, et al., 2012). While various approaches exist to calculate wind 166 

assistance, we deemed the „M.Groundspeed‟ approach most appropriate because Brazilian free-tailed 167 

bats have been observed (albeit during foraging flights) to maintain a relatively constant groundspeed 168 

irrespective of wind conditions (McCracken et al., 2016).    169 

Determining the most likely combinations of “weather variable – location – time 170 

window” that influence migration phenology 171 

To determine the combinations of “weather variable – location – time window” that most likely 172 

influence bat spring and autumn migration phenology, we used a method that has recently been shown 173 

effective on similar time series of bird migration phenology (Haest et al., 2018b, 2019, 2020b). The 174 

method consists of two consecutive analyses: (1) a broad search for all combinations of “weather 175 

variable – location – time window” that show a relationship with the migration phenology that is 176 

unlikely to be due to chance only (but might still be a false positive due to spatiotemporal correlation 177 

within and between the weather variables); and (2) a set of refined analyses to narrow down the 178 

candidates from the first step to the most likely influences. 179 

More specifically, in the first step, a time-window analysis is performed for each weather variable on 180 

each grid cell to search for a (continuous) time window of any length that correlates better with the 181 

migration phenology data than is expected by chance. The time window search is performed using the 182 

climwin R package (Bailey & van de Pol, 2016; van de Pol et al., 2016). To determine the best-183 

performing time window, the method compares AICc model values for each time window to a base 184 

reference model. We used a base reference model consisting of a linear temporal trend (i.e. a model 185 

with year as the independent variable) to avoid spurious correlations due to shared temporal trends 186 

(Haest et al., 2018a; Noriega & Ventosa-Santaulària, 2007). To estimate the probability of obtaining a 187 



similarly performing `best` time window due to chance alone, the time window search is repeated on 188 

randomizations of the weather data. Ideally, at least a hundred randomizations are run to approximate 189 

the ∆AICc distribution of best-performing time windows obtainable by chance alone, which, however, 190 

quickly becomes highly resource-intensive. Therefore, we used the alternative probability statistic Pc 191 

of the climwin package, which uses as little as five randomizations to estimate the probability of 192 

obtaining a similarly performing best time window due to chance alone (Bailey & van de Pol, 2016; 193 

van de Pol et al., 2016). The Pc statistic ranges from 0 to 1, with values closer to 0 indicating a higher 194 

probability that the relationship is not due to chance. For a sample size of 23 (as the number of years 195 

in our study) and a cut-off value of Pc < 0.5, Bailey & van de Pol (2016) estimated the rate of false 196 

positives and negatives to be about 0.14 and 0.10, respectively. These rates, however, apply to 197 

simulated relationships ranging from 0.2 to 0.8 in strength (R2). The stronger the simulated 198 

relationship with the response variable, the lower these rates become. To lower the probabilities of 199 

false positives in our analysis, we set the Pc threshold to 0.3 (instead of 0.5) (see Bailey & van de Pol, 200 

2016). For ease of reference, all settings and decision rules of the time windows analyses are 201 

summarized in Table S1 and S2. From the output of the time window analyses, we created ∆AICc, R2, 202 

and regression slope maps for each weather variable, representing the values of the best model for 203 

each grid cell, excluding the grid cells for which Pc > 0.3 (Figure S1 to S22). In many cases, 204 

neighbouring cells in these maps had similar time windows and ∆AICc for the best-performing model 205 

due to spatiotemporal autocorrelation in the weather variables. As a result, there are spatial gradients 206 

present in these maps. We considered the cells with regional ∆AICc maxima as the most 207 

representative of the potential relation between the weather variable for that (larger, correlated) area 208 

and the migration phenology at Bracken Cave. This first step of the analysis resulted in 43 and 56 209 

potential “weather variable – location – time window” influences for spring and autumn migration, 210 

respectively (Figure S1 to S22).  211 

In the second part of the analysis, we extracted those candidate signals from the potential influences 212 

that are most likely to have the strongest influence on the migration phenology. To do so, we first use 213 

a sequence of different variable filtering approaches to remove the (relatively) least likely candidates, 214 

followed by an ensemble of (relative) “variable importance” methods to determine the most likely 215 

final “weather variable – location – time window” influences. Throughout this analysis, we no longer 216 

include the temporal trend, i.e. the „year‟ variable, as spurious correlations due to shared trends were 217 

already excluded in the first part of the analysis. Instead, we now assess to what extent the relationship 218 

between the identified potential effects of weather and the observed migration phenology still holds 219 

when not accounting for temporal trends. In a first filtering, we compared AICc values for models 220 

with the identified effects of weather as the only independent variable to an intercept-only model. We 221 

removed two potential influences for spring migration (and none for autumn migration), because the 222 

AICc difference with the intercept-only model was less than two units. Subsequently, we checked for 223 

collinearity between the remaining candidate weather effects. For spring and autumn migration, we 224 



removed 21 and 28 candidates, respectively, because they had a Pearson correlation > 0.7 (Dormann et 225 

al., 2013) with another candidate that had a larger ∆AICc with an intercept-only model. Next, we used 226 

the boruta method to further remove 6 and 14 candidate influences for spring and autumn migration, 227 

respectively, that had a variable importance that is likely to be obtained by chance (Kursa & Rudnicki, 228 

2010). Finally, we used an ensemble of “variable importance” methods (Burnham & Anderson, 2002; 229 

Grömping, 2006, 2015; Kursa & Rudnicki, 2010) to identify the most likely “weather variable – 230 

location – time window” influences on bat spring and autumn migration phenology (Figure 2; Table 231 

S3 and S4). 232 

Climatic contributions to trends in phenology 233 

A weather variable that affects inter-annual variability in migration timing can only result in a 234 

temporal trend in migration phenology if it also shows a temporal trend. The overall contribution of a 235 

weather variable to the observed temporal trend in migration phenology can be calculated using the 236 

chain rule (Haest et al., 2019, 2020b; McLean et al., 2018): 237 
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with n being the total number of influencing weather variables for a given species;              ⁄  238 

the regression coefficients of a multiple linear regression between (spring or autumn) migration  239 

passage date and all of the identified final weather variables; and               ⁄  the regression 240 

coefficient of a simple linear regression between the respective weather variable and time, i.e. years. 241 

Standard errors were calculated following error propagation rules for multiplication (Taylor, 1997). 242 

Note that this approach ignores by definition any other (e.g. non-climatic) factors that might possibly 243 

affect changes in migration phenology over time.  244 

RESULTS 245 

Identified „weather variable – location – time window‟ influences 246 

We found that during spring migration tailwinds in central North Mexico and West Texas to the west 247 

of Bracken Cave (Figure 2) explain about 84% of the observed variance in spring migration phenology 248 

(Table 1). The tailwinds were negatively related to spring migration phenology (Table 2). Thus, more 249 

days with tailwinds in central North Mexico and West Texas result in earlier spring passage or arrival 250 

at Bracken Cave. For each (additional) day of tailwind during spring migration, bats passed on average 251 

about 2 to 2.2 days earlier at Bracken Cave. The central North Mexico tailwind occurred at the 850-252 

hPa pressure level (i.e. roughly 1500 m asl), while the western Texas tailwind was at the 925-hPa level 253 

(i.e. roughly 750 m asl).  254 



For autumn migration, summer and autumn precipitation to the east-northeast of Bracken Cave (Figure 255 

2) explained about 83% of the observed variance. The two precipitation signals had contrasting effects 256 

(Figure 4 and Table 2), i.e. precipitation in Northeast Texas / Southeast Oklahoma / Arkansas / West 257 

Louisiana results in later average autumn migration, while precipitation in eastern Texas and 258 

Louisiana results in earlier autumn migration. Additionally, we found strong statistical support for an 259 

influence of headwind at the 700-hPa level (i.e. approximately 3000 m asl) in north-western Mexico 260 

(Sonora / Baja California / Chihuahua) on autumn migration phenology. 261 

Table 1  Explained variance (adjusted R2) and predictive performance (predictive R2) for spring and autumn 262 
migration phenology using a linear model with the final identified weather signals (see Figure 1), but not the 263 
temporal trend. Adjusted R2 is defined as in Miles (2005). Predictive R2 was calculated as leave-one-year-out.  264 

Season Weather variables Adjusted R² Predictive R² 
Spring Both wind variables 0.84 0.81 
Autumn Both precipitation + the wind variable 0.88 0.86 
Autumn Both precipitation variables 0.83 0.79 

 265 

Spring Migration Autumn Migration 

  
(a) (b) 

Figure 2  Location and timing of the identified most important weather variables that are likely to influence (a) 266 
spring and (b) autumn migration timing at Bracken Cave. The timelines in each plot represent the period of the 267 
single best time window (left) and of the medians for the time window opening and closing of the 95% 268 
confidence interval of all time windows (right). P: precipitation; HW: headwind; TW: tailwind. The location of 269 
Bracken Cave is marked with a star. The white background triangles in the time window subfigures represent the 270 
migration period at Bracken Cave, i.e. the period between the earliest and latest estimated average migration 271 
time at Bracken Cave over the entire study period (see Stepanian and Wainwright, 2018). 272 

Although our analyses included a large area of potential effects of weather - from Nicaragua in the 273 

south, Nevada in the northwest, and Kentucky to the northeast (Appendix S1) - four of the five 274 

identified influences lie within distances up to 1100 km around Bracken Cave, i.e. well within the 275 



currently known (maximum) migration distance of Brazilian free-tailed bats (Cockrum, 1969; Glass, 276 

1982). The times during which the weather variables influence migration span the period from about 277 

two months prior to the earliest and up to the latest estimated mean migration time, in both spring and 278 

autumn. Due to the inherent temporal autocorrelation of weather variables, the exact timing of the time 279 

windows remains somewhat uncertain (Figure 2). 280 

Predictive R2 (calculated using leave-one-year-out) were not much lower (0.03 for spring and 0.04 for 281 

autumn) than adjusted R2 (Miles, 2005), indicating that the final identified effects of weather are 282 

robust, i.e. the models do not suffer from overfitting. We did not find any support for influences of 283 

either temperature or wind assistance on spring or autumn migration. 284 

Table 2 Effect sizes and standard errors (SE) for the identified most influential weather variables, estimated 285 
using the full linear model consisting of the migration phenology as the dependent response variable and all of 286 
the identified weather variables (but not the temporal trend) as the independent variables.  287 

Season Weather variable Location 
Effect  
Size 

SE 

Spring tailwind 925-hPa North Coahuila de Zaragoza / East New Mexico / West Texas -2.20 0.45 

 
tailwind 850-hPa Central North Mexico (Chihuahua) -2.06 0.36 

Autumn precipitation Northeast Texas / Southeast Oklahoma / Arkansas / West Louisiana 0.06 0.01 

 
precipitation East Texas / Louisiana -0.41 0.07 

  headwind 700-hPa Sonora / Baja California / Chihuahua -2.46 0.75 

Contributions of climatic influences to temporal trends in migration phenology 288 

The wind conditions in north Mexico and western Texas did not only have a strong effect on inter-289 

annual variability in spring migration phenology, they also showed temporal trends over the 1995-290 

2017 study period (Figure 3, Table S5). More days with tailwinds at both locations have led to a 291 

systematically earlier mean spring migration at Bracken Cave, with advancements of approximately 5 292 

and 12 days over the period 1995-2017 (Figure 3 and Table S5).  293 

A decrease in the (positively associated) summer and autumn precipitation in Northeast Texas, 294 

Southeast Oklahoma, Arkansas, and West Louisiana seems to have pushed towards a slight 295 

advancement in autumn migration timing at Bracken Cave, while lower spring precipitation in East 296 

Texas and Louisiana seems to have resulted in a slight delay (Figure 4, Table S5). Please note, 297 

however, that autumn migration timing at Bracken Cave did not show a significant temporal trend 298 

over the study period (Stepanian & Wainwright, 2018; Figure 1).  299 
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ID S17 – Tailwind 850-hPa – Central North Mexico (Chihuahua) 
 

Figure 3  Overview of (a) the effect of the identified weather signals on spring migration phenology of Brazilian 300 
free-tailed bats at Bracken Cave; (b) the temporal trends in these weather variables; and (c) the resulting 301 
contribution to the overall temporal trends in spring migration phenology. In (c), the dashed lines represent the 302 
calculated trend contributions using the chain rule (see Table S5), and the full lines the overall observed trends in 303 
spring migration phenology (see Figure 1). Dark grey ribbons in (c) are the 95% confidence interval for the 304 
estimated trend contribution, and light grey for the overall temporal trend.  305 
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ID A9 – Precipitation – Northeast Texas / Southeast Oklahoma / Arkansas / West Louisiana 
 

 

X 

 

= 

 

ID A11 – Precipitation – East Texas / Louisiana  
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ID A32 – Headwind 700-hPa – Sonora / Baja California / Chihuahua 
 

Figure 4  Overview of (a) the effect of the identified weather signals on autumn migration phenology of 306 
Brazilian free-tailed bats at Bracken Cave; (b) the temporal trends in these weather variables; and (c) the 307 
resulting contribution to the overall temporal trends in autumn migration phenology. In (c), the dashed lines 308 
represent the calculated trend contributions using the chain rule (see Table S5), and the full lines the overall 309 
observed trends in autumn migration phenology (see Figure 1). Dark grey ribbons in (c) are the 95% confidence 310 
interval for the estimated trend contribution, and light grey for the overall temporal trend. 311 

DISCUSSION 312 

Migration and population structure of Brazilian free-tailed bats at Bracken Cave 313 

Our results suggest that in spring Brazilian free-tailed bats that use Bracken Cave as a spring stopover 314 

or maternity location move eastward. These bats seem to originate from central North Mexico (Figure 315 

2) and western Texas, and these areas could be wintering grounds, spring stopover, mating locations, 316 



or a mixture of all of these (see also Wiederholt et al., 2013). Brazilian free-tailed bats mate in spring. 317 

Where bats exactly congregate to mate has, however, remained largely elusive (Keeley & Keeley, 318 

2004; Svoboda et al., 1985). It has been suggested that they gather in transitional roosts in Mexico 319 

shortly before or during northward migration (McCracken et al., 1994; Russell & McCracken, 2006; 320 

Wilkins, 1989), although copulation has also been observed during March and April in central Texas 321 

(Keeley & Keeley, 2004). The combined location and timing of our spring wind influences, i.e. 322 

December to April, suggests that these might be the locations (and times) where mating (mainly) 323 

occurs. Individuals from many different maternity roosts (ranging from west to east USA) perhaps 324 

mingle at these locations during spring migration, which may also explain the observed lack of genetic 325 

structuring in the North American populations (McCracken et al., 1994; Russell & McCracken, 2006).  326 

Surprisingly, we did not find weather at Bracken Cave itself to influence autumn migration phenology. 327 

Instead, migration phenology at Bracken Cave was dominated by precipitation to the east and 328 

northeast of Bracken Cave (Figure 2). These areas might represent maternity colonies of bats that 329 

stopover in Bracken Cave, post-parturition feeding grounds of adult females and juveniles (of perhaps 330 

also bats from the Bracken Cave maternity colony), or a mixture of these (see also McCracken et al., 331 

2018). Alternatively, the weather at these locations could also affect migratory decisions at Bracken 332 

Cave indirectly, e.g. through insect migrations originating from these areas (Krauel et al., 2015, 2018). 333 

Adult female Brazilian free-tailed bats (likely) leave their maternity colonies (such as Bracken Cave) 334 

after they weaned their young (Davis et al., 1962; Hristov et al., 2010; Krauel & McCracken, 2013), 335 

and often even move northwards (Glass, 1982; Russell & McCracken, 2006). Autumn movements in 336 

the direction of and to, as well as spring stopover at Bracken Cave by bats from (maternity) colonies in 337 

Oklahoma have also been observed before from banding recoveries (Glass, 1959, 1982). 338 

The contrasting directions of the precipitation effects on autumn migration phenology may seem 339 

contradictory (Figure 2 and Table 2). However, if, for example, precipitation affects migration 340 

phenology through insect abundance, differences in insect abundance at the two locations may affect 341 

bat survival and result in different abundances (Frick et al., 2010) or reproductive rates (Adams, 2010) 342 

at each location. If the populations at each location tend to migrate through Bracken Cave at different 343 

times, these differences in abundances between the two populations may, hence, change the overall 344 

observed autumn migration phenology at Bracken Cave in different directions. Alternatively, 345 

precipitation in spring and autumn may have contrasting effects, i.e. higher precipitation in autumn 346 

leads to later autumn migration, whereas higher spring precipitation leads to earlier autumn migration.  347 

The influence of headwind in northwest Mexico (Figure 2) seems to challenge the current knowledge 348 

on migration patterns of Brazilian free-tailed bats (but see ring recovery maps in Villa & Cockrum, 349 

1962; and Wiederholt et al., 2013). Although we have tailored our approach towards avoiding false 350 

positives, we can not exclude them entirely (Bailey & van de Pol, 2016). Nevertheless, such long-351 

distance West-East movements have, albeit perhaps more rarely, been observed in banding studies, 352 

including an individual that was banded in Nevada and recovered in Kansas (Baker, 1978; Cockrum, 353 



1969; Fleming & Eby, 2003; Svoboda et al., 1985). Additionally, the ecology of Brazilian free-tailed 354 

bats during winter is hardly known, including exact locations and time periods. While their summer 355 

ecology is generally better known, much of the knowledge originates from females and first-year 356 

juveniles while the ecology of males is much less known.  357 

Bats that use Bracken Cave in spring and autumn do not necessarily originate from the same 358 

populations, i.e. some populations may use it as a spring transient roost, and others in autumn. While 359 

winter site fidelity has been suggested in other (hibernating) migratory bat species (Lehnert et al., 360 

2018), migratory routes and stopover routes need not be identical in spring and autumn. In general, our 361 

results suggest more of an East-West, instead of North-South, migratory movement of Brazilian free-362 

tailed bats passing at Bracken Cave (Figure 2). Interestingly, a similar observation was recently made, 363 

also contradicting expectation, for Indiana bats (Myotis sodalis) (Roby et al., 2019).   364 

Drivers of bat migration phenology 365 

The importance of climate and atmospheric conditions for bat migration ecology has long been 366 

recognized (Liechti & McGuire, 2017). Until recently, however, the proposed influences of weather on 367 

bat migration were almost exclusively based on anecdotal observations of weather conditions during 368 

(migratory) flight activity (e.g. Baker, 1978; Davis et al., 1962; Petersons, 2004). Temperature, 369 

precipitation, pressure, wind conditions, and lunar illumination have all been suggested as likely 370 

migratory drivers (Dechmann et al., 2017; Pettit & O‟Keefe, 2017; Roby et al., 2019; Smith & 371 

McWilliams, 2016). While perhaps all of these weather conditions may, to a certain degree, have a 372 

direct impact on (migratory) flight activity, the exact cues, drivers, and underlying mechanisms of 373 

seasonal bat migration have not been identified due to a lack of long-term (i.e. multi-annual) data and 374 

detailed knowledge on spatiotemporal migratory patterns (Pettit & O‟Keefe, 2017).    375 

We found wind conditions, i.e. the frequency of days with tailwinds during spring migration, to 376 

explain most of the inter-annual variability in spring migration phenology of bats at Bracken Cave 377 

(Figure 2 and Table 1). Wind in favourable directions also influenced spring migration departure 378 

probability of European common noctule bats (Nyctalus noctula) (Dechmann et al., 2017). Effects of 379 

winds are probably direct, i.e. by influencing departure decisions or migratory flight progress. 380 

Brazilian free-tailed bats appear to adjust their airspeed to maintain similar ground speeds regardless 381 

of wind support, and ground speeds also do not seem influenced by the direction of prevailing winds 382 

(McCracken et al., 2016). Additionally, we did not find any support for an influence of wind 383 

assistance on migratory timing. This suggests that advanced or delayed spring migrations with 384 

tailwinds and headwinds, respectively, do not result from increased or decreased distances covered 385 

but, instead, from decisions to continue migration or stay at a (transient) roost. Combined with the 386 

findings of Dechmann et al. (2017) and Pettit & O‟Keefe (2017), this indicates that bats rely primarily 387 

on day (or night) length as the cue for initiating spring migration, but that the decision to effectively 388 

depart or continue the spring migratory journey is strongly determined by wind conditions. Even 389 



though (insectivorous) bats generally live energetically demanding lives, both migration and 390 

reproduction (i.e. late pregnancy and lactation) periods are even more energetically demanding 391 

(Sommers et al., 2019). Choosing favourable wind conditions for migration is a simple effective 392 

mechanism to save energy during movement and arrive in good body condition at the maternity 393 

grounds. 394 

While knowledge on flight altitudes of bats during migration specifically is sparse, the highest 395 

densities of Brazilian free-tailed bats during foraging flights have been shown to occur at around 400 396 

to 600 m above-ground-level (agl) (McCracken et al., 2008). For spring migration, we found a 397 

tailwind influence at the 850- and 925-hPa pressure level, i.e. approximately 1500 and 750 m asl. The 398 

higher ground elevations (Figure S23) at the approximate location (Figure 2) of the 850-hPa tailwind 399 

effect compared to those at the 925-hPa tailwind location, indicate that the difference in pressure 400 

levels or elevations asl between these effects probably does not reflect differences in migration 401 

altitudes, but instead mainly differences in ground elevations. Hence, while Brazilian free-tailed bats 402 

have been observed at altitudes exceeding 3000 m agl (Williams et al., 1973), our results point 403 

towards flight altitudes during (spring) migration similar to those during foraging flights (McCracken 404 

et al., 2008). The autumn wind influence at the 700-hPa or approximately 3000 m asl altitude, 405 

however, perhaps indicates higher flight altitudes during autumn migration.     406 

We found precipitation to be the main driver of autumn migration phenology of bats at Bracken Cave 407 

(Figure 2 and Table 1). While precipitation has often been suggested to affect bat migration, it has yet 408 

to be determined how this exactly works and how important the effect of precipitation is relative to 409 

other variables. One possibility is a direct negative influence of precipitation on (migratory) flight 410 

activity (McGuire et al., 2012; Pettit & O‟Keefe, 2017; Voigt et al., 2011). Another might be the 411 

indirect (positive) influence of precipitation on insect abundance (Hristov et al., 2010), and perhaps 412 

particularly the abundance of migratory insects (Krauel et al., 2018; Lee & McCracken, 2005). 413 

Furthermore, precipitation may also influence migratory timing through other indirect pathways, e.g. 414 

carry-over effects of the timing of reproduction (Grindal et al., 1992; Linton & Macdonald, 2018) or 415 

effects on reproductive rates (Linton & Macdonald, 2018). We found a positive association between 416 

autumn precipitation and migration phenology, i.e. passage or departure at Bracken Cave is later in 417 

years with more autumn precipitation (Figure 2, Table S5). This positive relationship conforms to 418 

expectations for a (negative) direct effect of precipitation on (migratory) flight activity, as well as an 419 

indirect effect through either increased insect abundance or delayed insect migration that may result in 420 

delayed bat migration. Unfortunately, very little is known about the drivers and mechanisms 421 

influencing migratory behaviour (e.g. timing) of insects in general (Satterfield et al., 2020), and even 422 

less so for autumn migration specifically (Krauel et al., 2015). Increased insect abundance is, however, 423 

often linked to higher precipitation levels (Krauel et al., 2018), and migration theory predicts the 424 

optimal time for bat migration to be determined by (changes in) insect abundance (Hedenström, 2009; 425 

Krauel & McCracken, 2013). The effect of insect abundance on Brazilian free-tailed bat migration has 426 



previously been suggested to work through the effect wind has on migratory insects (Krauel et al., 427 

2015). Our results suggest that it is mainly precipitation that affets overall insect abundance, including 428 

those of migratory populations. Finally, the timing of our precipitation effects in autumn suggests that 429 

it does not work through carry-over effects of delayed parturition or increased reproductive success 430 

(Figure 2). Wet springs, however, have also been associated with reduced insect abundance (Krauel et 431 

al., 2015; Lee & McCracken, 2005; Pair & Westbrook, 1995), which could also result in earlier 432 

autumn migration. 433 

We found no influence of temperature. Brazilian free-tailed bats seem to be highly physiologically and 434 

morphologically adapted to living under relatively extreme (both warm and cold) temperature 435 

conditions but occur mostly in relatively warm geographic areas (Reichard et al., 2010). Moreover, a 436 

small overwintering population has been shown to inhabit Bracken Cave across the duration of the 23-437 

year period, demonstrating the physiological ability for bats to even survive the winter at this site 438 

(Stepanian & Wainwright, 2018). This may explain why migration in Brazilian free-tailed bats is not 439 

driven by temperature but by precipitation and wind - contrary to species in regions with more extreme 440 

inter-seasonal temperature differences, e.g. at higher latitudes. Some studies of migratory bats (at 441 

higher latitudes) in northern Europe or North America, have indeed suggested that temperature plays 442 

an important role in migration timing (Jonasson & Guglielmo, 2019; Muthersbaugh et al., 2019; Pettit 443 

& O‟Keefe, 2017; Roby et al., 2019; Rydell et al., 2014; Smith & McWilliams, 2016), although 444 

temperature was often investigated alone, neglecting possible precipitation and wind effects. However, 445 

it is possible that wind and precipitation become primary drivers of migratory timing in regions where 446 

a minimum temperature threshold for survivability is met throughout the migration period. Note that 447 

we analysed mean daily air temperatures in this study, and influences of other temperature-based 448 

metrics, e.g. daily minimum temperature, cannot be entirely excluded.  449 

In birds, it has repeatedly been shown that the relative influence of different weather variables on 450 

migration phenology is strongly species-, but also context-dependent (Gordo, 2007; Haest et al., 451 

2018b, 2019; Shaw, 2016), and a similarly diverse response to weather has been suggested for bats 452 

(Muthersbaugh et al., 2019). Therefore, future studies on other bat species and populations may find 453 

our results of wind being highly important for spring migration and precipitation for autumn migration 454 

timing to be specific for Brazilian free-tailed bats. However, we think that the migration of bats 455 

adheres to general principles that determine which weather variables will be relevant for migration 456 

timing: (1) optimization of (metabolic) migratory costs by choosing the atmospheric conditions 457 

(including wind, temperature, and precipitation) that favour efficient energy use; and (2) adjustment to 458 

(current or expected) changes in food availability, e.g. insect prey (Bauer et al., 2011; Fleming & Eby, 459 

2003; Krauel & McCracken, 2013; Pettit & O‟Keefe, 2017). Depending on the geographic, climatic, 460 

and individual context, the relative importance of these principles may vary, and thus also the relative 461 

importance of the weather (and other) variables that influence specific species/populations.         462 



Climate change, bat migration, and conservation of bats 463 

For climate change to cause changes in the timing of a biological event, weather does not only need to 464 

influence the biological event, i.e. cause inter-annual variability, but the relevant weather variable also 465 

needs to show a distinct temporal trend. Our results indicate that the spring migration phenology of 466 

Brazilian free-tailed bats at Bracken Cave advanced because wind conditions favourable for migration 467 

occurred more frequently (Figure 3). Interestingly, favourable wind conditions are expected to 468 

continue becoming more prevalent over the next century in this part of the USA (La Sorte et al., 469 

2019), raising questions on whether and how this will continue to affect bat migration timing at 470 

Bracken Cave.  471 

Brazilian free-tailed bats have been proposed as a key indicator species for climate-change impacts on 472 

global migratory bat species (Newson et al., 2009). Yet, even in this relative intensively-studied bat 473 

species, large uncertainties remain on (changes in) colony-specific population sizes, and hence even 474 

more so on overall species abundance (McCracken, 2003; Stepanian & Wainwright, 2018). Even less 475 

is known on how weather and climate change may cause inter-annual differences or long-term trends 476 

in bat population sizes. Effects of weather on processes directly affecting population sizes, such as 477 

reproductive success (Linton & Macdonald, 2018) and timing (Grindal et al., 1992), have been 478 

suggested in some bat species. Since long-term data across species and large scales are still largely 479 

lacking, the specific pathways through which weather affects abundances remain unidentified 480 

(Sherwin et al., 2013). Over the period 1995-2017, the mean summer population of Brazilian free-481 

tailed bats at Bracken Cave did not show any significant temporal trend (Stepanian & Wainwright, 482 

2018), suggesting that the trends in phenology have not (yet) had consequences on population levels of 483 

Brazilian free-tailed bats at Bracken Cave. Our results illustrate how long-term time series derived 484 

from weather radar data can provide unique insights into climate change impacts on Brazilian free-485 

tailed and other, especially cave-dwelling, bat colonies. In this paper, we focused on identifying the 486 

effects of climate (change) on migration phenology, but a similar approach could be used to assess the 487 

potential relationship between changes in inter-annual population sizes and climate (change).   488 
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Appendix S1 Properties and pre-processing of the weather data that were acquired from the NCEP Reanalysis I database. 

 

Weather variable NCEP variable  
Spatial Resolution  

(in degrees) 

Number of 
analysed grid 

cells Data pre-processing and comments 

temperature „air.2m‟, i.e. air temperature 
at 2 meters (above ground 
level) 

1.905° x 1.875° 
(latitude x longitude) 
(T62 Gaussian grid)  

179 We calculated daily mean temperatures from the four 6-hour temperature values.  

Precipitation „prate.sfc‟, i.e. precipitation 
rate at surface level 

1.905° x 1.875° 
(latitude x longitude) 
(T62 Gaussian grid)  

179 Precipitation rate data were converted to mm/day. 

Wind direction  (East-West) „uwnd‟  and 
(North-South) „vwnd‟ at the 
925, 850, and 700-hPa 
pressure levels 

2.5° x 2.5° 111 The 925, 850, and 700-hPa pressure levels roughly corresponds to 750, 1500 and 
3000 m altitude above-sea-level. For each pressure level, we calculated daily mean 
wind directions using the average of the four 6-hour wind values for each of the 
two wind components. 

Wind assistance (East-West) „uwnd‟  and 
(North-South) „vwnd‟ at the 
925, 850, and 700-hPa 
pressure levels 

2.5° x 2.5° 111 For each pressure level (i.e. 925, 850, and 700-hPa), we calculated daily mean wind 
assistance using the average of the four 6-hour wind values for each of the two 
wind components. Wind assistance was calculated with the RNCEP package 
(Kemp et al., 2012a) using the „M.Groundspeed‟ equation (Kemp et al., 2012b). To 
do so, we assumed a groundspeed of 5.7 m/s in still air conditions (based on results 
from McCracken et al., 2016), and a preferred direction of movement from each 
grid cell centre towards Bracken Cave. 

  



Grid cells analysed for each of the weather variables, illustrating the full spatial extent of the analysis and 

the spatial resolution (i.e. detail): 

  
Temperature and precipitation Wind 



Figure S1 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for temperature influence on spring migration 
phenology. The ∆AICc values are the difference of the AICc value of the model with 
the selected best time window for each grid cell with the AICc value of the baseline 
model (arrival/passage = α + β*year). ∆AICc values are only shown for grid cells 
that had a probability Pc value < 0.3, i.e., grid cells for which the relation between 
the identified time window and arrival/passage dates had a ∆AICc that is less likely 
to obtain due to chance. The adjusted R2 values are for the models that have as 
independent variables both the best identified time window for temperature and the 
„year‟ term to account for trends. The regression coefficient maps show the 
regression coefficient (days/°C) of the best identified time window for temperature 
when „year‟ terms to account for trends are also included in the model. Yellow dots 
with annotated numbers indicate the candidate grid cells selected as potentially 
influencing spring migration phenology at Bracken Cave. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

  



 

 

 



Figure S2 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for precipitation influence on spring migration 
phenology. The ∆AICc values are the difference of the AICc value of the model with 
the selected best time window for each grid cell with the AICc value of the baseline 
model (arrival/passage = α + β*year). ∆AICc values are only shown for grid cells 
that had a probability Pc value < 0.3, i.e., grid cells for which the relation between 
the identified time window and arrival/passage dates had a ∆AICc that is less likely 
to obtain due to chance. The adjusted R2 values are for the models that have as 
independent variables both the best identified time window for precipitation and the 
„year‟ term to account for trends. The regression coefficient maps show the 
regression coefficient (days/mm) of the best identified time window for precipitation 
when „year‟ terms to account for trends are also included in the model. Yellow dots 
with annotated numbers indicate the candidate grid cells selected as potentially 
influencing spring migration phenology at Bracken Cave. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

  



 

 

 



Figure S3 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on spring migration phenology of the 
number of days with winds at the 925-hPa pressure level coming from the direction 
of Bracken Cave. The ∆AICc values are the difference of the AICc value of the 
model with the selected best time window for each grid cell with the AICc value of 
the baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for 
grid cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind coming from Bracken Cave and the „year‟ term to account for trends. 
The regression coefficient maps show the regression coefficient (days/day) of the 
best identified time window for the number of days with wind coming from Bracken 
Cave when „year‟ terms to account for trends are also included in the model. Yellow 
dots with annotated numbers indicate the candidate grid cells selected as potentially 
influencing spring migration phenology at Bracken Cave. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

  



 

 

 



Figure S4 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on spring migration phenology of the 
number of days with winds at the 925-hPa pressure level going in the direction of 
Bracken Cave. The ∆AICc values are the difference of the AICc value of the model 
with the selected best time window for each grid cell with the AICc value of the 
baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for grid 
cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind going in the direction of Bracken Cave and the „year‟ term to account 
for trends. The regression coefficient maps show the regression coefficient 
(days/day) of the best identified time window for the number of days with wind 
going in the direction of Bracken Cave when „year‟ terms to account for trends are 
also included in the model. Yellow dots with annotated numbers indicate the 
candidate grid cells selected as potentially influencing spring migration phenology at 
Bracken Cave. The ID values are used consistently throughout all supplementary 
figures and tables for ease of reference. 

  



 

 

 



Figure S5 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on spring migration phenology of the 
number of days with winds at the 850-hPa pressure level coming from the direction 
of Bracken Cave. The ∆AICc values are the difference of the AICc value of the 
model with the selected best time window for each grid cell with the AICc value of 
the baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for 
grid cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind coming from Bracken Cave and the „year‟ term to account for trends. 
The regression coefficient maps show the regression coefficient (days/day) of the 
best identified time window for the number of days with wind coming from Bracken 
Cave when „year‟ terms to account for trends are also included in the model. Yellow 
dots with annotated numbers indicate the candidate grid cells selected as potentially 
influencing spring migration phenology at Bracken Cave. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

  



 

 

 



Figure S6 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on spring migration phenology of the 
number of days with winds at the 850-hPa pressure level going in the direction of 
Bracken Cave. The ∆AICc values are the difference of the AICc value of the model 
with the selected best time window for each grid cell with the AICc value of the 
baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for grid 
cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind going in the direction of Bracken Cave and the „year‟ term to account 
for trends. The regression coefficient maps show the regression coefficient 
(days/day) of the best identified time window for the number of days with wind 
going in the direction of Bracken Cave when „year‟ terms to account for trends are 
also included in the model. Yellow dots with annotated numbers indicate the 
candidate grid cells selected as potentially influencing spring migration phenology at 
Bracken Cave. The ID values are used consistently throughout all supplementary 
figures and tables for ease of reference. 

  



 

 

 



Figure S7 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on spring migration phenology of the 
number of days with winds at the 700-hPa pressure level coming from the direction 
of Bracken Cave. The ∆AICc values are the difference of the AICc value of the 
model with the selected best time window for each grid cell with the AICc value of 
the baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for 
grid cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind coming from Bracken Cave and the „year‟ term to account for trends. 
The regression coefficient maps show the regression coefficient (days/day) of the 
best identified time window for the number of days with wind coming from Bracken 
Cave when „year‟ terms to account for trends are also included in the model. Yellow 
dots with annotated numbers indicate the candidate grid cells selected as potentially 
influencing spring migration phenology at Bracken Cave. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

  



 

 

 



Figure S8 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on spring migration phenology of the 
number of days with winds at the 700-hPa pressure level going in the direction of 
Bracken Cave. The ∆AICc values are the difference of the AICc value of the model 
with the selected best time window for each grid cell with the AICc value of the 
baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for grid 
cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind going in the direction of Bracken Cave and the „year‟ term to account 
for trends. The regression coefficient maps show the regression coefficient 
(days/day) of the best identified time window for the number of days with wind 
going in the direction of Bracken Cave when „year‟ terms to account for trends are 
also included in the model. Yellow dots with annotated numbers indicate the 
candidate grid cells selected as potentially influencing spring migration phenology at 
Bracken Cave. The ID values are used consistently throughout all supplementary 
figures and tables for ease of reference. 

  



 

 

 



Figure S9 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence of wind assistance at the 925-hPa 
pressure level on spring migration phenology. The ∆AICc values are the difference 
of the AICc value of the model with the selected best time window for each grid cell 
with the AICc value of the baseline model (arrival/passage = α + β*year). ∆AICc 
values are only shown for grid cells that had a probability Pc value < 0.3, i.e., grid 
cells for which the relation between the identified time window and arrival/passage 
dates had a ∆AICc that is less likely to obtain due to chance. The adjusted R2 values 
are for the models that have as independent variables both the best identified time 
window for wind assistance and the „year‟ term to account for trends. The regression 
coefficient maps show the regression coefficient (days/m*s-1) of the best identified 
time window for the wind assistance when „year‟ terms to account for trends are also 
included in the model. Yellow dots with annotated numbers indicate the candidate 
grid cells selected as potentially influencing spring migration phenology at Bracken 
Cave. The ID values are used consistently throughout all supplementary figures and 
tables for ease of reference. 

  



 

 

 



Figure S10 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence of wind assistance at the 850-hPa 
pressure level on spring migration phenology. The ∆AICc values are the difference 
of the AICc value of the model with the selected best time window for each grid cell 
with the AICc value of the baseline model (arrival/passage = α + β*year). ∆AICc 
values are only shown for grid cells that had a probability Pc value < 0.3, i.e., grid 
cells for which the relation between the identified time window and arrival/passage 
dates had a ∆AICc that is less likely to obtain due to chance. The adjusted R2 values 
are for the models that have as independent variables both the best identified time 
window for wind assistance and the „year‟ term to account for trends. The regression 
coefficient maps show the regression coefficient (days/m*s-1) of the best identified 
time window for the wind assistance when „year‟ terms to account for trends are also 
included in the model. Yellow dots with annotated numbers indicate the candidate 
grid cells selected as potentially influencing spring migration phenology at Bracken 
Cave. The ID values are used consistently throughout all supplementary figures and 
tables for ease of reference. 

  



 

 

 



Figure S11 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence of wind assistance at the 700-hPa 
pressure level on spring migration phenology. The ∆AICc values are the difference 
of the AICc value of the model with the selected best time window for each grid cell 
with the AICc value of the baseline model (arrival/passage = α + β*year). ∆AICc 
values are only shown for grid cells that had a probability Pc value < 0.3, i.e., grid 
cells for which the relation between the identified time window and arrival/passage 
dates had a ∆AICc that is less likely to obtain due to chance. The adjusted R2 values 
are for the models that have as independent variables both the best identified time 
window for wind assistance and the „year‟ term to account for trends. The regression 
coefficient maps show the regression coefficient (days/m*s-1) of the best identified 
time window for the wind assistance when „year‟ terms to account for trends are also 
included in the model. Yellow dots with annotated numbers indicate the candidate 
grid cells selected as potentially influencing spring migration phenology at Bracken 
Cave. The ID values are used consistently throughout all supplementary figures and 
tables for ease of reference. 

  



 

 

 



Figure S12 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for temperature influence on autumn migration 
phenology. The ∆AICc values are the difference of the AICc value of the model with 
the selected best time window for each grid cell with the AICc value of the baseline 
model (arrival/passage = α + β*year). ∆AICc values are only shown for grid cells 
that had a probability Pc value < 0.3, i.e., grid cells for which the relation between 
the identified time window and arrival/passage dates had a ∆AICc that is less likely 
to obtain due to chance. The adjusted R2 values are for the models that have as 
independent variables both the best identified time window for temperature and the 
„year‟ term to account for trends. The regression coefficient maps show the 
regression coefficient (days/°C) of the best identified time window for temperature 
when „year‟ terms to account for trends are also included in the model. Yellow dots 
with annotated numbers indicate the candidate grid cells selected as potentially 
influencing autumn migration phenology at Bracken Cave. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

  



 

 

 



Figure S13 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for precipitation influence on autumn migration 
phenology. The ∆AICc values are the difference of the AICc value of the model with 
the selected best time window for each grid cell with the AICc value of the baseline 
model (arrival/passage = α + β*year). ∆AICc values are only shown for grid cells 
that had a probability Pc value < 0.3, i.e., grid cells for which the relation between 
the identified time window and arrival/passage dates had a ∆AICc that is less likely 
to obtain due to chance. The adjusted R2 values are for the models that have as 
independent variables both the best identified time window for precipitation and the 
„year‟ term to account for trends. The regression coefficient maps show the 
regression coefficient (days/mm) of the best identified time window for precipitation 
when „year‟ terms to account for trends are also included in the model. Yellow dots 
with annotated numbers indicate the candidate grid cells selected as potentially 
influencing autumn migration phenology at Bracken Cave. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

  



 

 

 



Figure S14 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on autumn migration phenology of the 
number of days with winds at the 925-hPa pressure level coming from the direction 
of Bracken Cave. The ∆AICc values are the difference of the AICc value of the 
model with the selected best time window for each grid cell with the AICc value of 
the baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for 
grid cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind coming from Bracken Cave and the „year‟ term to account for trends. 
The regression coefficient maps show the regression coefficient (days/day) of the 
best identified time window for the number of days with wind coming from Bracken 
Cave when „year‟ terms to account for trends are also included in the model. Yellow 
dots with annotated numbers indicate the candidate grid cells selected as potentially 
influencing autumn migration phenology at Bracken Cave. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

  



 

 

 



Figure S15 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on autumn migration phenology of the 
number of days with winds at the 925-hPa pressure level going in the direction of 
Bracken Cave. The ∆AICc values are the difference of the AICc value of the model 
with the selected best time window for each grid cell with the AICc value of the 
baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for grid 
cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind going in the direction of Bracken Cave and the „year‟ term to account 
for trends. The regression coefficient maps show the regression coefficient 
(days/day) of the best identified time window for the number of days with wind 
going in the direction of Bracken Cave when „year‟ terms to account for trends are 
also included in the model. Yellow dots with annotated numbers indicate the 
candidate grid cells selected as potentially influencing autumn migration phenology 
at Bracken Cave. The ID values are used consistently throughout all supplementary 
figures and tables for ease of reference. 

  



 

 

 



Figure S16 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on autumn migration phenology of the 
number of days with winds at the 850-hPa pressure level coming from the direction 
of Bracken Cave. The ∆AICc values are the difference of the AICc value of the 
model with the selected best time window for each grid cell with the AICc value of 
the baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for 
grid cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind coming from Bracken Cave and the „year‟ term to account for trends. 
The regression coefficient maps show the regression coefficient (days/day) of the 
best identified time window for the number of days with wind coming from Bracken 
Cave when „year‟ terms to account for trends are also included in the model. Yellow 
dots with annotated numbers indicate the candidate grid cells selected as potentially 
influencing autumn migration phenology at Bracken Cave. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

  



 

 

 



Figure S17 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on autumn migration phenology of the 
number of days with winds at the 850-hPa pressure level going in the direction of 
Bracken Cave. The ∆AICc values are the difference of the AICc value of the model 
with the selected best time window for each grid cell with the AICc value of the 
baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for grid 
cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind going in the direction of Bracken Cave and the „year‟ term to account 
for trends. The regression coefficient maps show the regression coefficient 
(days/day) of the best identified time window for the number of days with wind 
going in the direction of Bracken Cave when „year‟ terms to account for trends are 
also included in the model. Yellow dots with annotated numbers indicate the 
candidate grid cells selected as potentially influencing autumn migration phenology 
at Bracken Cave. The ID values are used consistently throughout all supplementary 
figures and tables for ease of reference. 

  



 

 

 



Figure S18 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on autumn migration phenology of the 
number of days with winds at the 700-hPa pressure level coming from the direction 
of Bracken Cave. The ∆AICc values are the difference of the AICc value of the 
model with the selected best time window for each grid cell with the AICc value of 
the baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for 
grid cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind coming from Bracken Cave and the „year‟ term to account for trends. 
The regression coefficient maps show the regression coefficient (days/day) of the 
best identified time window for the number of days with wind coming from Bracken 
Cave when „year‟ terms to account for trends are also included in the model. Yellow 
dots with annotated numbers indicate the candidate grid cells selected as potentially 
influencing autumn migration phenology at Bracken Cave. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

  



 

 

 



Figure S19 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence on autumn migration phenology of the 
number of days with winds at the 700-hPa pressure level going in the direction of 
Bracken Cave. The ∆AICc values are the difference of the AICc value of the model 
with the selected best time window for each grid cell with the AICc value of the 
baseline model (arrival/passage = α + β*year). ∆AICc values are only shown for grid 
cells that had a probability Pc value < 0.3, i.e., grid cells for which the relation 
between the identified time window and arrival/passage dates had a ∆AICc that is 
less likely to obtain due to chance. The adjusted R2 values are for the models that 
have as independent variables both the best identified time window for number of 
days with wind going in the direction of Bracken Cave and the „year‟ term to account 
for trends. The regression coefficient maps show the regression coefficient 
(days/day) of the best identified time window for the number of days with wind 
going in the direction of Bracken Cave when „year‟ terms to account for trends are 
also included in the model. Yellow dots with annotated numbers indicate the 
candidate grid cells selected as potentially influencing autumn migration phenology 
at Bracken Cave. The ID values are used consistently throughout all supplementary 
figures and tables for ease of reference. 

  



 

 

 



Figure S20 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence of wind assistance at the 925-hPa 
pressure level on autumn migration phenology. The ∆AICc values are the difference 
of the AICc value of the model with the selected best time window for each grid cell 
with the AICc value of the baseline model (arrival/passage = α + β*year). ∆AICc 
values are only shown for grid cells that had a probability Pc value < 0.3, i.e., grid 
cells for which the relation between the identified time window and arrival/passage 
dates had a ∆AICc that is less likely to obtain due to chance. The adjusted R2 values 
are for the models that have as independent variables both the best identified time 
window for wind assistance and the „year‟ term to account for trends. The regression 
coefficient maps show the regression coefficient (days/m*s-1) of the best identified 
time window for the wind assistance when „year‟ terms to account for trends are also 
included in the model. Yellow dots with annotated numbers indicate the candidate 
grid cells selected as potentially influencing autumn migration phenology at Bracken 
Cave. The ID values are used consistently throughout all supplementary figures and 
tables for ease of reference. 

  



 

 

 



Figure S21 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence of wind assistance at the 850-hPa 
pressure level on autumn migration phenology. The ∆AICc values are the difference 
of the AICc value of the model with the selected best time window for each grid cell 
with the AICc value of the baseline model (arrival/passage = α + β*year). ∆AICc 
values are only shown for grid cells that had a probability Pc value < 0.3, i.e., grid 
cells for which the relation between the identified time window and arrival/passage 
dates had a ∆AICc that is less likely to obtain due to chance. The adjusted R2 values 
are for the models that have as independent variables both the best identified time 
window for wind assistance and the „year‟ term to account for trends. The regression 
coefficient maps show the regression coefficient (days/m*s-1) of the best identified 
time window for the wind assistance when „year‟ terms to account for trends are also 
included in the model. Yellow dots with annotated numbers indicate the candidate 
grid cells selected as potentially influencing autumn migration phenology at Bracken 
Cave. The ID values are used consistently throughout all supplementary figures and 
tables for ease of reference. 

  



 

 

 



Figure S22 Per species ∆AICc, adjusted R2, and regression coefficient maps of the 
identified best time windows for the influence of wind assistance at the 700-hPa 
pressure level on autumn migration phenology. The ∆AICc values are the difference 
of the AICc value of the model with the selected best time window for each grid cell 
with the AICc value of the baseline model (arrival/passage = α + β*year). ∆AICc 
values are only shown for grid cells that had a probability Pc value < 0.3, i.e., grid 
cells for which the relation between the identified time window and arrival/passage 
dates had a ∆AICc that is less likely to obtain due to chance. The adjusted R2 values 
are for the models that have as independent variables both the best identified time 
window for wind assistance and the „year‟ term to account for trends. The regression 
coefficient maps show the regression coefficient (days/m*s-1) of the best identified 
time window for the wind assistance when „year‟ terms to account for trends are also 
included in the model. Yellow dots with annotated numbers indicate the candidate 
grid cells selected as potentially influencing autumn migration phenology at Bracken 
Cave. The ID values are used consistently throughout all supplementary figures and 
tables for ease of reference. 

  



 

 

 



Figure S23 Elevation map of the study area. Data source: Jarvis et al. (2008) 

 

 
  



Table S1 General settings for the time window analyses 

 
Reference day of the year:  

- Spring: 

- Autumn: 

 

1 June 

31 December 

Minimum time window length:  14 

Pc* limit:  < 0.3 

* Bailey & van de Pol (2016); van de Pol et al. (2016); Haest et al. (2018) 



Table S2 Settings for the time window analysis, specific to each of the analysed weather variables 

 

Weather variable* 

Operation on 
each time 
window 

Maximum time 
window length 

Period of the year analysed 
(approximate) 

Number of windows 
analysed per grid cell 

Temperature mean 
365 Spring:    2 June to 1 June 

Autumn:  1 January to 31 December 62481 
Precipitation sum 
Wind - 925-hPa pressure level - coming from Bracken Cave 

number of days 

182 
Spring:    1 December to 1 June 
 
Autumn:  2 July to 31 December 

14706 

Wind - 925-hPa pressure level - going to Bracken Cave 
Wind - 850-hPa pressure level - coming from Bracken Cave 
Wind - 850-hPa pressure level - going to Bracken Cave 
Wind - 700-hPa pressure level - coming from Bracken Cave 
Wind - 700-hPa pressure level - going to Bracken Cave 
Wind - 925-hPa pressure level - wind assistance 

mean Wind - 850-hPa pressure level - wind assistance 
Wind - 700-hPa pressure level - wind assistance 
*For definitions of how the weather variables were calculated, see the “Materials and Methods – Weather data” section. 

  



Table S3 Overview of the relative variable importance of the candidate weather signals for spring migration phenology, calculated 
using three different methods: (a) the sum of the multi-model AICc weights across all the possible models with maximum four 
independent variables (Burnham & Anderson, 2002); (b) the boruta method (Kursa & Rudnicki, 2010); and (c) the game-theory-based 
LMG metric for variance decomposition in linear models (Grömping, 2006, 2015). This table includes only the candidate weather 
signals that were not removed due to high collinearity with another better performing candidate signal, low performance compared to 
an intercept-only model, or because of relative variable importances using the boruta method that are likely obtained by chance. The ID 
values are used consistently throughout all supplementary figures and tables for ease of reference. WindGT: Wind going in the 
direction of Bracken Cave; WindCF: Wind coming from the direction of Bracken Cave. 

  
Climate variable 

  
ID 

  
∆AICc  

(compared 
to trend 
model) 

  
∆AICc 

(compared to 
intercept-only 

model) 

  
Window 

Open 
Date 

  
Window 

Close 
Date 

 Relative Variable Importance  Ranks of Relative Variable Importance 
 

Model 
weights LMG Boruta Mean 

 

Model 
weights LMG Boruta 

Mean 
Rank 

Rank of 
the mean 

WindGT – 925-hPa  S12 -17.29 -19.35 13 Feb 13 Mar  0.25 0.09 0.10 0.15  14 12 14 13.3 14 
WindGT – 850-hPa  S17 -18.51 -23.11 05 Dec 25 Dec  0.25 0.11 0.08 0.15  13 14 9 12 13 
WindGT – 850-hPa  S16 -9.77 -12.33 23 Feb 23 Mar  0.20 0.08 0.07 0.12  12 10 8 10 12 
WindGT – 850-hPa  S20 -14.15 -19.02 04 Dec 19 Jan  0.09 0.10 0.10 0.10  11 13 12 12 11 
WindGT – 700-hPa S27 -17.54 -16.75 17 Dec 31 Dec  0.04 0.08 0.10 0.07  9 11 13 11 10 
Wind Assistance – 850-hPa S37 -14.15 -16.01 18 Dec 09 Jan  0.05 0.07 0.07 0.07  10 9 7 8.7 9 
WindCF – 700-hPa  S21 -14.48 -15.25 04 Dec 24 Dec  0.03 0.07 0.09 0.06  7 7 11 8.3 8 
WindGT – 700-hPa  S32 -16.64 -15.83 17 Feb 07 Mar  0.03 0.07 0.06 0.06  8 8 6 7.3 7 
Wind Assistance – 925-hPa S34 -13.70 -11.36 06 Dec 09 Feb  0.00 0.05 0.09 0.05  2 2 10 4.7 6 
Wind Assistance – 700-hPa S43 -15.60 -14.42 15 Feb 05 Mar  0.01 0.06 0.06 0.04  6 6 5 5.7 5 
WindGT– 700-hPa S28 -19.72 -13.36 04 Mar 25 Mar  0.01 0.06 0.04 0.04  4 5 1 3.3 4 
WindGT – 925-hPa S10 -12.02 -10.89 15 Mar 10 May  0.01 0.06 0.04 0.04  5 4 2 3.7 3 
WindCF – 700-hPa S25 -13.33 -9.25 20 Apr 27 May  0.01 0.05 0.05 0.03  3 1 4 2.7 2 
Precipitation S5 -10.30 -12.89 27 Aug 25 Feb  0.00 0.05 0.05 0.03  1 3 3 2.3 1 



Table S4 Overview of the relative variable importance of the candidate weather signals for autumn migration phenology, calculated 
using three different methods: (a) the sum of the multi-model AICc weights across all the possible models with maximum four 
independent variables (Burnham & Anderson, 2002); (b) the boruta method (Kursa & Rudnicki, 2010); and (c) the game-theory-based 
LMG metric for variance decomposition in linear models (Grömping, 2006, 2015). This table includes only the candidate weather 
signals that were not removed due to high collinearity with another better performing candidate signal, low performance compared to 
an intercept-only model, or because of relative variable importances using the boruta method that are likely obtained by chance. The ID 
values are used consistently throughout all supplementary figures and tables for ease of reference. WindGT: Wind going in the 
direction of Bracken Cave; WindCF: Wind coming from the direction of Bracken Cave. 

 

  
Climate variable 

  
ID 

 ∆AICc  
(compared 

to trend 
model) 

 ∆AICc 
(compared 

to intercept-
only model) 

  
Window 

Open 
Date 

  
Window 

Close 
Date 

 
 

Relative Variable Importance  Ranks of Relative Variable Importance 

Model 
weights LMG Boruta Mean 

 
Model 

weights LMG Boruta 
Mean 
Rank 

Rank of 
the mean 

Precipitation A11 -22.27 -19.41 23-Feb 14-Mar  0.24 0.09 0.09 0.14  14 12 11 12.3 14 
Precipitation A9 -16.46 -14.50 03-Aug 26-Dec  0.22 0.08 0.09 0.13  13 10 12 11.7 13 
WindCF – 700-hPa A32 -17.05 -17.49 03-Nov 28-Nov  0.16 0.09 0.11 0.12  12 13 14 13 12 
Wind Assistance – 925-hPa A47 -12.03 -11.79 09-Nov 01-Dec  0.05 0.07 0.11 0.08  7 8 13 9.3 11 
WindCF – 700-hPa A33 -21.97 -22.51 23-Sep 30-Oct  0.05 0.10 0.07 0.07  10 14 9 11 10 
WindCF – 700-hPa A36 -15.81 -14.40 10-Sep 01-Dec  0.07 0.07 0.06 0.07  11 7 6 8 9 
Wind Assistance – 700-hPa A51 -19.57 -15.33 31-Aug 14-Oct  0.05 0.08 0.06 0.06  9 11 3 7.7 8 
Precipitation A7 -12.44 -12.16 01-Oct 18-Dec  0.05 0.08 0.06 0.06  8 9 5 7.3 7 
WindGT – 700-hPa A43 -14.59 -12.14 22-Jul 31-Aug  0.02 0.07 0.07 0.05  5 6 10 7 6 
WindGT – 925-hPa A21 -9.95 -9.63 28-Oct 18-Nov  0.05 0.06 0.05 0.05  6 5 1 4 5 
WindGT – 700-hPa A42 -15.92 -14.60 22-Jul 08-Aug  0.00 0.06 0.07 0.04  1 4 8 4.3 4 
Wind Assistance – 700-hPa A52 -9.48 -10.02 10-Oct 29-Nov  0.02 0.05 0.06 0.04  4 2 4 3.3 3 
WindGT – 700-hPa A44 -8.04 -8.59 29-Aug 28-Sep  0.01 0.05 0.06 0.04  3 1 7 3.7 2 
Wind Assistance – 925-hPa A46 -8.33 -8.82 04-Sep 23-Sep  0.00 0.06 0.06 0.04  2 3 2 2.3 1 



Table S5 Contribution of the effect of each weather variable on mean passage date 
(MPD) in spring and autumn to the overall trend in MPD over the period 1995-2017. 
Negative values are in italics. IDs are identical to those in Table S3 and S4, and 
Figure S1 to S22. Coef.: coefficient; SE: standard error. The ID values are used 
consistently throughout all supplementary figures and tables for ease of reference. 

 

      
    

        
 

        

     
 

    

        
 
        

     
 

Total change 
over 23 years 

(days) Season Climate variable ID Coef. SE Coef. SE Coef. SE 
Spring tailwind 925-hPa S12 -2.20 0.45 0.09 0.07 -0.21 0.16 -4.81 
  tailwind 850-hPa S17 -2.06 0.36 0.24 0.07 -0.50 0.17 -11.54 
Autumn precipitation A9 0.06 0.01 -5.77 2.70 -0.34 0.18 -7.88 

 
precipitation A11 -0.41 0.07 -0.43 0.60 0.18 0.25 4.08 

  headwind 700-hPa A32 -2.46 0.75 0.06 0.06 -0.14 0.16 -3.24 
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