
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-4, April 2020

349

Retrieval Number: C6639029320/2020©BEIESP

DOI: 10.35940/ijeat.C6639.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication



Abstract: In this paper our aim is to propose a Test Case

Selection and Prioritization technique for OOP for ordering the

test cases as per in accordance with their priority for finding the

faults in the OOS. We have used the heuristic Genetic Algorithm,

in order to generating the order of these prioritized test cases for a

given OOS. The motive is to put a test case first into the ordered

sequence that may have the highest prospective of finding an error

in the given OOS & then soon..

Keywords: Test Case Selection, Test case prioritization, Genetic

Algorithm, Fitness function, Object Oriented Software.

I. INTRODUCTION

Whenever we perform, testing onto the software during

the development & maintenance phase, we want to make sure

that after rerunning of all the existing test cases they should be

able to detect the presence of errors if any. But it is quite

tedious & a bit difficult to test the entire program under the

peer pressure of meeting the deadlines for the delivery of a

software project on time. So a better alternative for this to is

that we should prioritize our test cases test cases for fault

detection in such a manner that they should appear during

execution in accordance to their relevant order of detection of

probabilities of error in the given Object oriented software

(OOS). It provides an ordered sequence of test cases that

provides with a prioritized set of test cases, which are more

likely to find errors in the given OOS. Now in order to

propose a technique for ordering the test cases as per in

accordance with their priority for finding the faults in the

OOS, we would use the Genetic Algorithm, for generating the

order of these prioritized test cases for a given OOS. The

motive is to put a test case first into the ordered sequence

which has the highest probability of finding an error in the

given OOS & then soon.

II. RELATED WORK FOR THE GA ON OOT

A Kumar, M., et al. [1] for evaluating the OOS has proposed a

GA in tree representation by using class diagrams. In they

Revised Manuscript Received on March 16, 2020.

* Correspondence Author

Prashant Vats*, AIMACT, Banasthali Vidyapith, Rajasthan, India.

Email: prashantvats12345@gmail.com.

Manju Mandot, J.R.N. Rajasthan Vidyapith, Udaipur, Rajasthan, India.

Email: Manju.mandot@gmail.com.

Saurabh Mukharjee, AIMACT, Banasthali Vidyapith, Rajasthan, India.

Email: mukherjee.saurabh@rediffmail.com.

Neelam Sharma, AIMACT, Banasthali Vidyapith, Rajasthan, India.

Email: sharmaneelam27@gmail.com

have increased the efficiency of the OOS by solving the

problem of optimization, thus facilitating effective code

reusability with memory management.

For the Object-Oriented metrics Satish, et al. [2] has proposed

software fault prediction models based on a GA based used in

Fault based Testing. These predictive fault prone classes for a

SUT are adaptable to OOS.

For aspect-oriented OOS based on GA, R. Delamare, et al. [3]

has proposed a Fault based Testing approach for the class

integration test order problem. By integrating the classes &

aspects of the SUT based information with the information of

class methods integration order is produced based on class

aspects thus for the un-impacted classes in a SUT resulting in

avoidance of the test case suite modifications. It can’t be

applied on large chunks of codes.

During integration testing, for measurement of inter- class

coupling Jie F., et al. [4] has used GA by using minimal

stubbing complexity.

Using a GA programming approach by implementing in Java

for generation of test cases for classes in Evolutionary Testing

at the unit level, Nirmal G., et al.[5] has given a method in

OOS using statements in test cases in form of the tree

representation.

Using the identification of path clusters by using GA

Sabharwal S., et al. [6] in Rational Rose has done their work

for the selection and prioritization of the test case scenarios.

Considering the IF metrics & stack based memory allocation,

using the State Dependency Graph & prioritization of the

nodes of control flow graph they have addressed requirements

change issues.

For model based cases in an OOS using GA for the automated

generation of the test cases Chandran, K., et al. [7] has

proposed their work onto prediction of internal and external

stimuli based behavior of the objects which is dynamic in

nature.

For symbolic execution & evolutionary testing of objects

during Structural Testing of the OOS Inkumsah K., et al. [8]

has proposed a framework at the integrated class level called

Evacon uses GA algorithms to find method sequences with for

a Software under Test (SUT) thus ensuring higher branch

coverage.

For optimizing the test suites by using a coverage criterion,

for GA, Fraser, G., et al. [9] has presented a search-based

approach EVOSUITE for dynamic handling of test case

dependencies among their predicates.

Test Case Prioritization & Selection for an

Object Oriented Software using Genetic

Algorithm.

Prashant Vats, Manju Mandot, Saurabh Mukherjee, Neelam Sharma

Test Case Prioritization & Selection for an Object Oriented Software using Genetic Algorithm.

350

Retrieval Number: C6639029320/2020©BEIESP

DOI: 10.35940/ijeat.C6639.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

During Integrated Class level testing at the early stages of

design and analysis, for the Couple Based Testing, Alexneder

C., et al. [10] uses the GA for attaining the optimization of

single-objective for methods and attributes that are used in the

classes of an OOS.

Using the Mutation based testing, to fit with test optimization

by analyzing the application of GA, Franck F., et. al. [11] has

attempted for the generation of test cases.

For Evolutionary Testing of the OOS, Kanmanani et al. [12]

used Java to introduce a Class-Based Elitist involving GA

resulting in achieving of faster results over the time.

III. KEY RESEARCH CONCEPT FOR GENERATION

OF G.A.

Genetic algorithm (G.A.) is meta-heuristic search

algorithms that are based on the ideas of selection of the fittest

gene among a chromosome. In GA, the populations of

chromosomes are denoted by various reassembling codes like

as Binary, Permutation onto real world members by using

genetic operators like Selection, Crossover or Mutation etc.,

which would be applied onto a participating chromosome in

order to find the fitness function to decide that will decide the

fittest chromosome which is nothing but just an objective

function to decide that what number of prioritized test cases

ensures hundred percent code coverage with maximum fault

detection for a given OOS.

The GA provides a multidimensional search technique by

using a combination of random iterative search methods that

provides an optimized solution for a given problem. The GA

method is indeed the most efficient featured algorithm that

provides solution to search space based problem by

considering a entire commutated population of a genetic

chromosome.

The steps involved in the execution of GA are:

IV. GENERATING A CHROMOSOME

POPULATION

Initially a GA Chromosomal function’s population is

randomly selected & encoded. Each Chromosome has

denoted the possible answer to a given problem in order to

arrange the test cases in a Chromosomal order & our motive is

to optimize that genetic sequence. For e.g., we have got a

following test sequence for a given set of N test cases where

N=1 to n onwards.

Let us suppose N=10, so we may obtain the following genetic

sequence:

T1->T3->T4->T6->T12->T5->T9->T17->T8->T13.

[1] Evaluation of the fitness of the Generated Prioritized test

cases population. The fitness of a genetically populated

chromosome can be defined by an objective fitness function.

A fitness function will indicate the survival of a Chromosome

into a good or bad. This objective fitness function will

generate a sequence of number, consisting of all the

prioritized test cases that will perform a comparative two or

more chromosome.

[2] Apply Selection of test cases for individual

Chromosome. In general, the selection of chromosomes will

be dependent onto the fitness value of it. The possible

chromosome with a higher or lower value would be chosen as

a base for our problem definition.

[3] Applying the Crossover & mutation over a chosen gene.

The parents of a gene will be chosen & combined in a random

manner. This process of generation of genetic chromosome

into a random order is called as crossover. There would be

two types of crossover in genes:

For e.g. Given two sequences of test cases that has a high

probability of detection of faults in an OOS. We have got

two parents:

After using the one point genetic crossover, the resultant

genetic offspring would be as follows:

For CH1, we will write the first portion of the P1 as it is in

original form and after putting a constraint that for the

second part of P2 we will not include a test case into CH1.

For the mutation onto any two genes, we have to select them

randomly along with their Chromosome & then swap them

randomly along with their Chromosome & then swap them

with each other.

For Ch1, we will write the first portion of P1 as its in original

form and after putting a constraint that for the second part of

P2 we will not include test case into Ch1.

For the mutation onto any two genes we, have to select them

randomly along with their chromosome & then swap them

with each other.

For e.g. when T3 & T5 get selected randomly during

mutation performed onto a chromosome.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-4, April 2020

351

Retrieval Number: C6639029320/2020©BEIESP

DOI: 10.35940/ijeat.C6639.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

V. TERMINATION CRITERIA.

The termination criteria could be selected in as many forms a

may be defined like as:

VI. PROPOSED TECHNIQUE FOR TEST CASE

PRIORITIZATION

Test

case ID

Princip

al
Rate Time

Result

s

Execution

History

T1

481411

0.0

11.0

28.0

89445

68.73

8, 9, 10,

11, 12,

13

T2

758794

.0

2.0

4.0

82134

3.2

8, 9, 10,

11, 12,

13, 14,

15,16,

20, 21, 22

T3
359575

.0
23.0 6.0

12145

45.02

10, 11, 12,

13

T4

593972

.0

6.0

30.0

34144

72.90

10, 11, 12,

13,

14, 15, 16,

20,

21, 22

Test Case Prioritization & Selection for an Object Oriented Software using Genetic Algorithm.

352

Retrieval Number: C6639029320/2020©BEIESP

DOI: 10.35940/ijeat.C6639.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

T5

160253

.0

14.0

26.0

42345

67.90

12, 13, 14,

15,

16, 20,

21,22

T6

971281

.0

9.0

15.0

14312

4.56

22, 23, 24,

25,

28

T7

141261

.0

9.0

16.0

23567

.34

5, 6, 7, 8,

9, 10,

11, 12, 13,

14, 15, 16,

20,

21, 15, 16,

20, 21, 35

T8
888880

0.0
10.0 5.0

12456

.67

15, 16, 20,

21

T9

414831

.0

24.0

4.0

16915

30.98

5, 6, 7, 8,
9, 10,

11, 12, 14,

17, 18, 19,
20, 21.

Table 2: are lines of code covered that covers by each test

Now we apply genetic algorithm, on this data.

The Table. 3 for displaying Results after applying GA for

testing of OOP according to their Normalized value is given

below.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-4, April 2020

353

Retrieval Number: C6639029320/2020©BEIESP

DOI: 10.35940/ijeat.C6639.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Fig. 2. Graph to show the code coverage during

execution of Test cases using GA & without GA.

VII. CONCLUSION.

In this research paper we have provided a GA for test case

prioritization using multidimensional search technique by

using a combination of random iterative search methods

that for provides an optimized solution for a given test case

selection & their test case prioritization for a given Object

oriented program. The GA method is indeed has proven it’s

worth as the most efficient featured algorithm that provides

an optimized solution to search space based problem in the

area of testing of OOP by considering a entire commutated

population of a genetic chromosome.

REFERENCES:

1. Kumar, Manoj and Husain, Mh. (2011), “An Efficient Algorithm for

Evaluation of Object-Oriented Models”, Pub. in International Journal

of Computer Applications, Vol. 24, No. 8, pp. 11–15, June 2011.

2. Sandhu, Parvinder S. and Dhiman, Satish Kumar (2009), “A Genetic

Algorithm Based Classification Approach for Finding Fault Prone

Classes”, Pub. in Proceedings of World Academy of Science,

Engineering and Technology, Vol. 60, pp. 485–488.

3. Delamare, Romain, Kraft, Nicholas A. (2012), “A Genetic Algorithm

for Computing Class Integration Test Orders for Aspect-Oriented

Systems”, Pub. in IEEE Fifth International Conference on Software

Testing, Verification and Validation (lCST), pp. 804–813.

4. Briand, Lionel C. and Feng, Jie (2002), “Experimenting with Genetic

Algorithms and Coupling Measures to Devise Optimal Integration Test

Orders”, Pub. in Carleton University, Technical Report SCE-02-03,

Version 3, October 2002.

5. Nirmal, K.G. and Mukesh, K.R. (2009), “Using Genetic Algorithm for

Unit Testing of Object Oriented Software”, Pub. in IJSSST, Vol. 10,

No. 3, pp. 99–104.

6. Sabharwal, Sangeeta and Sibal, Ritu (2011), “Applying Genetic

Algorithm for Prioritization of Test Case Scenarios Derived from UML

Diagrams”, Pub. in IJCSI International Journal of Computer Science

Issues, Vol. 8, Issue 3, No. 2, pp. 433–444, May 2011.

7. Prasanna, M. and Chandran, K.R. (2009), “Automatic Test Case

Generation for UML Object Diagrams using Genetic Algorithm”, Pub.

in Int. J. Advance. Soft Comput. Appl., Vol. I, No. I, pp. 19–32, July

2009.

8. Inkumsah, Kobi and Xie, Tao (2008), “Improving Structural Testing of

Object-Oriented Programs via Integrating Evolutionary Testing and

Symbolic Execution”, Pub. in Proceedings of 23rd IEEE! ACM

International Conference on Automated Software Engineering, pp.

297– 306.

9. Fraser, Gordon and Arcuri, Andrea (2011), “Evolutionary Generation

of Whole Test Suites”, Pub. in Proceedings of 11th IEEE International

Conference on Quality Software (QSIC), pp. 31–40.

10. Margaritis, B. and Alexander, C. (2010), “Placement of Entities in

Objectoriented Systems by Means of a Single-objective Genetic

Algorithm”, Pub. in Proceedings of Fifth IEEE International

Conference on Software Engineering Advances (ICSEA), pp. 70–75.

11. Baudry, Benoit and Fleurey, Franck (2005), “From Genetic to

Bacteriological Algorithms for Mutation-based Testing”, Pub. in

Journal of Software Testing, Verification and Reliability, Vol. 15, pp.

73–96.

12. Maragathavalli, P. and Kanmani, S. (2012), “Multi- objective Genetic

Algorithm using Class-Based Elitist Approach”, Pub. in Computer

Science & Engineering: An International Journal (CSElJ), Vol. 2, No.

5, pp. 3I–41 , October 2012.

AUTHORS PROFILE

Mr. Prashant Vats, is working in the field of CSE &

IT as an Assistant Professor from past 11 years. He is

pursuing Ph.D. in CSE from Banasthali Vidyapith,

Rajasthan. He is a member of IEEE. He has

contributed more than 35 publications in various

National and International Journals, Conferences of

International repute.

Prof. Manju Mandot, is a Professor and Director of

Directorate of Jan Shikshan and Extension, J.R.N.

Rajasthan Vidyapeeth (D) University. She completed

her Ph.D (Computer Science) and has 27 years of

teaching experience. Her research interest includes

image processing, E- governance, women

empowerment with technology. She is esteemed

member of Computer Society of India.

Prof. Saurabh Mukherjee, currently works at the

Department of Computer Science, Banasthali

University. Saurabh does research in

Human-computer Interaction and Computing in

Mathematics, Natural Science, Engineering and

Medicine.

Dr. Neelam Sharma, is an Assistant Professor at the

Department of Computer Science, Banasthali

University. She has completed her PhD in Computer

Science and has 13 years of teaching experience and

her research interest includes machine learning,

pattern recognition.

8

7

6

5

4

3

Running
Test
Case
using
without
GA

Running
Test
Case
using
GA

2

1

0

Test Case Prioritization & Selection for an Object Oriented Software using Genetic Algorithm.

354

Retrieval Number: C6639029320/2020©BEIESP

DOI: 10.35940/ijeat.C6639.049420

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

