

Automatic procedure for deriving open cluster metallicities

Martin Piecka 408988@mail.muni.cz

Department of Theoretical Physics and Astrophysics, Masaryk University October 5, 2021

Method Description

Our focus: studying metallicities of star clusters using the method from [1]

- applicable to any photometric system
- iterative method, input requires photometric data (colour and brightness), distance, reddening
- can be summerised in four main steps:

$$T_{
m N} = \log T_{
m eff} - \log T_{
m eff,\ ZAMS} \mid_{Z_{
m co}}$$

■ used in several studies of open clusters [1][2][3], so far used only in Johnson system, method applied manually

Grant Project

Together with Ernst Paunzen, we are working on an automatisation of the described method

- we have downloaded the isochrone grids from stev.oapd.inaf.it/cgi-bin/cmd_3.5 [4]
 - $Z_{\min} = 0.005, Z_{\max} = 0.040, Z_{\text{step}} = 0.005$
 - lacksquare log Age $_{
 m min}=6.6$, log Age $_{
 m max}=9.4$, log Age $_{
 m step}=0.1$
- procedure can automatically extract the metallicities (and ages) of star clusters
- extended to other photometric systems
 - Johnson: V, (B-V)
 - 2MASS: J , $(J K_S)$
 - Gaia: G , $(B_P R_P)$
- extended the range of applicable colour-values toward higher temperatures (starting from about 3 500 K up to about 25 000 K)
- procedure has been tested and is applicable to the full range of metallicities

Grant Project

Possible issues

- binaries (shifts results toward higher Z)
- giants (may require artificial weights and separate calibrations)
- pre-main-sequence (currently unsolvable)
- star-forming regions (differential extinction)

Test Case: Synthetic Clusters

Test Case: Synthetic Clusters

Test Case: Synthetic Clusters

Test Case: Pöhnl & Paunzen (2010) - IC 4665

 $d = 352 \text{ pc}, E(B - V) = 0.174 \text{ mag}, \log Age = 7.634, Z = 0.022$

Test Case: Pöhnl & Paunzen (2010) - NGC 2516

 $d = 360 \text{ pc}, E(B - V) = 0.112 \text{ mag}, \log Age = 8.150, Z = 0.015$

Test Case: Pöhnl & Paunzen (2010) - NGC 2632

 $d = 171 \text{ pc}, E(B - V) = 0.027 \text{ mag}, \log Age = 8.720, Z = 0.028$

Test Case: M 67

Photometric system: Gaia (data from [5])

Test Case: ω **Centauri**

Photometric system: Gaia (data from [8])

Summary

- automatic procedure for finding metallicities (+ ages + possibly the other two cluster parameters)
- the procedure is applicable for a wide range of cluster ages and metallicities
- applicable to any photometric system for which the isochrones are available (useful when the Gaia DR3 is made public)
- the code will be made publicly available at the end of the project
- if anybody is interested in a collaboration, we are always looking for good ideas where the procedure could be of use

Thank You for Your Attention!

- [1] Pöhnl, H., Paunzen, E., 2010, A statistical method to determine open cluster metallicities, A&A, 514, 81
- [2] Netopil, M., Paunzen, E., 2013, *Towards a photometric metallicity scale for open clusters*, A&A, 557, 10
- [3] Netopil, M., Paunzen, E., Heiter, U., Soubiran, C., 2016, *On the metallicity of open clusters*. *III. Homogenised sample*, A&A, 585, 150
- [4] stev.oapd.inaf.it/cgi-bin/cmd_3.5
- [5] Cantat-Gaudin, T., Anders, F., 2020, Clusters and mirages: cataloguing stellar aggregates in the Milky Way, A&A, 633, 99
- [6] Skrutskie, M. F., Cutri, R. M., Stiening, R., et al., 2006, *The Two Micron All Sky Survey (2MASS)*, AJ, 131, 1163
- [7] webda.physics.muni.cz
- [8] Gaia Collaboration et al., 2018, Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way, A&A, 616, 12