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A Cryptographic Application of the M-Injectivity of 
𝑀𝑛(𝑍𝑝) Over Itself  

Wannarisuk Nongbsap , Madan Mohan Singh 

Abstract- In this paper, we present a public key scheme using 
Discrete Logarithm problem, proposed by Diffie and Hellman 
(DLP)[1], particularly known as the Computational 
Diffie-Hellman Problem (CDH)[12]. This paper uses the Elgamal 
encryption scheme [6] and extends it so that more than one 
message can be sent. The combination of Hill Cipher[14 ] and the 
property of the matrix ring 𝑴𝒏(𝒁𝒑), of being left m-injective over 
itself, where 𝒑 is a very large prime, are major contributions 
towards the proposal of this scheme. 

 Keywords:- m-injective, 𝑹-monomorphisms, 𝑴𝒏(𝒁𝒑), public 
key cryptography, Discrete Logarithm Problem, Computational 
Diffie-Hellman Problem, Hill Cipher. 

I. INTRODUCTION 

 Let 𝑅 be a ring with identity element. A left ideal 𝐼 of 

𝑅 is a subgroup of 𝑅, with respect to addition, if for any 𝑥 ∈
𝐼 and 𝑟 ∈ 𝑅, 𝑟𝑥 ∈ 𝐼. A Principal Ideal Ring (PIR) is a ring 
whose every ideal (left or right) is generated by a single 
element. A ring 𝑅 is von Neumann regular if for any 𝑎 ∈ 𝑅, 
there exists 𝑏 ∈ 𝑅 such that 𝑎 = 𝑎𝑏𝑎 [13].  
 A non-empty set 𝑀 is a left 𝑅-module if 𝑀 is an abelian 
group with respect to addition and if there exists a map 
. : 𝑅 × 𝑀 ⟶ 𝑀  such that (i) (𝑟 + 𝑠).𝑚 = 𝑟.𝑚 +
𝑠.𝑚 (ii)𝑟. (𝑚1 +𝑚2) = 𝑟.𝑚1 + 𝑟.𝑚2 (iii)(𝑟𝑠).𝑚 = 𝑟. (𝑠𝑚) 
(iv)1.𝑚 = 𝑚 , ∀𝑟, 𝑠 ∈ 𝑅  and ∀𝑚1, 𝑚2 ∈ 𝑀  [3]. Also, we 
recall that a function ℎ from a ring 𝑅 to a ring 𝑆 is a left 𝑅 
homomorphism if ∀𝑥, 𝑦 ∈ 𝑅 , (i) ℎ(𝑥 + 𝑦) = ℎ(𝑥) + ℎ(𝑦) 
(ii)ℎ(𝑟𝑥) = 𝑟ℎ(𝑥), ∀𝑟 ∈ 𝑅([3],[4]). 
 A left 𝑅  module 𝐸  is injective over 𝑅  if for any left 
R-monomorphism 𝛼:𝑀 → 𝑀′ of left 𝑅-modules 𝑀 and 𝑀′ 
and any left 𝑅- homomorphism 𝑓:𝑀 → 𝐸, there exists a left 
𝑅 -homomorphism 𝑔:𝑀′ → 𝐸  such that 𝑔𝑜𝛼 = 𝑓 [15]. We 
shall now give Baer’s criterion and then modify it to 

introduce the concept of m-injective rings. Let 𝐸 be a left 
𝑅-module. According to Baer’s criterion, 𝐸 is injective over 
𝑅  if and only if for every left ideal 𝐴  of 𝑅 , any left 
𝑅 -homomorphism 𝑓: 𝐴 ⟶ 𝐸  can be extended to a left 
𝑅-homomorphism 𝑔: 𝑅 ⟶ 𝐸([1],[2],[3]). 
In our study, 𝐸 = 𝑅 and using Baer’s criterion, we define 

m-injective in the following manner. 
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 A ring 𝑅 , regarded as a module over itself, is left 
𝑚-injective over itself if for any left ideal 𝐴 of 𝑅, any left 
𝑅 -monomorphism 𝑓: 𝐴 ⟶ 𝑅  can be extended to a left 
𝑅 -monomorphism 𝑔: 𝑅 ⟶ 𝑅 . As in the definition of 
homomorphism, a function ℎ from a ring 𝑅 to another ring 
𝑆  is a left 𝑅 -monomorphism if ∀𝑥, 𝑦 ∈ 𝑅 , (i)ℎ(𝑥 + 𝑦) =
ℎ(𝑥) + ℎ(𝑦) (ii)ℎ(𝑟𝑥) = 𝑟ℎ(𝑥), ∀𝑟 ∈ 𝑅 (iii) ℎ is one-one. 
This concept of self m-injective rings is an extension of the 
concept of Self injective rings which was introduced by Y. 
Utumi [5] in the year 1965. In [5], Utumi studied the 
properties of commutative rings which are injective over 
themselves. In this paper, 𝑅 = 𝑀𝑛(𝑍𝑝)  is a 
non-commutative finite ring.  A public key cryptography is 
an encryption scheme that uses a public key known to every 
one and a private key known only to the one whose decrypts 
the message. The problem used in this paper is discrete 
logarithm problem i.e for a very large prime 𝑝 and given two 
known values 𝑑  and 𝑟  such that 𝑑 = 𝑟𝑡(𝑚𝑜𝑑  𝑝) , it is 
difficult to find 𝑡[1] and given 𝑟, 𝑟𝑡 , 𝑟𝑘 , modulo 𝑝 , it is 
difficult to find 𝑟𝑡𝑘  modulo 𝑝 , unless one of 𝑡  and 𝑘  is 
known[12].  Lester Hill invented the Hill Cipher in 1929. 
Hill Cipher is a polygraphic substitution cipher based on 
linear algebra. The most vital component of the Hill Cypher 
is the key matrix. The key matrix is used to encrypt the 
messages, and its inverse is used to decrypt the encoded 
messages. It is important that the key matrix be kept secret 
between the message senders and the intended recipients. The 
receiver of the message decodes the key matrix using its 
inverse. In this paper, the key matrix is also the encoding 
matrix and its inverse is the decoding matrix. The main 
drawback of Hill Cipher is in selecting the correct encryption 
key matrix for encryption. If the key matrix is not properly 
chosen, the generation of decryption key matrix i.e. the 
inverse of encryption matrix is not possible. This is because if 
the encryption key matrix is invertible then only the inverse 
of encryption matrix is possible. In our paper, there is a quick 
generation of the invertible key matrix due to the 
m-injectivity of the ring 𝑀𝑛(𝑍𝑝) over itself.  

Notation:-𝑥̅ used in this paper will denote the integer 𝑥 
modulo 𝑝. 

II. RESULTS AND DISCUSSION 

 Before we present our cryptographic scheme, we prove the 
following results.  
Theorem 2.1 If every left ideal of a ring R  is a direct 
summand of R then R is left m-injective over itself.  
 Proof. Let 𝐴 be any left ideal of 𝑅. Let 𝑓: 𝐴 ⟶ 𝑅 be a left 
𝑅-monomorphism. Since 𝐴 is a direct summand of 𝑅, there 
exists a left ideal 𝐵 of 𝑅 such that 𝐴⊕ 𝐵 = 𝑅. 
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Let 𝑔: 𝑅 ⟶ 𝑅 be defined by 

𝑔(𝑥) = {
𝑓(𝑥),  𝑖𝑓     𝑥 ∈ 𝐴
𝑥,  𝑖𝑓     𝑥 ∈ 𝐵

 

m, 𝑔 extends 𝑓 and 𝑔 is a left 𝑅-monomorphism  
Theorem 2.2 If a Principal Ideal Ring R is von Neumann 
Regular then R is left m-injective over itself.  
Proof. Let 𝑎 ∈ 𝑅 . Let 𝑓: 𝑅𝑎 ⟶ 𝑅  be a left 
𝑅 -monomorphism. Since 𝑅  is regular, there exists 𝑏 ∈ 𝑅 
such that 𝑎 = 𝑎𝑏𝑎 ⇒ 𝑒 = 𝑏𝑎 = 𝑏𝑎𝑏𝑎. 
Now idempotent element 𝑒 = 𝑏𝑎 ∈ 𝑅𝑎 . Again 𝑅 = 𝑅𝑒 +
𝑅(1 − 𝑒) ⊆ 𝑅𝑎 + 𝑅(1 − 𝑒). 
Hence, 𝑅 = 𝑅𝑎 + 𝑅(1 − 𝑒) . Let 𝑥 ∈ 𝑅𝑎 ∩ 𝑅(1 − 𝑏𝑎) ⇒
𝑥 = 𝑟𝑎  and 𝑥 = 𝑠(1 − 𝑏𝑎)  for some 𝑟, 𝑠 ∈ 𝑅 . Now, 

𝑥𝑏𝑎 = 𝑟𝑎𝑏𝑎 = 𝑟𝑎 = 𝑥 . So, 0 = 𝑥(1 − 𝑏𝑎) = 𝑠(1 −
𝑏𝑎)(1 − 𝑏𝑎) = 𝑠(1 − 𝑏𝑎) = 𝑥 . Hence, 𝑅𝑎  is a direct 
summand of 𝑅, therefore, 𝑅 is left m-injective over itself.  

 A field 𝐹 is von Neumann regular and it is well 
known that matrix rings over von Neumann regular rings are 
von Neumann regular. Since 𝑀𝑛(𝐹) is a Principal Ideal Ring 
which is von Neumann Regular, it is obvious that 𝑀𝑛(𝐹) is 
left m-injective over itself. However, to make use of this 
property in the proposed scheme, we shall consider one of the 
left ideals 𝐴 of 𝑀𝑛(𝐹). . 
 Let 𝐴 be a left ideal of 𝐹 [9] generated by 

(

  
 

1 0 0 . . . 0
1 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
1 0 0 . . . 0)

  
 

 

 
then  

𝐴 =

{
  
 

  
 

(

 
 
 
 

𝑎11 0 0 . . . 0
𝑎21 0 0 . . . 0
𝑎31 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 0 0 . . . 0)

 
 
 
 

:  𝑎𝑖1   ∈   𝐹, 1  ≤   𝑖  ≤   𝑛   

}
  
 

  
 

 
Let 𝑓: 𝐴 ⟶ 𝑀𝑛(𝐹) be a left 𝑅-monomorphism. 

 

Suppose 𝑓

(

 
 
 
 
 

(

 
 
 
 

1 0 0 . . . 0
1 0 0 . . . 0
1 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
1 0 0 . . . 0)

 
 
 
 

)

 
 
 
 
 

=

(

 
 
 
 

𝑥11 𝑥12 𝑥13 . . . 𝑥1𝑛
𝑥21 𝑥22 𝑥23 . . . 𝑥2𝑛
𝑥31 𝑥32 𝑥33 . . . 𝑥3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 . . . 𝑥𝑛𝑛)

 
 
 
 

, 

for some 

(

 
 
 
 

𝑥11 𝑥12 𝑥13 . . . 𝑥1𝑛
𝑥21 𝑥22 𝑥23 . . . 𝑥2𝑛
𝑥31 𝑥32 𝑥33 . . . 𝑥3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 . . . 𝑥𝑛𝑛)

 
 
 
 

∈ 𝑀𝑛(𝐹). 

 

Then ∀

(

 
 
 
 

𝑎11 0 0 . . . 0
𝑎21 0 0 . . . 0
𝑎31 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 0 0 . . . 0)

 
 
 
 

∈ 𝐴, 
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𝑓

(

 
 
 
 
 

(

 
 
 
 

𝑎11 0 0 . . . 0
𝑎21 0 0 . . . 0
𝑎31 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 0 0 . . . 0)

 
 
 
 

)

 
 
 
 
 

= 𝑓

(

 
 
 
 
 
 

(

 
 
 
 

𝑎11 0 0 . . . 0
𝑎21 0 0 . . . 0
𝑎31 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 0 0 . . . 0)

 
 
 
 

(

 
 
 
 

1 0 0 . . . 0
1 0 0 . . . 0
1 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
1 0 0 . . . 0)

 
 
 
 

)

 
 
 
 
 
 

=

(

 
 
 
 

𝑎11 0 0 . . . 0
𝑎21 0 0 . . . 0
𝑎31 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 0 0 . . . 0)

 
 
 
 

𝑓

(

 
 
 
 
 

(

 
 
 
 

1 0 0 . . . 0
1 0 0 . . . 0
1 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
1 0 0 . . . 0)

 
 
 
 

)

 
 
 
 
 

=

(

 
 
 
 

𝑎11 0 0 . . . 0
𝑎21 0 0 . . . 0
𝑎31 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 0 0 . . . 0)

 
 
 
 

(

 
 
 
 

𝑥11 𝑥12 𝑥13 . . . 𝑥1𝑛
𝑥21 𝑥22 𝑥23 . . . 𝑥2𝑛
𝑥31 𝑥32 𝑥33 . . . 𝑥3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 . . . 𝑥𝑛𝑛)

 
 
 
 

=

(

 
 
 
 

𝑎11𝑥11 𝑎11𝑥12 𝑎13𝑥13 . . . 𝑎1𝑛𝑥1𝑛
𝑎21𝑥11 𝑎21𝑥12 𝑎23𝑥13 . . . 𝑎2𝑛𝑥1𝑛
𝑎31𝑥11 𝑎31𝑥12 𝑎33𝑥13 . . . 𝑎3𝑛𝑥1𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1𝑥11 𝑎𝑛1𝑥12 𝑎𝑛3𝑥13 . . . 𝑎𝑛𝑛𝑥1𝑛)

 
 
 
 

 

Since 𝑓 is one-one, at least one of 𝑥1𝑗 , 1 ≤ 𝑗 ≤ 𝑛 is nonzero. For if all are zero then 

𝑓

(

 
 
 
 
 

(

 
 
 
 

𝑎11 0 0 . . . 0
𝑎21 0 0 . . . 0
𝑎31 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 0 0 . . . 0)

 
 
 
 

)

 
 
 
 
 

=

(

 
 
 
 

0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . 0)

 
 
 
 

 

This is a contradiction. Suppose, we assume that 𝑥11 ≠ 0. 
Let us define a function 𝑔:𝑀𝑛(𝐹) ⟶ 𝑀𝑛(𝐹) on a generator of 𝑀𝑛(𝐹) by 

𝑔

(

 
 
 
 
 

(

 
 
 
 

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . .
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . 1)

 
 
 
 

)

 
 
 
 
 

=

(

 
 
 
 

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 . . . 𝑥1(𝑛−1) 𝑥1𝑛
0 1 𝑥12 𝑥13 𝑥14 . . . 𝑥1(𝑛−2) 𝑥1(𝑛−1)
0 0 1 𝑥12 𝑥13 . . . 𝑥1(𝑛−2) 𝑥1(𝑛−2)
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 0 0 0 0 . . . 0 1 )

 
 
 
 

. 

Then ∀

(

 
 
 
 

𝑎11 𝑎12 𝑎13 . . . 𝑎1𝑛
𝑎21 𝑎22 𝑎23 . . . 𝑎2𝑛
𝑎31 𝑎32 𝑎33 . . . 𝑎3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 . . . 𝑎𝑛𝑛)

 
 
 
 

∈ 𝑀𝑛(𝐹), 
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𝑔

(

 
 
 
 
 

(

 
 
 
 

𝑎11 𝑎12 𝑎13 . . . 𝑎1𝑛
𝑎21 𝑎22 𝑎23 . . . 𝑎2𝑛
𝑎31 𝑎32 𝑎33 . . . 𝑎3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 . . . 𝑎𝑛𝑛)

 
 
 
 

)

 
 
 
 
 

=

(

 
 
 
 

𝑎11 𝑎12 𝑎13 . . . 𝑎1𝑛
𝑎21 𝑎22 𝑎23 . . . 𝑎2𝑛
𝑎31 𝑎32 𝑎33 . . . 𝑎3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 . . . 𝑎𝑛𝑛)

 
 
 
 

(

 
 
 
 

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 . . . 𝑥1(𝑛−1) 𝑥1𝑛
0 1 𝑥12 𝑥13 𝑥14 . . . 𝑥1(𝑛−2) 𝑥1(𝑛−1)
0 0 1 𝑥12 𝑥13 . . . 𝑥1(𝑛−2) 𝑥1(𝑛−2)
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 0 0 0 0 . . . 0 1 )

 
 
 
 

=

(

 
 
 
 

𝑎11𝑥11 𝑎11𝑥12 + 𝑎12 𝑎11𝑥13 + 𝑎12𝑥12 + 𝑎13 . . . 𝑎11𝑥1𝑛 + 𝑎12𝑥1(𝑛−1)+. . . +𝑎1(𝑛−1)𝑥12 + 𝑎1𝑛
𝑎21𝑥11 𝑎21𝑥12 + 𝑎22 𝑎21𝑥13 + 𝑎22𝑥12 + 𝑎23 . . . 𝑎21𝑥1𝑛 + 𝑎22𝑥1(𝑛−1)+. . . +𝑎2(𝑛−1)𝑥12 + 𝑎2𝑛
𝑎31𝑥11 𝑎31𝑥12 + 𝑎32 𝑎31𝑥13 + 𝑎32𝑥12 + 𝑎33 . . . 𝑎31𝑥1𝑛 + 𝑎32𝑥1(𝑛−1)+. . . +𝑎3(𝑛−1)𝑥12 + 𝑎3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1𝑥11 𝑎𝑛1𝑥12 + 𝑎𝑛2 𝑎𝑛1𝑥13 + 𝑎𝑛2𝑥12 + 𝑎𝑛3 . . . 𝑎𝑛1𝑥1𝑛 + 𝑎𝑛2𝑥1(𝑛−1)+. . . +𝑎𝑛(𝑛−1)𝑥12 + 𝑎𝑛𝑛)

 
 
 
 

=

(

 
 
 
 
 

𝑎11𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑎1𝑗𝑥1𝑠 + 𝑎12 ∑1≤𝑗≤2;3≥𝑠≥2 𝑎1𝑗𝑥1𝑠 + 𝑎13 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑎1𝑗𝑥1𝑠 + 𝑎1𝑛
𝑎21𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑎2𝑗𝑥1𝑠 + 𝑎22 ∑1≤𝑗≤2;3≥𝑠≥2 𝑎2𝑗𝑥1𝑠 + 𝑎23 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑎2𝑗𝑥1𝑠 + 𝑎2𝑛
𝑎31𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑎3𝑗𝑥3𝑠 + 𝑎32 ∑1≤𝑗≤2;3≥𝑠≥2 𝑎3𝑗𝑥1𝑠 + 𝑎33 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑎3𝑗𝑥1𝑠 + 𝑎3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑎𝑛𝑗𝑥1𝑠 + 𝑎𝑛2 ∑1≤𝑗≤2;3≥𝑠≥2 𝑎𝑛𝑗𝑥1𝑠 + 𝑎𝑛3 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑎𝑛𝑗𝑥1𝑠 + 𝑎𝑛𝑛)

 
 
 
 
 

———(1) 

It can be easily verified that 𝑔 is a well-defined left 𝑅-monomorphism extending 𝑓. Also, from equation (1), we 
have 

(

 
 
 
 

𝑎11 𝑎12 𝑎13 . . . 𝑎1𝑛
𝑎21 𝑎22 𝑎23 . . . 𝑎2𝑛
𝑎31 𝑎32 𝑎33 . . . 𝑎3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 . . . 𝑎𝑛𝑛)

 
 
 
 

(

 
 
 
 

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 . . . 𝑥1(𝑛−1) 𝑥1𝑛
0 1 𝑥12 𝑥13 𝑥14 . . . 𝑥1(𝑛−2) 𝑥1(𝑛−1)
0 0 1 𝑥12 𝑥13 . . . 𝑥1(𝑛−2) 𝑥1(𝑛−2)
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 0 0 0 0 . . . 0 1 )

 
 
 
 

=

(

 
 
 
 
 

𝑎11𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑎1𝑗𝑥1𝑠 + 𝑎12 ∑1≤𝑗≤2;3≥𝑠≥2 𝑎1𝑗𝑥1𝑠 + 𝑎13 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑎1𝑗𝑥1𝑠 + 𝑎1𝑛
𝑎21𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑎2𝑗𝑥1𝑠 + 𝑎22 ∑1≤𝑗≤2;3≥𝑠≥2 𝑎2𝑗𝑥1𝑠 + 𝑎23 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑎2𝑗𝑥1𝑠 + 𝑎2𝑛
𝑎31𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑎3𝑗𝑥1𝑠 + 𝑎32 ∑1≤𝑗≤2;3≥𝑠≥2 𝑎3𝑗𝑥1𝑠 + 𝑎33 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑎3𝑗𝑥1𝑠 + 𝑎3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑎𝑛𝑗𝑥1𝑠 + 𝑎𝑛2 ∑1≤𝑗≤2;3≥𝑠≥2 𝑎𝑛𝑗𝑥1𝑠 + 𝑎𝑛3 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑎𝑛𝑗𝑥1𝑠 + 𝑎𝑛𝑛)

 
 
 
 
 

. 

Now, determinant of 

(

 
 
 
 

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 . . . 𝑥1(𝑛−1) 𝑥1𝑛
0 1 𝑥12 𝑥13 𝑥14 . . . 𝑥1(𝑛−2) 𝑥1(𝑛−1)
0 0 1 𝑥12 𝑥13 . . . 𝑥1(𝑛−2) 𝑥1(𝑛−2)
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 0 0 0 0 . . . 0 1 )

 
 
 
 

 is 𝑥11, which is nonzero so its inverse 

exists. Hence, multiplying to the right of the above equation by the inverse of the above matrix, we get back the matrix 

http://www.ijrte.org/


International Journal of Recent Technology and Engineering (IJRTE)  
ISSN: 2277-3878 (Online), Volume-10 Issue-4, November 2021 

11 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.D65151110421 
DOI: 10.35940/ijrte.D6515.1110421 
Journal Website: www.ijrte.org  
 

(

 
 
 
 

𝑎11 𝑎12 𝑎13 . . . 𝑎1𝑛
𝑎21 𝑎22 𝑎23 . . . 𝑎2𝑛
𝑎31 𝑎32 𝑎33 . . . 𝑎3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 . . . 𝑎𝑛𝑛)

 
 
 
 

 

The definition of 𝑔 as an extension of the left 𝑅-monomorphism 𝑓  can be utilised in the encryption and the 
decryption processes of the proposed scheme below. Also, image of the identity element of 𝑀𝑛(𝑍𝑝) ,under the function 𝑔, 
selected above can be taken as the key matrix in the encryption process and its inverse in the decryption process. Since for any 
prime 𝑝, 𝑍𝑝 is a field and hence 𝑀𝑛(𝑍𝑝) is left m-injective over itself. So, using the m-injectivity of 𝑀𝑛(𝑍𝑝) over itself and 
the discrete logarithm problems, we propose the following scheme. 
Public and Private Keys Generation 
A user 𝑋 who wants to create public and private keys has to do the following steps:- 
1. Choose a very large prime 𝑝  
2. Choose a large positive integer 𝑛 
3. Choose 𝑟 such that 1 < 𝑟 < 𝑝 
4. Choose 𝑡𝑖 such that 1 < 𝑡𝑖 < 𝑝 − 1 and 𝑡𝑖 ∤ 𝑝 − 1, 1 ≤ 𝑖 ≤ 𝑛 − 1 
5. Compute 𝑑𝑥𝑖 ≡ 𝑟

𝑡𝑖(𝑚𝑜𝑑  𝑝),1 ≤ 𝑖 ≤ 𝑛 − 1 
Public keys are (𝑝, 𝑛, 𝑑𝑥𝑖 , 𝑟) and private keys are 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑛 − 1. 
Encryption 
The plaintext space is 𝑀𝑛(𝑍𝑝). Suppose another user 𝑌 wants to send a message in the form of a phrase, whose every 
character corresponds to the letters of the English alphabets, punctuations and symbols. The characters will be placed row-wise 
in a matrix and they will be encrypted using the key matrix. Let the characters of the phrase be represented in the matrix  

𝑀 =

{
 
 
 

 
 
 

(

 
 
 
 

𝑐11 𝑐12 𝑐13 . . . 𝑐1𝑛
𝑐21 𝑐22 𝑐23 . . . 𝑐2𝑛
𝑐31 𝑐32 𝑐33 . . . 𝑐3𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑐𝑛1 𝑐𝑛2 𝑐𝑛3 . . . 𝑐𝑛𝑛)

 
 
 
 

}
 
 
 

 
 
 

 

, where each 𝑐𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 represents the corresponding character in the phrase. Now, using 𝑋′𝑠 public keys, 𝑌 
will have to do the following steps:- 

1. Choose 𝑘 such that 1 < 𝑘 < 𝑝 − 1 and 𝑘 ∤ 𝑝 − 1 
2. Compute 𝑥1𝑖 ≡ 𝑑𝑥𝑖

𝑘(𝑚𝑜𝑑  𝑝),1 ≤ 𝑖 ≤ 𝑛 − 1 
3. Compute 𝑥1𝑛 ≡ 𝑟𝑘(𝑚𝑜𝑑  𝑝) 

4. Construct the key matrix 

(

 
 
 
 
 

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 . . . 𝑥1(𝑛−1) 𝑥1𝑛

0 1 𝑥12 𝑥13 𝑥14 . . . 𝑥1(𝑛−2) 𝑥1(𝑛−1)

0 0 1 𝑥12 𝑥13 . . . 𝑥1(𝑛−2) 𝑥1(𝑛−2)
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

0 0 0 0 0 . . . 0 1 )

 
 
 
 
 

 using the first three steps above 

 
5. Compute 𝑐 =

(

 
 
 
 
 
 

𝑐11𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑐1𝑗𝑥1𝑠 + 𝑐12 ∑1≤𝑗≤2;3≥𝑠≥2 𝑐1𝑗𝑥1𝑠 + 𝑐13 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑐1𝑗𝑥1𝑠 + 𝑐1𝑛

𝑐21𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑐2𝑗𝑥1𝑠 + 𝑐22 ∑1≤𝑗≤2;3≥𝑠≥2 𝑐2𝑗𝑥1𝑠 + 𝑐23 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑐2𝑗𝑥1𝑠 + 𝑐2𝑛

𝑐31𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑐3𝑗𝑥1𝑠 + 𝑐32 ∑1≤𝑗≤2;3≥𝑠≥2 𝑐3𝑗𝑥1𝑠 + 𝑐33 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑐3𝑗𝑥1𝑠 + 𝑐3𝑛
. . . . . . .
. . . . . . .
. . . . . . .

𝑐𝑛1𝑥11 ∑1≤𝑗≤1;2≥𝑠≥2 𝑐𝑛𝑗𝑥1𝑠 + 𝑐𝑛2 ∑1≤𝑗≤2;3≥𝑠≥2 𝑐𝑛𝑗𝑥1𝑠 + 𝑐𝑛3 . . . ∑1≤𝑗≤(𝑛−1);𝑛≥𝑠≥2 𝑐𝑛𝑗𝑥1𝑠 + 𝑐𝑛𝑛)

 
 
 
 
 
 

 by multiplying 𝑀 

to the left of the key matrix. 
𝑌 sends to 𝑋 the encrypted message (𝑥1𝑛 , 𝑐) . 

Decryption 
For the decryption of the message 𝑐, 𝑋 should do the following steps:- 
1. Compute 𝑥1𝑛

−1(𝑚𝑜𝑑  𝑝)  
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2. Using the private keys 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1, the inverse of the key matrix can be found. Multiplying to the right of 𝑐 by the 
inverse, the original message can be retrieved.  Let us take an example of a set of 3 × 3 matrix, where the entries are from 𝑍𝑝, 
to see how the above algorithms work. We take 𝑝 = 9999999967 , 𝑟 = 893 , 𝑡1 = 57  and 𝑡2 = 965  then 𝑑𝑥1 =
208470610 and 𝑑𝑥2 = 1129150215 modulo 𝑝. In the encryption process, suppose parameter 𝑘 = 85 then ephemeral key 
𝑥13 = 6614283676 and its inverse 𝑥13

−1 = 2600308453.  
Suppose the messages to be sent are 𝑚11 = 61, 𝑚12 = 108, 𝑚13 = 4326, 𝑚21 = 192, 𝑚22 = 84, 𝑚23 = 67, 𝑚31 = 88, 

𝑚32 = 6304 and 𝑚33 = 98 modulo 𝑝 then using the key matrix (
𝑥11 𝑥12 𝑥13
0 1 𝑥12
0 0 1

) the messages are encrypted in the 

matrix (
8560977214 3940845636 612479046

1044387382 1584300798 4385601600

4645344203 3226144123 4074839108

). 

Multiplying by the inverse , 

(
𝑥11
−1 −𝑥11

−1𝑥12 𝑥12
2𝑥11

−1 − 𝑥13𝑥11
−1

0 1 −𝑥12
0 0 1

) =

(
260030845357 −6614283676965260030845357 260030845357(66142836761930 − 6614283676)

0̅ 1̅ −6614283676965

0̅ 0̅ 1̅

), of the key 

matrix, 

we get the required messages as (

61 108 4326

192 84 67

88 6304 98
). 

The following are the images of the outputs of the three programs done in connection with the scheme ,viz, program to generate 
public and private keys, program to encrypt a message and program to decrypt the message. The elapsed times of the 
encryption and decryption processes are shown in the following outputs. These elapsed times during the encryption and 
decryption processes were recorded using Python Language, version 2.7.15, using GNU multi precision library(GMP) on 3.2 
GHz processor with 4 GB RAM. 

 OUTPUT OF THE KEY GENERATION PROCESS  

   

fig(i)  Output Of The Encryption And Decryption Processes  
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fig(ii)  The following table gives us the elapsed time during the encryption and decryption of different messages.  

 
 RECORDS OF ELAPSED TIMES 

 Parameter(k)   Length of k(in bits)   Encryption time(in ms)   Decryption time(in ms)  
85  7   0.0469999313354   0.0309998989105 

750  10   0.0309998989105   0.0469999313354  
9436  14   0.0469999313354   0.0150001049042  

87241  17   0.0309998989105   0.0309998989105  
146382  18   0.0469999313354   0.0309998989105  
7419628  23   0.0310001373291   0.0309998989105  

The above table shows that with an increase in the bit length of parameter 𝑘, the elapsed times for the encryption process 
increases and decreases alternately. This is not true in the case of the decryption process, where the elapsed time is seen to 
alternately increase and decrease at the beginning and then maintains consistency. However, this may vary depending on the 
public keys 𝑝, 𝑑𝑥1, 𝑑𝑥2 and 𝑟 and 𝑘 in the encryption process. Again, there are differences between the encryption and the 
decryption times where on varying ℎ, the former is greater than the latter and vice versa. The graph of the encryption time is a 
zigzag curve. However, the graph of the decryption time is initially zigzag at the beginning and then becomes parallel to the 
X-axis with the increase in the bit length of 𝑘. Again, on observing the graph, we find that the two curves intersect each other 
at some points. This shows that for some bit lengths of 𝑘, the encryption and decryption times are equal. 

 
 GRAPH OF THE ENCRYPTION AND DECRYPTION PROCESSES  

  
fig(iii)  

 

III. SECURITY OF THE SCHEME 

 The private keys 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1  have been chosen 
randomly. An adversary who tries to find 𝑡𝑖  will have to 
solve 𝑛 − 1 congruences 𝑑𝑥𝑖 ≡ 𝑟

𝑡𝑖(𝑚𝑜𝑑  𝑝). These are the 
Discrete Logarithm Problems. Again, in the encryption 

process, 𝑘 has been chosen randomly. Also, we have 𝑥1𝑖 ≡
𝑑𝑥𝑖

𝑘(𝑚𝑜𝑑  𝑝) which is equivalent to 𝑥1𝑖 ≡ 𝑟
𝑡𝑖𝑘(𝑚𝑜𝑑  𝑝).  
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These are the Computational Diffie-Hellman Problems [12]. 
So, in total, an adversary has to solve 2(𝑛 − 1)  hard 
problems. Hence, the security of this scheme is based on DLP 
and CDH. Again, this scheme makes use of the Elgamal 
encryption scheme so its security is based on the intractibility 
of the DLP and the Computational Diffie-Hellman 
Problem(CDH). The key matrix used in the encryption 
process and its inverse used in the decryption process should 
not be revealed otherwise all intercepted messages can be 
easily decoded. Now, 𝑥1𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1 are known only to 
the sender. It is difficult to find them as they depend on 𝑘 
which is again known only to the sender. Thus, the above two 
matrices are not easily traceable. For practical security 
reasons, it is recommended that 𝑝 should have at least 1024 
bits. This can resist attacks like the Exhaustive Key Search 
method, Shank’s Baby-Step Giant Step, Pollard’s Rho 

method, Pohlig-Hellman algorithm, Index Calculus method 
which require more time and enough memory in the 
computer to store elements of 𝑍𝑝 [10].  In the encryption 
process, even if 𝑥1𝑛 is revealed to everyone, it is difficult to 
trace these messages because 𝑥1𝑛  appears in the 𝑛𝑡ℎ 
column where every entry in this column is a linear 
combination of the unknown 𝑥1𝑠, 𝑛 ≥ 𝑠 ≥ 2  and the 
unknown messages. To be precise, every entry of this column 
consists of 2(𝑛 − 1) unknowns and only one known value. 
This adds to the security of the scheme. In the first, second, ... 
upto the (𝑛 − 1)𝑡ℎ  columns, the messages are in a linear 
combination of 𝑥1𝑠 , which are known only to the sender of 
the messages. This shows that the proposed scheme is 
semantically secured. Hence, without using private keys no 
one will be able to decrypt the messages.  

IV. PERFORMANCE ANALYSIS 

The encryption algorithm of the proposed scheme requires 𝑛 
modular exponentiations, viz, 𝑑𝑥𝑖

ℎ, 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑟ℎ . 
Within the encryption matrix 𝑐̅  , 

𝑛

2
(𝑛2 − 𝑛 + 2)  modular 

multiplications are done and there are 
𝑛2

2
(𝑛 − 1) modular 

additions. The decryption algorithm requires one application 
of Euclidean Extended Algorithm to find 𝑥1𝑛

−1 modulo 𝑝. 
However, it may be difficult to compute the number of 
operations required to find the inverse of the key matrix since 
this will depend on the value of 𝑛 . At the end of the 
decryption process, one matrix multiplication is required.  

V. CONCLUSION AND FUTURE WORKS 

 The existence of a left 𝑅-monomorphism from 𝑀𝑛(𝑍𝑝) to 
itself formed a base for the creation of the encryption and 
decryption algorithms of the proposed scheme. The aim of 
this paper is also to show that the existence of rings which are 
left m-injective over themselves is applicable to the field of 
cryptography. Hence, in future, we would like to work with 
the same ring and find more key matrices, so that more and 
more messages can be encrypted at once and more hard 
problems can be used.  
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