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ABSTRACT 
Discrete Fourier Transform is a principal mathematical method for the frequency analysis and has wide applications 

in Engineering and Sciences. Because the DFT is so ubiquitous, fast methods for computing DFT have been studied 

extensively, and continuous to be an active research. The way of splitting the DFT gives out various fast algorithms. 

In this paper, we present the implementation of two fast algorithms for the DFT for evaluating their performance. One 

of them is the popular radix-2 Cooley-Tukey fast Fourier transform algorithm (FFT) [1] and the other one is the 

Grigoryan FFT based on the splitting by the paired transform [2]. We evaluate the performance of these algorithms 

by implementing them on the Xilinx Virtex-II Pro [6], Virtex-4[9] and Virtex-5[7] FPGAs, by developing our own 

FFT processor architectures. We have evaluated the performances also by implementing on Texas Instruments fixed 

point DSP processors: TMS320C5416[17], TMS320C6748[17], TMS320C5515[17]. Finally we show that the 

Grigoryan FFT is working faster than the Cooley-Tukey FFT, consequently it is useful for higher sampling rates. 

Operating at higher sampling rates is a challenge in DSP applications. We proved that on Xilinx FPGAs and TMS 

DSPs, the Grigoryan FFT is performing at most 1.358 and 1.7 times faster than the Cooley-Tukey FFT respectively. 

We also confirm that for the same architectures Virtex-5 platform is better platform for implementing the Grigoryan 

FFT. 

 

KEYWORDS: frequency analysis, fast algorithms, DFT, FFT, paired transforms, SIMULINK, CC Studio. 

 

     INTRODUCTION 
In the recent decades DFT has been playing several important roles in advanced applications such as image 

compression and reconstruction in biomedical images, audiology research for analyzing biomedical brain-stem speech 

signals, sound filtering, data compression, partial differential equations, and multiplication of large integers. The fast 

algorithms for DFT always look for DFT process to be fast, accurate and simple. Fast is the most important [10]. FFT 

is universal in signal processing, but it can also be used to compress image and audio files, solve differential equations 

and price stock options, among other things.  

 

Since the introduction of the fast Fourier transform (FFT), Fourier analysis has become one of the most frequently 

used tool in signal/image processing and communication systems; The main problem when calculating the transform 

relates to construction of the decomposition, namely, the transition to the short DFT’s with minimal computational 

complexity. The computation of unitary transforms is complicated and time consuming process. Since the 

decomposition of the DFT is not unique, it is natural to ask how to manage splitting and how to obtain the fastest 

algorithm of the DFT. The difference between the lower bound of arithmetical operations and the complexity of fast 

transform algorithms shows that it is possible to obtain FFT algorithms of various speed [2]. One approach is to design 

efficient manageable split algorithms. Indeed, many algorithms make different assumptions about the transform length 

[2]. The signal/image processing related to engineering research becomes increasingly dependent on the development 

and implementation of the algorithms of orthogonal or non-orthogonal transforms and convolution operations in 

modern computer systems. The increasing importance of processing large vectors and parallel computing in many 

scientific and engineering applications require new ideas for designing super-efficient algorithms of the transforms 

and their implementations [2].   
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In the current age there are some algorithms and implementations that are coming for the Faster FFT, than Cooley-

Tukey FFT for several different applications. One of them is “University of Michigan FFT algorithm”: Anna Gilbert, 

Martin Strauss. The second one is “MIT FFT Algorithm”: Dina Katabi, Piotr Indyk, Eric Price, Haitham Hassanieh. 

Ours is also one of them, it is the paired transform-based Grigoryan FFT which can be essentially applicable in military 

applications in Avionic and electronic warfare antennas, medical nano-robots and nano-enhanced reconnaissance and 

communication devices, where faster speed of FFT operation, requirement of some of the FFT coefficients earlier than 

waiting until the final stage of FFT; are highly useful. The Paired transform based Grigoryan FFT is a highly powerful 

tool.   

 

In this paper we present the implementation techniques and their results for two different fast DFT algorithms. The 

difference between the algorithm development lies in the way the two algorithms use the splitting of the DFT. The 

two fast algorithms considered are radix-2 (Cooley-Tukey FFT) and paired transform [2] (Grigoryan FFT) algorithms. 

Implementation is done both on Xilinx FPGAs and Texas Instruments DSP processors. For FPGAs the modeling and 

simulations are done on SIMULINK of MATLAB with XSG: Xilinx System Generator (a high level visual tool for 

hardware generation). The implementation is done using the Xilinx project navigator backend software tools. We have 

developed specific C programs for TMS DSP processors using the Code Composer Studio Integrated Development 

Environment (CC Studio IDE), with implicit utilization of MAC engines. 

 

Great speedups can be achieved for these algorithms by efficient implementation in dedicated hardware such as 

Application-Specific Integrated Circuits (ASICs). However, high “time-to market” has been a bottleneck for the 

ASICs. The evolution of Field Programmable Gate Arrays (FPGAs) along with high-level design tools such as from 

Altera, Xilinx System Generator have come as valuable and effective tool for high-level programmers to achieve better 

execution times in these reconfigurable hardware. The small time-to-market for FPGAs over VLSI models is the 

reason for popular choice of FPGAs in current market. FPGA expedite the time lag between hardware design and 

shipping time of the circuit from 2-3 years to a few weeks [16]. Advances in FPGA technology along with 

development of elaborate and efficient tools for modelling, simulation and synthesis have made FPGAs a highly useful 

platform. With a graphical environment based on SIMULINK and a pre- defined block set of Xilinx DSP cores, 

System Generator[14]-[15] meets the needs of both system architects who need to integrate the components of a 

complete design and hardware designers who need to optimize implementations. The salient features of FPGAs that 

make them superior in speed, over conventional general purpose hardware like Pentiums are their greater I/O 

bandwidth to local memory, pipelining, parallelism and availability of optimizing compiler [15]-[16]. Complex tasks, 

which involve, multiple image operators, run much faster on FPGAs than on Pentiums, in fact, some researches report 

an 800-time speed up by FPGA. There are several reasons for such large speed ups which FPGAs have over PCs. In 

comparison to an FPGA, hardware such as Pentium runs at memory speed, not at cache speed. So, even running at 

much higher clock frequency and having the facility of cache memory, it responds much slower than a comparable 

FPGA [16]. Frequency of operation in hardware such as Pentium can be increased up to a certain extent to increase 

the performance or the required data rate to process the image data, but increasing the frequency above certain limits 

causes system level and board level issues that become a bottleneck in the design. Considering all the advantages and 

to explore all these features we have chosen to implement on FPGAs. Implementing on DSP processors is a 

compulsory task for any DSP applications.   

 

The implementation of the algorithms is done in Hardware point of view on the Xilinx Virtex-II Pro [6], Virext-4 [9], 

and Virtex-5 [7] FPGAs. Then we have implemented on Texas Instruments DSP Processors: TMS320C5416 [17], 

TMS320C6748 [17], TMS320C5515 [17].  The performance of the two algorithms is compared in terms of their 

sampling rates and also in terms of their hardware resource utilization.  

 

The paper is organized in the following way. Section 2 presents the paired transform decomposition used in paired 

transform in the development of Grigoryan FFT. In Section 3 we present the implementation techniques for the radix-

2 and paired transform algorithms on Xilinx FPGAs and TMS DSP processors. Section 4 presents the results. Finally 

with the Section 5 we conclude the work and further research. 
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DECOMPOSITION ALGORITHM OF THE FAST DFT USING PAIRED TRANSFORM 
We consider the fast splitting of the discrete Fourier transform by the 1-D discrete paired transform (DPT) [1]-[4].  

Let {xn; 𝑛 = 0(𝑁 − 1)} be the input signal of length N > 1. The N-point DFT of the signal 𝑥 is defined as  

    (1) 

where the number 𝑊 = 𝑊𝑁 = exp(−2𝜋𝑖/𝑁), i2 = -1.This transform can be written in matrix form as 𝐗 = [𝐹𝑁]𝐱, 
where 𝐗 and 𝐱 are column-vectors for X and x, and the matrix [𝐹𝑁] = ‖𝑊𝑛𝑝‖𝑛,𝑝=0:(𝑁−1). We consider the case of most 

interest, when the signal length is 𝑁 = 2𝑟 , 𝑟 > 1.  Unlike the Cooley-Tukey algorithm, on first stage of which 𝐹𝑁 is 

calculated by two 𝐹𝑁/2, Grigoryan splits the transform 𝐹𝑁 by (𝑟 + 1) short transforms as 

{𝐹𝑁/2, 𝐹𝑁/4, 𝐹𝑁/8, … , 𝐹4, 𝐹2,𝐹1, 𝐹1}. Namely, the following matrix decomposition holds for the DFT:  

[𝐹𝑁] = [(⊕k=0
r−1 [𝐹𝑁/2𝑘+1])⨁1] ⋅ DN ⋅ [χN

′ ]  

where ⊕ denotes the operation of the Kronecker sum of matrices and the diagonal matrix  

 

 
The N-point unitary and binary discrete paired transform DPT [χ′

N] is described in the following way [2]. Given 

frequency-point 𝑝 ≠ 0 and time 𝑡 ∈ {0,1, … , N − 1}, let 𝜒𝑝,𝑡(𝑛) be the function  

 
                                                                              (2) 

The 2-paired, or shortly the paired function is defined as   

𝜒𝑝,𝑡
′ (𝑛) = 𝜒𝑝,𝑡(𝑛) − 𝜒𝑝,𝑡+𝑁/2(𝑛). 

Here the integer 𝑡 ∈ {0,1, . . . , 𝑁/2 − 1} and 𝜒𝑝,𝑡+𝑁/2
′ (𝑛) = −𝜒𝑝,𝑡

′ (𝑛).  

The totality of the paired functions  

{𝜒2𝑛,2𝑛𝑡
′ (𝑛); 𝑛 = 0: (𝑟 − 1), 𝑡 = 0: (𝑁/2𝑛+1 − 1), 1} 

is the complete and orthogonal set of functions of the paired transform χN
′ . Figure 1 shows two matrices of the 16- and 

32-point pared transform χN
′  in parts a and b, respectively.   

 

 
Figure 1. Three-level gray images of the paired matrices (a) 16×16 and (b) 32×32. (In these images, the color 

white is for coefficient 1, black is for −𝟏, and gray is for 0.) 

 

The number of operations of multiplication required to calculate the paired N-point FFT equals 𝑀𝑁 = 𝑁/2(log2𝑁 −
3) + 2, 𝑟 > 2. The 𝑁-point discrete paired transform is fast and requires (2𝑁 − 2)  operations of addition/subtraction. 

Figure 2 shows the signal-flow graph of the 8-point fast paired transform.  
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Figure 2. Signal-flow graph of the fast 8-point DPT. 

 

The double numbering of the paired functions refers to the frequency (𝑝 = 2𝑘) and time (𝑡). The paired transform 

represents the discrete-time signal 𝑥𝑛 as the unique set of frequency-time signals (or splitting-signals),   

 
 

The components of these splitting-signals are calculated by  

  𝑥
2𝑘,𝑡
′ = 𝑥

2𝑘,𝑡
′ °𝑥𝑛 = ∑ 𝑥

2𝑘,𝑡
′ (𝑛)𝑥𝑛

𝑁−1

𝑛=0
, 

 

Where 𝑡 = 0: (𝑁/2𝑘+1 − 1). In the paired transform of the signal, the first 𝑁/2 components are the splitting-signal 

with 𝑘 = 0, the next 𝑁/4 components are the splitting-signal with 𝑘 = 1, and so on. The last component of the 

transform is 𝑥0,0
′ = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑁−1. Each splitting-signal defines the 𝑁-point DFT of 𝑥𝑛 at frequency-points of 

the corresponding subset  

𝑇𝑝
′ = {(2𝑚 + 1)𝑝 mod 𝑁; 𝑚 = 0: (𝑁/2𝑝 − 1)}. 

Indeed, the following is valid:  

𝑋(2𝑚+1)𝑝 = ∑ (𝑥𝑝,𝑝𝑡
′ 𝑊t

N/p )𝑊mt
N/(2p).

𝑁/(2𝑝)−1

𝑛=0

 

The set of 𝑁 frequency-points {0,1,2, . . . , 𝑁 − 1} is divided by subsets 𝑇𝑝
′, where 𝑝 = 2𝑘, 𝑘 = 0: (𝑟 − 1), and 𝑇0

′ =

{0}.  

 

Example 1: Consider the signal 𝑥𝑛 of length 𝑁 = 256, which is shown in Figure 3 in part a. The paired transform of 

the signal, which is the set of nine splitting-signals {𝑥𝑇1
′, 𝑥𝑇2

′ , 𝑥𝑇4
′ , 𝑥𝑇8

′ , … , 𝑥𝑇128
′ , 𝑥𝑇0

′} is shown in part b. The vertical 

dashed lines separate the first seven splitting-signals.  Figure 4 shows the 256-point DFT 𝑋𝑝 of the signal in absolute 

mode in part a. In part b, the same DFT is shown, but in the order that corresponds to the partition of the frequency-

points {0,1,2, … , 255} by subsets 𝑇1
′, 𝑇2

′, 𝑇4
′, … , 𝑇128

′  and 𝑇0
′. The first part with 128 values corresponds to the 128-point 

DFT of the modified splitting-signal {𝑥𝑇1
′𝑊𝑡}. The next part with 64 values corresponds to the 64-point DFT of the 

modified splitting-signal {𝑥𝑇2
′𝑊128

𝑡 }, and so on.  Therefore, the following steps are involved in computing the DFT of 

the input signal 𝑥, by using the paired transform: 

1) Perform the paired transform 𝜒𝑁
′ [𝑥] over the signal 𝑥.  

2) Compose (𝑟 + 1) vectors by dividing the transform into the splitting-signals {𝑥𝑝,𝑝𝑡
′ ; 𝑡 = 0: (𝑁/(2𝑝) −

1)}, where 𝑝 = 2𝑘, 𝑘 = 0: (𝑟 − 1), and 𝑝 = 0.  

3) Modify the splitting-signals by the corresponding twiddle factors, 
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Figure 3. (a) The signal of length 256 and (b) the 256-point discrete paired transform. 

 

 
Figure 4. (a) DFT of the signal and (b) DFTs of the modified splitting-signals. 

 

{𝑥𝑝,𝑝𝑡
′ 𝑊𝑁/𝑝

𝑡 ; 𝑡 = 0: (𝑁/(2𝑝) − 1)}, when 𝑝 ≠ 0. 

4) Perform the 𝑁/(2𝑝)-point DFTs over the modified splitting-signals, when 𝑝 ≠ 0.  
5) Perform the permutation of the output, if needed.  
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IMPLEMENTATION TECHNIQUES 
Implementation on Xilinx FPGAs 

Choosing an appropriate tool for FPGA design is of crucial importance as it affects the cost, development time and 

various other aspects of design. SIMULINK is a platform for multi-domain simulation and Model-Based Design for 

dynamic systems. It provides an interactive graphical environment and a set of block libraries, and can be extended 

for different specialized applications. Using SIMULINK one can quickly build up models from libraries of pre-built 

blocks.  For high level design we have chosen Xilinx System Generator. It is a DSP design tool from Xilinx that 

enables the use of the Mathworks model-based design environment SIMULINK for FPGA design. Xilinx System 

Generator (XSG) for DSP is a tool which offers block libraries that plugs into SIMULINK tool (containing bit-true 

and cycle-accurate models of their FPGAs particular math, logic, and DSP functions) [14]-[16]. It is a system-level 

modeling tool in which designs are captured in the DSP friendly SIMULINK modeling environment using a Xilinx 

specific blockset. All of the downstream FPGA implementation steps including synthesis and place and route are 

automatically performed to generate an FPGA programming file. Over 90 DSP building blocks are provided in the 

Xilinx DSP blockset for SIMULINK. System Generator for DSP, is a system level design tool that is a Blockset for 

MATLAB SIMULINK. It has different levels of support for the DSP slices.  

 

The hardware modelling of the algorithms is done by using Xilinx’s system generator plug-in software tool running 

under SIMULINK environment provided under the Mathworks’s MATLAB software. The functionality of the model 

is verified using the SIMULINK Simulator and the MODELSIM software as well. The implementation is done using 

the Xilinx project navigator backend software tools. Many blocks of custom MATLAB code (.m files) were however 

needed for the design and the hardware generated for these blocks was not optimized. We used DSP IP with DSP 

slices support, and the DSP slice to build custom functions, the DSP slice macro to simplify sequential instructions.  

 

We have implemented various architectures for radix-2 and paired transform processors on Xilinx Virtex-II Pro, 

Virtex-4, Virtex-5 FPGAs. As there are embedded dedicated multipliers and embedded block RAMs available, we 

can use them without using distributed logic, which economize some of the CLBs. As we are having Extreme DSP 

slices [9] on Virtex-4 FPGAs, DSP48E Slices [7] on Virtex-5 FPGAs we have utilized them to improve speed 

performance of these 2 FFTs and to compare their speed performances. As most of the transforms are applied on 

complex data, the arithmetic unit always needs two data points at a time for each operand (real part and complex part), 

dual port RAMs are very useful in all these implementation techniques.  

 

In the Fast Fourier Transform process the butterfly operation is the main unit on which the speed of the whole process 

of the FFT depends. So the faster the butterfly operation, the faster the FFT process. The adders and subtractors are 

implemented using the LUTs (distributed arithmetic). The inputs and outputs of all the arithmetic units can be 

registered or non-registered.  

 

We have considered the implementation of both embedded and distributed multipliers; the latter are implemented 

using the LUTs in the CLBs. The three considerations for inputs/outputs are with non-registered inputs and outputs, 

with registered inputs or outputs, and with registered inputs and outputs. To implement butterfly operation for its 

speed improvement and resource requirement, we have implemented both multiplication procedures basing on the 

availability of number of embedded multipliers (especially for Virtex-II Pro FPGAs), and design feasibility; and 

design feasibility using DSP Slices.  

 

The various architectures proposed for implementing radix-2 and paired transform processors are single memory (pair) 

architecture, dual memory (pair) architecture and multiple memory (pair) architectures. We applied the following two 

best butterfly techniques for the implementation of the processors on the FPGAs.  

1. One with Distributed multipliers, and DSP slices with fully pipelined stages. (Best in case of performance) 

2. One with embedded multipliers and DSP slices and one level pipelining. (Best in case of resource utilization)  

 

Single memory (pair) architecture (shown in Figure 5) is suitable for single snapshot applications, where samples are 

acquired and processed thereafter. The processing time is typically greater than the acquisition time. The main 

disadvantage in this architecture is while doing the transform process we cannot load the next coming data. We have 

to wait until the current data is processed.  So we proposed dual memory (pair) architecture for faster sampling rate 
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applications (shown in Figure 6). In this architecture there are three main processes for the transformation of the 

sampled data.  Loading the sampled data into the memories, processing the loaded data, reading out the processed 

data. As there are two pairs of dual port memories available, one pair can be used for loading the incoming sampled 

data, while at the same time the other pair can be used for processing the previously loaded sampled data.  

 

 
Figure 5. Single memory (pair) architecture 

 

 
Figure 6. Dual memory (pair) architecture 

 

For further sampling rate improvements we proposed multiple memory (pair) architecture (shown in Figure 7). This 

is the best of all architectures in case of very high sampling rate applications, but in case of hardware utilization it 

uses lot more resources than any other architecture. In this model there is a memory set, one arithmetic unit for each 

iteration. The advantage of this model over the previous models is that we do not need to wait until the end of all 

iterations (i.e. whole FFT process), to take the next set of samples to get the FFT process to be started again. We just 

need to wait until the end of the first iteration and then load the memory with the next set of samples and start the 

process again. After the first iteration the processed data is transferred to the next set of RAMs, so the previous set of 

RAMs can be loaded with the next coming new data samples. This leads to the increased sampling rate.    

 

Coming to the implementation of the paired transform based DFT algorithm, there is no complete butterfly operation, 

as that in case of radix-2 algorithm. According to the mathematical description given in the Section 2, the arithmetic 

unit is divided into two parts, addition part and multiplication part. This makes the main difference between the two 

algorithms, which causes the process of the DFT completes earlier than the radix-2 algorithm.  The addition part of 

the algorithm for 8-point transform is shown in Figure 2.  
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Figure 7. Multiple memory (pair) architecture 

(Transform length = N = 2n) 

(1,2);(3,4);(5,6) ---- (-,-) memory pairs for each iteration. 

----- Butterfly unit for each iteration. 

 

The SIMULINK model diagrams for butterfly operation for both FFTs are given in Figure 8.  

 
(a) 

 
(b) 

Figure 8. SIMULINK models (a) for butterfly diagram for N=8 Cooley-Tukey FFT (b) for the addition part 

shown in figure 2 of Paired transform based FFT: Grigorayn FFT. 
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The architectures are implemented for the 8-point,   64-point, 128-point and 256-point transforms for Xilinx Virtex-

II Pro, Virtex-4 and Virtex-5 FPGAs. The radix-2 FFT algorithm is efficient in case of resource utilization and the 

paired transform algorithm is very efficient in case of speed of operation and hence higher sampling rate applications.  

 

Implementation on Texas Instruments DSP Processors.  

We have developed Programs for the Cooley-Tukey FFT and Grigoryan FFT algorithms in C language specific for 

the Texas Instruments DSP processors by using the software Texas Instruments Code Composer Studio Integrated 

development environment. The C programming is done for the implementation on TMS fixed point DSP Processors: 

TMS320C6748, TMS320C5416, and TMS320C5515. The features of DSP specific capabilities, advanced break 

points, the conditional or hardware break points for C expressions, local variable and registers are utilized to the best 

for simple and efficient implementations. The advanced memory window is used for the observation of memory at 

each level.  Using the CC studio we can be able to easily and quickly measure code performance and ensure the 

efficient use of the DSP target’s resources during debug and development sessions. Detailed simulations are observed 

using the features of the CC Studio for finding the number of CCs and finding the speed of operation of the two 

algorithms while implementing on the three DSP processors.  

 

PRIMILIMINARY IMPLEMENTATION RESULTS 
Results on Xilinx FPGAs 

We have implemented all 3 different memory pair architectures explained in Section 3. But here we are providing the 

results for multiple memory pair architecture in Figure 7 as it is the most efficient of all. We are showing the results 

and efficiency comparison of both Cooley-Tukey and Grigoryan FFT on Xilinx Virtex-II Pro, Virtex-4 and Virtex-5 

FPGAs for the same architectures. Then we are showing the % improvement of the Grigoryan FFT over the Cooley-

Tukey FFT and providing how many times the Grigoryan FFT is faster than the Cooley-Tukey FFT. Then we are 

comparing the three FPGA platforms to verify which one is better platform for implementing our architectures. From 

the results we can easily identify that the Grigoryan FFT is much faster than the Cooley-Tukey FFT.  

 

Tables 1,2,3 and 4 show the implementation results of the two algorithms on all the considered Xilinx FPGAs. From 

these results we can see that the Grigoryan FFT is always faster than the Cooley-Tukey FFT algorithm. Thus paired-

transform based algorithm can be used for higher sampling rate applications. In military applications, while doing the 

process, only some of the DFT coefficients are needed at a time. For this type of applications paired transform can be 

used as it generates some of the coefficients earlier, and also it is very fast. As of verification of better platform on 

which we can implement our architectures it is found that Virtex-5 FPGAs are better platform for our architectural 

implementations. By observing the results the Grigoryan FFT is performing at most 24.09 % faster. If we observe the 

number of times speed, it is clear that the Grigoryan FFT is working at most 1.358 times faster than the Cooley-Tukey 

FFT. 

 

 
Table 1. Efficient performance of the Grigoryan FFT over Cooley-Tukey FFT, on Xilinx Virtex-II Pro 

FPGAs. Table showing the sampling rates and the resource utilization summaries for both the algorithms, 

implemented on the Virtex-II Pro FPGAs. 
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Table 2.  Efficient performance of the Grigoryan FFT over the Cooley-Tukey FFT, on Virtex-5 FPGAs. 

Table showing the sampling rates and the resource utilization summaries for both the algorithms, 

implemented on the Virtex-5 FPGAs. We have utilized DSP48E slices in this, which is making us much 

faster than Virtex-II Pro FPGAs. 

 

 

 
Table 3.  Efficient performance of the Grigoryan FFT over the Cooley-Tukey FFT, on Virtex-4 FPGAs. 

Table showing the sampling rates and the resource utilization summaries for both the algorithms, 

implemented on the Virtex-4 FPGAs. We have utilized Extreme DSP slices in this, which is making us much 

faster than Virtex-II Pro FPGAs. 

 

 
Table 4. The percentage improvement in speed of operation over Virtex-II Pro FPGAs, of Virtex-5 and Virtex-4; 

of both Cooley-Tukey and Grigoryan FFT algorithms. It shows clearly that Virtex-5 plat form is better than 

Virtex-4 and also Virtex-II pro, in terms of speed of operation. 
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Results on Texas Instruments DSP processors 

After implementing on the three TMS DSP processors we have observed the performances for N = 16, 32,64, 

128,256,512,1024 point FFTs for both Cooley-Tukey FFT and Grigoryan FFT. The implementation results are given 

in Tables 5-10 for all the three DSP processors. By observing on all the three TMS DSP processors, the % speed 

improvement of Grigoryan FFT over Cooley-Tukey FFT it is clear that the Grigoryan FFT is performing much better 

and can be utilized for higher sampling rates of operation. The Grigoryan FFT is performing at most 70% faster. If we 

observe the number of times speed, it is clear that the Grigoryan FFT is working at most 1.7 times faster than the 

Cooley-Tukey FFT. An example graphical representation, for TMS320C6748 DSP, of the speed improvement of the 

Grigoryan FFT over the Cooley-Tukey FFT is given in the Figure 9.  

 

 
Table 5 Performance comparison of the two algorithms on DSP processor TMS320C6748 (fixed point) processor. 

 

 

 
Table 6 Table showing the sampling rate of both the algorithms (starting form N = 16 to N = 1024) for 

TMS320C6748. 

 

 
Table 7 Performance comparison of the two algorithms on DSP processor TMS320C5416 (fixed point) processor. 

http://www.ijesrt.com/


 
[Narayanam* et al., 5(6): June, 2016]  ISSN: 2277-9655 

IC™ Value: 3.00                                                                                                         Impact Factor: 4.116 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [442] 

 

 
Table 8 Table showing the sampling rate of both the algorithms (starting form N = 16 to N = 1024) for 

TMS320C5416. 

 

 
Table 9 Performance comparison of the two algorithms on DSP processor TMS320C5515 (fixed point) processor. 

 

 

 
Table 10 Table showing the sampling rate of both the algorithms (starting form N = 16 to N = 1024) for 

TMS320C5515. 
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Figure 9. For TMS320C6748 DSP. On Y-axis the number of clock cycles taken to process the FFT of size N = 

16,32,64,128,256,512,1024. N on X-axis. Series 2,3 are for the number of clock cycles taken for the Cooley-Tukey 

FFT and Grigoryan FFT respectively, it is clear that the Grigoryan FFT is going faster than the Cooley-Tukey 

FFT. 

 

CONCLUSION AND FURTHER RESEARCH 
In this paper we have shown that with our FFT processors architectures on Xilinx FPGAs and TMS DSPs the paired 

transform based Grigoryan FFT algorithm is faster and can be used at higher sampling rates than the Cooley-Tukey 

FFT at an expense of high resource utilization. It is observed that implementations for the Grigoryan FFT we are the 

first to design and we are the first and may be the best implementers using SIMULINK. After studying the solution 

of implementation method using SIMULINK we demonstrated its hardware feasibility and visual interface through 

Xilinx system generator. We have explored the feasibility of CC studio for TMS DSP processors for the Grigoryan 

FFT. We have proved that on Xilinx FPGAs and TMS DSPs, Grigoryan FFT is performing at most 1.358 and 1.7 

times faster than the Cooley-Tukey FFT respectively. Which is a good improvement in speed over the Cooley-Tukey 

FFT.  As a technological confirmation, for our implementations especially for the Grigoryan FFT (FFT of interest) 

out of the three FPGA platforms we conclude that Virtex-5 FPGAs is found to be better platform.  

 

As a further research, these architectures are extendible with even best utilization of the features of DSP slices on 

FPGAs, by efficiently exploiting parallelism of FPGA; and explicit utilization of MAC engines on DSP processors, 

which can lead to most efficient implementations and the Grigoryan FFT can show even much better performance.    
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