Pearls on a String: Numerous Stellar

 Clusters Strung along the Same Orbit
Johanna Coronado, Verena Fürnkranz*, Hans-Walter Rix
 MPIA Heidelberg

Background

Young stars are clustered across a wide range of scales, from compact bound objects to 'streams' that extend over several hundred parsecs. Using the revolutionary 6D data provided by Gaia, we performed a systematic study of the orbit space clustering of stars in the extended solar neighbourhood (< 800 pc).

Pearls on a string

We have looked for ensembles of stars clustered in both action and angle coordinates, algorithmically identifying a set of 55 prominent clumps in orbit and orbital phase space (see also: Coronado et al. 2020, Fig. 1). Some of these groups are established clusters, some unrecognised streams.

Fig. 1 Member stars of the 55 action-angle groups in the action plane (left) and the angle plane (right).

We then explored the orbital phase distribution of all sample stars in the same orbit patch (Fig. 2) as any of the 55 groups. Remarkably, orbits that contain one such clump, commonly contain many other distinct clumps with other orbital phases, like pearls on a string (Fig. 3).

We compare our result to an offset and a smooth orbit patch and find that orbits in the Galactic disk that contain at least one group contain significantly more pearls than any comparison field (Fig. 4).

Implications

Our results imply that recent star-formation in the Galactic disk is strongly clustered towards a modest subset of particular orbits, presumably the orbits on which the cold ISM was moving when giving birth to these stars.

Fig. 2 The three projections of the orbital action distribution of the 6D Gaia data within 800 pc . In the top right, the actions of one example group are shown in grey, and the orbit patch is illustrated as a golden ellipse.

Fig. 3 Top row: Kernel density map of the orbital phase distribution for all stars in the orbit patch around the example group. Remarkably, the orbit patch contains many other distinct clumps (pearls) with other orbital phases. Bottom row: The analogous distribution in the same orbit patch, but with points drawn from a smooth mock catalog (Rybizki et al. 2020).

Fig. 4 The fraction of groups as a function of the number of pearls for the orbit patches in the 55 groups. Each pearl has a minimum number of 10 member stars. The orbit patch selection is shown with a blue solid line, the smooth mock catalog with a purple dashed line, and the offset orbit patch with an orange dotted line.

As Fig. 4 shows, we find significantly more pearls in the orbit patch around the groups than in any of the two comparison fields.

