WARWICK THE UNIVERSITY OF WARWICK

Abstract

Rotational modulation due to dark spots co-rotating with the stellar surface allows us to constrain rotation and magnetic properties of solar-like stars. The long-term observations collected by Kepler (and those that will be collected by PLATO) are preferred for a better characterization of magnetic activity. In this work, we investigate the temporal variability of the photometric magnetic activity proxy S_{ph}, as well as the characteristic timescale of activeregions in solar-like stars.

Target sample & data

Solar data:

***** VIRGO/SPM (A. Jiménez, private commun.) ★ Sunspot areas, SA (solarcyclescience.com) \star Flux at 10.7 cm, $F_{10.7}$ (ngdc.noaa.gov)

Kepler data:

\star FGKM stars w/ rotation period P_{rot} [+55k stars; **POSTER by Breton+**] (Santos+2019, 2021a; Breton+2021)

- ★ KEPSEISMIC lightcurves[†] (García+2011)
- ★ stellar properties (Berger+2020)

Artificial data:

Explored parameters: observation length; stellar inclination; spot latitude and longitude; spot size, evolution, and lifetime; stellar rotation (tools from Santos+2015, 2017)

☐ asantos@astro.up.pt

☐ angela.goncalves-dos-santos@warwick.ac.uk

†KEPSEISMIC@MAST: https://doi.org/10.17909/t9-mrpw-gc07

References:

Berger, T. A., + 2020, AJ, 159, 280 Breton, S. N.,+2021, A&A, 647, A125 García, R. A.,+2011, MNRAS, 414, L6 Giles, H. A. C.,+2017, MNRAS, 472, 1618 Lockwood, G. W., + 2007, ApJS, 171, 260 Mathur, S., + 2014, A&A, 562, A124 Radick, R. R., + 2018, ApJ, 855, 75 Radick, R. R., + 1998, ApJS, 118, 239

Salabert, D., + 2016, A&A, 596, A31 Salabert, D.,+2017, A&A, 608, A87 Santos, A. R. G.,+2021a, ApJ, 255, 17 Santos, A. R. G., + 2015, A&A, 580, A62 Santos, A. R. G., + 2017, A&A, 599, A1 Santos, A. R. G., + 2019, ApJS, 244, 21 Santos, A. R. G., + 2021b, MNRAS

5	S_{p}	h	-	st	ar
			_	Sl	Jit
5	$\langle S$	pł	$\left \right\rangle$	_	a١
5	$\sigma($	S	, ph)	-
5	Gr	O	ur	nd-	-ba
	m	Dr	е	ac	ctiv
5	Ke	ep	le	r	ph
					•
		1	0 ⁴		m
	σ(S _{ph}) [ppm]		-		
		1	0-		
		1	02		
		1	^]	Ē	*
		T	U		×
				F	
	_	1	0 ⁴		m
	bm	1	0 ³		
	ر (ر				
	J(Spl	1	.02		
	0	1	01		1
]	ـــ ۵))
			h		

 $S_{ph\odot}$ computed from VIRGO/SPM g+r

 \star To complement the solar observations, sunspot areas (SA_{\odot}) and flux at 10.7cm ($F_{10.7\odot}$) are re-binned and scaled to the $S_{ph\odot}$

★ The data are split in 4-year segments to compare with *Kepler* data (overlap of 75% between consecutive segments)

$S_{\rm ph}$ variability in *Kepler* solar-like stars

ndard deviation of the stellar flux over $5 \times P_{rot}$ segments (Mathur+2014) table photometric magnetic activity proxy (Salabert+2016, 2017)

verage photometric magnetic activity level over the 4 years photometric magnetic variability over the 4 years

ased spectroscopic observations showed that stars that are in average ive are also more variable in time (e.g. Lockwood+2007; Radick+1998, 2018)

notometric observations show the same behaviour

S_{ph} properties: Sun vs. Sun-like stars

- For each segment, the average and standard deviation of the activity proxy (AP) are obtained
- **\star** Sun-like stars: T_{eff} \pm 100 K; $\log g_{\odot} \pm 0.1$; $P_{rot\odot} \pm 2$ days

- - τ_{ACF} , is a better estimate of the lifetimes (Santos+2021b) **Artificial data:**

 \star the observation length t_{obs} is an important limiting factor to τ_{ACF} \star 1-yr light curves: τ_{ACF} and input lifetimes τ_{input} are uncorrelated \star differential rotation affects τ_{ACF} , but τ_{ACF} and τ_{input} are still well correlated

(Santos + in prep.)

- $\star \log \sigma(AP)$ residuals corrected for dependencies on T_{eff} , log g, $P_{\rm rot}$, and [Fe/H]
- $\star \langle S_{ph} \rangle$ and $\sigma(S_{ph})$ for the Sun are reasonably consistent with those of the Sun-like stars

e-folding time, τ_e , had been interpreted as the active-region lifetime (Giles+2017)

 $\star \tau_e$ systematically underestimates the spot lifetimes and the linear decay timescale,

4-year observations

Acknowledgements: Antonio Jiménez; STFC grant ST/T000252/ 1SFCT; SSI; NASA grant NNX17AF27G; PLATO & GOLF CNES grants; Spanish ministry grant RYC-2015-17679; FCT/MCTES grants UIDB/04434/2020, UIDP/04434/2020 and PTDC/FIS-AST/30389/2017; FEDER grant POCI-01-0145-FEDER-030389