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Abstract—Ethernet is considered as a future communication
standard for distributed embedded systems in the automotive
and industrial domains. A key challenge is the deterministic
low-latency transport of Ethernet frames, as many safety-critical
real-time applications in these domains have tight timing require-
ments. Time-sensitive networking (TSN) is an upcoming set of
Ethernet standards, which (among other things) address these
requirements by specifying new quality of service mechanisms in
the form of different traffic shapers. In this paper, we consider
TSN’s time-aware and peristaltic shapers and evaluate whether
these shapers are able to fulfill these strict timing requirements.
We present a formal timing analysis, which is a key requirement
for the adoption of Ethernet in safety-critical real-time systems,
to derive worst-case latency bounds for each shaper. We use a
realistic automotive Ethernet setup to compare these shapers to
each other and against Ethernet following IEEE 802.1Q.

I. INTRODUCTION

Packet-switched Ethernet will be used in next-generation
automotive communication architectures, as traditional buses
such as CAN or FlexRay cannot keep pace with the increasing
bandwidth and scalability requirements of advanced driver
assistance and infotainment systems. As a switched network,
Ethernet provides a scalable, high-speed, and cost-effective
communication platform, which allows arbitrary topologies.
However, as each switch output port is a point of arbitration,
Ethernet exhibits a complex timing behavior, which must
be verified thoroughly before it can be used in timing- and
safety-critical systems. Ethernet is anticipated to serve as an
in-vehicle communication backbone, where is must be able
to transport traffic streams of mixed-criticality. This requires
quality of service (QoS) mechanisms, in order to provide
deterministic timing guarantees to critical traffic.

Standard Ethernet following IEEE 802.1Q introduced 8 traf-
fic classes. These classes can be used to prioritize traffic, which
is typically implemented by a static-priority non-preemptive
(SPNP) scheduler at each output port in each switch and end-
point. This limited number of classes requires that multiple
traffic streams share a class. Traffic within a shared class is
usually scheduled in FIFO order. Ethernet AVB [1] introduced
standardized traffic shaping by using a credit-based shaper
(CBS) to ensure that shaped traffic classes do not exceed
their preconfigured bandwidth bounds. This CBS, however,
only shapes the highest priorities, i.e. it introduces additional
shaping delays to the most critical ones, which is undesirable
for latency-sensitive traffic. Currently, a new set of Ethernet
QoS mechanisms is being evaluated for standardization under
the name of time-sensitive networking (TSN) [2]. One of
TSN’s goals is the development of new traffic shapers, which
offer tight and deterministic end-to-end latencies for real-time
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traffic. At this time, TSN’s most prominent shapers are: the
time-aware, the burst-limiting, and the peristaltic shaper.

There are multiple means to evaluate network performance.
Simulation (e.g. [3]) is used to assess a network’s response to
a given set of stimuli. It provides valuable insights into the
network’s behavior, e.g. path latency histograms. However,
simulation often requires long simulation runs and usually
does not expose all corner cases (it rather provides a lower
bound on the actual worst-case behavior), rendering it unsuit-
able for the timing verification of timing- and safety-critical
systems under worst-case conditions. Formal performance
analyses like compositional performance analysis (CPA) [4] or
real-time calculus (RTC) [5], in contrast, have been proven to
efficiently provide safe worst-case (latency) bounds (i.e. upper
bounds on the actual worst-case) for Ethernet. Formal analysis
methods are becoming even more important with the advent of
highly automated and autonomous driving. Both, simulation
and formal analysis are important to evaluate automotive
Ethernet networks. In this paper, we focus on the latter. A
discussion about the gap between the observed latencies from
a simulation and the latency guarantees from a formal CPA
analysis in the Ethernet context can be found in [6].

The contribution of this paper is a set of formal timing
analysis methods for TSN’s proposed time-aware (TAS) and
peristaltic traffic shapers (PS). In contrast to related work [7],
we consider all blocking effects, especially those of same-
priority traffic streams, which is important given Ethernet’s
limited number of priority levels. We evaluate the worst-case
performance of TAS and PS against each other and against
IEEE 802.1Q using a realistic automotive Ethernet setup. Due
to space constrains, we do not discuss TSN’s burst-limiting
shaper. This shaper, however, is quite similar to AVB’s CBS,
except that it allows limited-sized bursts of critical traffic to
pass without prior blocking by lower priority traffic.

II. RELATED WORK
There is a large body of related work on the formal timing

analysis of switched Ethernet. An analysis for IEEE 802.1Q,
for example, is presented in [8]. Recent improvements of
this analysis show that sub-millisecond worst-case latency
guarantees are possible for typical automotive setups [9].

Different Ethernet QoS mechanisms have been proposed.
The most prominent ones are TTEthernet [10], which provides
time-triggered link access for critical traffic, and Ethernet AVB
[1], which provides bandwidth-limited event-triggered link
access. Formal analyses for Ethernet AVB are presented in e.g.
[11], [12]. Both publications show that, in a worst-case anal-
ysis, the latency guarantees of high-priority traffic in Ethernet
AVB suffer mainly (and severely) from AVB’s traffic shapers.
[11] further shows that increasing the bandwidth reservation
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of a shaped AVB traffic class beyond its actual bandwidth
requirement (overreservation) helps to achieve shorter latency
guarantees. At the maximum overreservation, AVB’s latency
guarantees match those of IEEE 802.1Q.

A first attempt of a formal timing analysis of TSN’s traffic
shapers (including the burst-limiting shaper) has been pre-
sented in [7]. This analysis, however, has two main limitations:
(1) Interference by same-priority frames, i.e. frames of equal
priority competing for link access, is not considered. This is a
major drawback, as the limited number of Ethernet priorities
will require priority sharing in realistic setups and, hence,
will introduce same-priority interference. (2) Higher-priority
interference impacting PS traffic is not considered, i.e. it is
only possible to analyze a single PS traffic class, which must
be on the highest priority. Actual systems, however, might
have more than one PS traffic class, which might not be on
the highest priority.

In contrast, we will present a formal analysis based on
the proven CPA framework, which does not suffer from
these limitations and, hence, allows the formal analysis of all
traffic streams across all traffic classes, including same-priority
interference and multiple PS traffic classes.

III. COMPOSITIONAL PERFORMANCE ANALYSIS OF
ETHERNET

Throughout this paper, we use compositional performance
analysis (CPA) [4] to formally derive upper bounds on the
worst-case end-to-end latencies of Ethernet frames. In CPA,
systems are modeled by three components. Resources abstract
the actual processing resources and provide service according
to a scheduling policy, e.g. SPNP. Tasks are mapped to
these resources and consume service. The amount of service
consumed by a task i per activation can vary between a lower
and an upper bound (C−i and C+

i ). Distributed systems are
modeled as a directed graph, in which tasks correspond to
nodes and task dependencies correspond to edges. Whenever
a task finishes executing it sends an event to its dependent
tasks. Tasks without predecessors must be stimulated by events
from external sources. Event models are used to abstract task
activations. They are defined as a set of event arrival functions
η−i (∆t) and η+i (∆t), which describe the lower and upper
bound on the number of task activations in any half-open time
interval [t,t+∆t) [4]. Hence, in contrast to a single event trace,
event models capture all possible task activation scenarios
within their bounds. Event models can also be defined by the
pseudo-inverse of their arrival functions, δ+i (n) and δ−i (n),
which describe the maximum and minimum time interval
between the first and the last event in any sequence of n events.

CPA is based on an iterative approach. Each resource is
analyzed by a local analysis, which utilizes the busy period
approach [13], to derive new output event models for each
task. This is done by constructing a critical instant scenario,
which maximizes the response time of the task under analysis
by spanning the busy period using worst-case activation (and
execution) sequences of all interfering tasks. New output event
models can be derived from the response time jitter (maximum
minus minimum response time) [4]. The output event model of
a task becomes the input event model of its dependent tasks.
A global analysis loop manages this event model propagation.
If all event models become stable, i.e. do not change anymore,
the analysis finishes. Otherwise, i.e. if a predefined number of
iterations has been reached or some constraint (e.g. deadline,
jitter, latency) is violated, the system is deemed unscheduable.

Apart from response times and latencies, CPA is also able to
formally derive jitter and buffer size bounds.

It has been shown that Ethernet networks can be mapped to
CPA models [14]. The output ports of Ethernet switches are
the points of arbitration and are, hence, modeled as resources.
Task activations and their executions on a resource correspond
to Ethernet frame arrivals and transmissions on an switch
port. The transmission times of Ethernet frames (C−i and C+

i )
correspond to task execution times and are defined to be the
best- and worst-case frame transmission times on a switch port
in the absence of any interference. For the frames of a traffic
stream i, these transmission times can be defined as

C
+/−
i =

42bytes + max{42bytes,p+/−
i }

rTX
(1)

where p+/−
i is the stream’s maximum/minimum payload size

and rTX is the port’s transmission rate in bytes/second. The
constant terms account for minimum Ethernet frame size,
protocol overhead, IEEE 802.1Q tagging, and inter-frame gap.

Finally, a traffic stream through an Ethernet network, i.e.
a sequence of Ethernet frames between a source and one (or
multiple) destination(s), which receive identical QoS policies,
is modeled as a chain of tasks, where the edges between tasks
represent their communication dependencies. The frames of a
traffic stream are transmitted along this task chain.

In the following sections, we present local analyses for
different Ethernet schedulers and shapers, which can be used
in CPA. We start with a brief overview of an IEEE 802.1Q
analysis, which is largely based on related work [12], in order
to introduce a baseline analysis and to establish a common
notation. In subsequent sections, where we present analyses of
TSN shapers, we reference and extend this baseline analysis.

IV. STANDARD ETHERNET (IEEE 802.1Q)
The goal of the local analysis is to derive the worst-case

transmission latency of a frame at a particular switch. The
transmission latency of a frame is the time from when it has
been received at a switch’s input port until it has been fully
transmitted from an output port. Inside a switch the transmis-
sion of a frame is affected by several delays: queueing delay at
the input port, forwarding delay in the switch fabric, queueing
delay at the output port, and transmission delay on the link.
The first two delays depend on the switch implementation
and are typically in the order of a few clock cycles, i.e. they
are orders of magnitude apart from the actual transmission
latencies. The transmission delay on the link can be considered
constant and is typically in the order of nanoseconds. Hence,
we assume that the transmission latency of a frame comprises
only the output port’s queueing delay, as the other delays
only have negligible impact on the transmission latency (or
can be added as constants to the other delays). The output
port’s queueing delay accounts for all delays induced by
an output port’s scheduler (including the various delays and
shaper effects of TSN in the following sections).

In non-preemptive scheduling (such as in IEEE 802.1Q),
the worst-case transmission latency R+

i of a frame of stream
i depends on the worst-case queueing delay at its correspond-
ing output port. More precisely, the worst-case transmission
latency of the q-th frame Ri(q) can be derived from the worst-
case queueing delay of the q-th frame in a busy period:
Definition 1. At a given switch output port, the worst-case
queueing delay wi(q,a

q
i ) of the q-th frame of a traffic stream
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i, which arrived at time aqi , is the time interval from the instant
the first frame of traffic stream i, which starts the level-i busy
period [15] arrives at the output port’s scheduler, until the
q-th frame can be transmitted.

Note that, later in this section, we will explain why wi(q,a
q
i )

depends on the arrival time aqi of the q-th frame. Also note that
aqi is measured relative to the beginning of the busy period.

At an output port’s scheduler, frames of a traffic stream i
are exposed to interference by frames of other traffic streams.
To calculate the worst-case queuing delay wi(q,a

q
i ), we have

to consider several blocking effects.
Lower-priority blocking: In non-preemptive scheduling,

the transmission of a frame of stream i can be blocked by
at most one lower-priority frame, if this lower-priority frame
starts transmitting just before the first frame of stream i arrives.

ILPB
i = max

j∈lp(i)

{
C+

j

}
(2)

where lp(i) is the set of all traffic streams with a priority lower
than that of stream i.

Higher-priority blocking: In any time interval ∆t, a frame
of stream i can be blocked at most by all higher-priority
frames, which arrive before this frame can be transmitted.

IHPB
i (∆t)=

∑
j∈hp(i)

η+j (∆t)C+
j (3)

where hp(i) is the set of all traffic streams with a priority
higher than that of stream i.

Same-priority blocking: A frame of stream i is subject
to blocking by frames of streams of equal priority. The q-
th arrival of a frame of stream i, which arrived at time aqi ,
has to wait for its own q − 1 predecessors to finish and for
all frames of other same-priority streams, which have been
queued previous to its arrival.

ISPB
i (q,aqi )=(q − 1)C+

i +
∑

j∈sp(i)

η
+]
j (aqi )C+

j (4)

Here sp(i) is the set of all traffic streams with a priority equal
to that of stream i (excluding stream i) and η+](∆t) yields the
number of frame arrivals in any closed time interval [t,t+∆t],
i.e. if frames arrive concurrently at exactly aqi , we assume the
worst-case order.

As Ethernet typically serves frames of equal priority in
FIFO order, a candidate search is required to compute the
worst-case blocking [11]. The reason is that the earlier a
frame arrives (within the bounds of its jitter), the longer its
transmission latency might be, and the later a frame arrives
(within the bounds of its jitter), the more blocking from
previously queued same-priority frames it might experience.
In [11] it has been shown that the set of arrival candidates aqi
to consider for the q-th arrival of a frame of stream i can be
reduced to the instances, where aqi coincides with arrivals of
interfering same-priority frames.

Aq
i =

⋃
j∈sp(i)

{
δ−j (n)|δ−i (q)≤δ−j (n)<δ−i (q + 1)

}
n≥1

(5)

Now, the worst-case queueing delay wi(q,a
q
i ) for the q-th

arrival of a frame of stream i, which arrived at time aqi , can
be computed:

wi(q,a
q
i )=ILPB

i + ISPB
i (q,aqi ) + IHPB

i (wi(q,a
q
i )) (6)

As wi(q,a
q
i ) occurs on both sides, Eq. (6) cannot be solved

directly. However, it represents a fixed-point problem, which
can be solved by iteration, as all terms are monotonically
increasing. A valid starting point is wi(q,a

q
i )=(q − 1)C+

i .

SPBLPB HPB

,

,

q-th

Start of busy period

Fig. 1. Example queuing delay

From the worst-case queueing delay the largest transmission
latency Ri(q) for the q-th arrival of a frame of stream i can
be derived by adding the execution time of the q-th frame C+

i
and accounting for the fact that the q-th frame arrived at time
aqi (see Figure 1).

Ri(q)= max
a
q
i∈A

q
i

{
wi(q,a

q
i ) + C+

i − a
q
i

}
(7)

The worst-case frame transmission latency for a frame of
stream i is the maximum over all Ri(q).

R+
i = max

1≤q≤q̂i
{Ri(q)} (8)

where q̂i is the maximum number of frame arrivals of stream
i which have to be evaluated. According to [15], for non-
preemptive static-priority scheduling, q̂i corresponds to the
maximum number of frame transmissions of stream i in the
longest level-i busy period. This is the longest time interval
during which a port is processing frames with the priority
of stream i (including interference from other streams). For
IEEE 802.1Q, an upper bound on this longest level-i busy
period can be computed similar to the queueing delay.

ŵi=I
LPB
i + ÎSPB

i (ŵi) + IHPB
i (ŵi) (9)

where, in contrast to Eq. (4), we do not need to distinguish
between individual frames arrivals q. Hence, ÎSPB

i (∆t) is
defined as:

ÎSPB
i (∆t)=

∑
j∈sp(i)∪{i}

η+j (∆t)C+
j (10)

Again, Eq. (9) represents a fixed-point problem, which can be
solved by iteration, starting with an initial value of ŵi=C

+
i .

Hence, the maximum number of frame arrivals of stream i,
which have to be evaluated in Eq. (8), is q̂i=η+i (ŵi).

V. TIME-AWARE SHAPER (TSN/TAS)
In this section, we present a local analysis for TSN’s time-

aware shaper (TAS) [2]. TSN/TAS uses time-driven scheduling
to manage link access between traffic classes. For each traffic
class, the scheduler at an output port contains a gate, which
allows frames to pass when opened and blocks frames when
closed. The times at which these gates open and close are
programmable (gate schedule). Gates of multiple traffic classes
can be open concurrently. Then, link access is arbitrated
according to the priority of these classes. To prevent frames
of a traffic class from being transmitted after its gate closed,
TSN/TAS defines guard bands. From the start of a guard band
until the gate is closed, no new frames of the corresponding
class are allowed to start transmission.

TSN/TAS suggests that each critical traffic class only has
link access during special (scheduled) time intervals, i.e. the
gate schedule is programmed such that only during these
intervals the traffic class’ gate is open and that it is closed
otherwise [2]. Following [2], we also assume that these inter-
vals are non-overlapping, so that every critical traffic class
has exclusive link access during its intervals, i.e. without
interference by higher- or lower-priority traffic. However, there
still can be interference from same-priority traffic. This same-
priority interference can be mitigated by further dividing these
time intervals into (per frame) slots, e.g. like in TTEthernet
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Fig. 2. TSN/TAS: (a) Common notations. Frame 3 experiences same-priority
blocking from Frames 1 and 2. (b) Maximum blocking by a single TAS class.

or FlexRay’s static segment. Such behavior, however, is not
specified by the current version of the TSN/TAS standard.
Outside these intervals, the gates of all other (non-critical)
traffic classes are open, i.e. traffic from these other classes
competes for link access according to its priority.

Let T be the set of all Ethernet traffic classes, which receive
exclusive link access by the time-aware shaper. We will call
traffic classes I∈T TAS classes and, correspondingly, their
traffic streams TAS streams and frames of these streams TAS
frames. Each TAS class I is associated with a time interval
tTAS
I (TAS interval), which is started every tCYC

I time units
(TAS cycle) (Figure 2a). In this interval, streams of TAS class
I have exclusive access to the link of the output port. Traffic
from all other streams (including other TAS classes) is gated
early enough by a guard band before the start of this interval,
such that the transmission of frames not belonging to streams
of class I cannot overlap with I’s TAS interval (Figure 2b).
Note that TSN/TAS does not require TAS intervals to be
periodic or of equal length (the gate schedule, however, will
repeat eventually). We chose this periodic approach, because
it naturally fits many automotive use cases. Our analysis
approach can be extended to also support other gate schedules.

Next, we present two analyses for TSN/TAS: one to derive
the worst-case transmission latency bounds for frames belong-
ing to streams of a TAS class, and one to derive the worst-case
transmission latency bounds for non-TAS frames.

A. Analysis of Time-Aware Traffic Streams
The frames of all TAS streams i of a TAS class I have

exclusive access to an output port during class I’s TAS interval
and, while they are waiting for their (first or next) TAS interval
to start, they are blocked. Inside their TAS interval, they
only experience same-priority blocking from frames of streams
j∈cl(i), e.g. when frames belonging to class cl(i) arrive
concurrently at an output port from different input ports (e.g.
same-priority frames 1 to 3 in Figure 2a). Where the function
cl(i) maps a traffic stream i to its corresponding traffic class.
Thus, to compute the worst-case queueing delay wi(q,a

q
i )

(see Definition 1) under TSN/TAS we have to consider same-
priority and what we will call closed-gate blocking.

Same-priority blocking can be computed by Eq. (4), as
it is independent of the number of TAS intervals required to
serve q frames of stream i.

Closed-gate blocking: We model the blocking time between
consecutive TAS intervals of a TAS class I as the time interval
during which I’s gate is closed plus the fraction of the TAS
interval’s guard band which might be left unused because of
non-preemption. Then, the amount of closed-gate blocking
can be derived from the number of TAS intervals required
to serve the accumulated workload requested by TAS class
I . Non-preemption turns this into a combinatorially complex
problem: find the worst-case combination among the arriving
TAS frames such that blocking (i.e. the number of TAS
intervals) is maximized, while each interval (except for the
last one) is utilized such that no other TAS frame can start

transmission without finishing after the gate has closed. Note
that this is not a bin packing problem, as bin packing would
try to find the minimum number of TAS intervals (bins), i.e.
the minimum blocking. We transform this discrete problem
into a continuous one.
Theorem 1. The minimum workload, which can be processed
in a TAS interval of TAS class cl(i)=I∈T is given by:

s−cl(i)=max
{
tTAS
cl(i) − max

i∈cl(i)

{
C+

i

}
︸ ︷︷ ︸

(a)

, min
i∈cl(i)

{
C−i
}

︸ ︷︷ ︸
(b)

}
(11)

Proof. Term (a): To prevent the largest frame of TAS class
cl(i) from transmitting beyond its TAS interval boundaries, the
guard band must be of size maxi∈cl(i){C+

i }. As long as there
is backlogged workload, each TAS interval is at least utilized
for tTAS

cl(i)−maxi∈cl(i){C+
i }. After this time interval the largest

frame would not fit into the TAS interval anymore. Hence, the
minimum workload, which can be processed in a TAS interval
can be lower bounded by term (a). Frames, whose transmission
extends beyond the interval tTAS

cl(i) −maxi∈cl(i){C+
i } into the

guard band are still allowed (see frame 2 in Figure 2a), but
their overlap into the guard band is not considered to be part
of the minimum workload in term (a). This is a conservative
overapproximation of the discrete problem. Term (b): In any
reasonable sized TAS interval, i.e. tTAS

cl(i)≥maxi∈cl(i){C+
i }, at

least one minimum-sized frame can be transmitted. As (a) and
(b) are conservative bounds, we can take their maximum.

Let the accumulated workload requested by TAS class cl(i)
be ∆w. We can compute the maximum number of required
TAS intervals by dividing ∆w by s−cl(i). The maximum time
interval between two consecutive TAS intervals during which
no frames of cl(i) are transmitted is tCYC

cl(i) −s
−
cl(i) (see Figure

2a). The maximum closed-gate blocking for any frame of
stream i is then given by:

ICGB
i (∆w)=

(⌈
∆w

s−cl(i)

⌉
− 1

)(
tCYC
cl(i) − s−cl(i)

)
+

tCYC
cl(i) − tTAS

cl(i) + max
i∈cl(i)

{C+
i } (12)

where the last three terms are an upper bound on the largest
time until the first (usable) TAS interval, i.e. in the worst-case
we start with the largest frame, which arrived just after the
guard band started (see Figure 2a). Note that this assumes that,
in the worst-case, the first frame of a busy period just missed
its TAS interval and has to wait for the next one. This worst-
case scenario can occur, if the gate schedules throughout the
network are not synchronized. Typically, one would engineer
networks with TSN/TAS such that the gate schedules of all
ports are synchronized and frames do not suffer from closed-
gate blocking, i.e. TAS intervals are sufficiently large and
aligned to each other. This, however, has synchronization
implications on all switches and nodes in the network and
also limits topology and traffic flow choices (e.g. rejoining
paths becomes a complex task). We will additionally consider
such a setup in our experiments.

With Eqs. (4) and (12), the worst-case queueing delay of
the q-th TAS frame, which arrived at time aqi , becomes:

wi(q,a
q
i )=ISPB

i (q,aqi ) + ICGB
i

(
ISPB
i (q,aqi ) + C+

i

)
(13)

As ICGB
i (∆w) requires the accumulated workload requested

by TAS class cl(i) as its argument and ISPB
i (q,aqi ) only con-
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siders (q−1)C+
i , we must add one C+

i . The maximum frame
transmission latency can be computed similar to IEEE 802.1Q.

B. Analysis of Non Time-Aware Traffic Streams
Frames of non-TAS traffic streams i∈

⋃
I /∈T I interfere with

all other lower- and higher-priority streams of other non-TAS
classes. They are not part of any TAS interval (non-TAS gates
are open while all TAS gates are closed) and receive the left
over bandwidth. Hence, we can model non-TAS traffic like
IEEE 802.1Q and consider TAS intervals from all classes J∈T
as additional periodic blocking terms, when deriving the worst-
case queueing delay.

Specifically, same-, lower-, and higher-priority blocking
from non-TAS traffic can be modeled as in Section IV, while
bearing in mind that only interfering traffic from non-TAS traf-
fic must be considered for lower- and higher-priority blocking.

Blocking by TAS classes: We start by bounding the maxi-
mum interference a single TAS interval can cause.
Theorem 2. The maximum blocking caused by a single TAS
interval tTAS

J on a non-TAS class I /∈T is
t̃TAS
I,J = max

i∈
⋃

I /∈T I

{
C+

i

}
+ tTAS

J (14)

Proof. The first term models that, to guard the TAS interval of
TAS class J , the guard band of non-TAS class I must be large
enough such that even the longest non-TAS frame cannot over-
lap into J’s TAS interval (Figure 2b). The argumentation why
this is conservative follows that of term (a) from Theorem 1.
The second term is the TAS interval of J .

In any time interval ∆t, the maximum number of times a
TAS class J can interfere with frames of a non-TAS stream
i can be derived by diving ∆t by tCYC

J . With Eq. (14) the
interference from all TAS classes J∈T on a non-TAS stream
i becomes:

ITASB
i (∆t)=

∑
J∈T

⌈
∆t

tCYC
J

⌉
t̃TAS
cl(i),J (15)

where we conservatively assume that, in the worst-case, the
blocking by different TAS classes does not overlap.

With Eqs. (4), (2), (3), and (15) the worst-case queueing
delay of the q-th non-TAS frame, which arrived at time aqi ,
becomes:
wi(q,a

q
i )=ILPB

i + ISPB
i (q,aqi ) + IHPB

i (wi(q,a
q
i ))+

ITASB
i (wi(q,a

q
i )) (16)

Again, the maximum frame transmission latency can be com-
puted similar to that of IEEE 802.1Q in Section IV.

VI. PERISTALTIC SHAPER (TSN/PS)
This section presents a local analysis for TSN’s peristaltic

shaper (PS) [16]. In addition to their priority, TSN/PS classifies
frames based on their arrival time. It divides time in alternat-
ing (peristaltic) intervals of equal size (even, odd). Frames
received in an even interval are scheduled to be transmitted
in the next odd interval and vice versa, based only on their
arrival interval. If more frames need to be transmitted than
time is available in the next interval (transient overload),
frame transmission from the overloaded interval continues and
overlaps into subsequent intervals (Figure 3). In this case the
transmission of frames that are scheduled to be transmitted
in these subsequent intervals is delayed until the overload
has been processed. This way the intra-class frame order
is preserved (even) under transient overload. The peristaltic
interval pattern, however, is left untouched. The motivation for

,
t

K.1Lower Prio. J.1 J.2 I.2 I.3 I.4J.3
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mitted
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Fig. 3. TSN/PS: Frames of PS class I experience interference from higher
priority classes K (non-PS) and J (PS) and one lower-priority frame. It takes
more than one PS interval to transmit the first three frames of PS stream I .

TSN/PS is to bound the residence time of frames in the switch
for easier latency computation. However, this only works in
the absence of any interfering traffic. In reality, a thorough
timing analysis is still required.

Let P be the set of peristaltic (PS) traffic classes, i.e. the set
of all Ethernet classes which are shaped by a peristaltic shaper
based on their arrival interval. All streams of other (non-PS)
classes are treated as in IEEE 802.1Q. We call traffic classes
I∈P PS classes and, correspondingly, their traffic streams PS
streams and frames of these streams PS frames. Further, let
tPS
I be the peristaltic (PS) interval length of a given PS class
I∈P . Note that, like Ethernet AVB’s CBS and TSN/TAS,
TSN/PS is not work-conserving. In TSN/PS, after a frame
of PS stream i arrives at an output port, it must wait for its
current PS interval to end until it can take part in the arbitration
process of the port’s scheduler, regardless of whether the port
is busy processing other frames during this waiting time or not.
The waiting time of first frame that starts a busy period defines
the PS interval pattern (relative to its arrival) for the rest of
the busy period. We will call the waiting time of such a first
frame i∈I the initial PS offset φPS

I of PS class I (Figure 3).
Next, we present two analyses for TSN/PS: one to derive the

worst-case transmission latency bounds for frames belonging
to streams of a non-PS class, and one to derive the worst-case
transmission latency bounds for PS frames.

A. Analysis of Non Peristaltic Traffic Streams
Non-PS traffic is scheduled as in IEEE 802.1Q. Hence,

same-priority blocking can be computed as in IEEE 802.1Q,
when deriving the worst-case queueing delay. Lower-priority
blocking only considers the largest lower-priority blocker,
independently of whether this blocker comes from a PS class
or not. Therefore, it can also be computed as in IEEE 802.1Q.

Higher-priority blocking, however, requires special at-
tention, as there are two different cases: (a) the higher-
priority blocking is by frames of non-PS streams j, i.e.
j∈hp(i) ∧ cl(j) /∈P , and (b) the higher-priority blocking is
by frames of PS streams j, i.e. j∈hp(i) ∧ cl(j)∈P .

In case (a), higher-priority blocking on frames of stream i
can be computed as in IEEE 802.1Q.

IHPB,nPS
i (∆t)=

∑
j∈{k|k∈hp(i)∧cl(k)/∈P}

η+j (∆t)C+
j (17)

In case (b), we have to consider that frames of the streams
of a PS class J∈P might not be presented to the scheduler im-
mediately. In the worst-case, these frames have been delayed
for the length of their PS interval tPS

J , before they can interfere
with the frames of stream i. Hence, interference from PS
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streams occurs at the end of their PS intervals. This is shown
in Figure 3 for PS class J , where, for example, frames J.1
and J.2 are delayed during a PS interval until they are released
concurrently at the interval’s end. For any time interval ∆t,
the maximum number of PS intervals of PS class J , which
end in this ∆t, can be computed by d∆t/tPS

J e. Multiplying
this number by the PS interval length of PS class J yields the
time interval during which the interference from PS streams
j∈J has been accumulated, i.e. d∆t/tPS

J etPS
J . We can use

this time interval to compute the higher-priority blocking of
each stream j of PS class J on stream i.

IHPB,PS
i (∆t)=

∑
j∈{k|k∈hp(i)∧cl(k)∈P}

η+j

(⌈
∆t

tPS
cl(j)

⌉
tPS
cl(j)

)
C+

j

(18)

The worst-case queueing delay and the maximum frame
transmission latency can be computed as for IEEE 802.1Q,
with the sum of Eqs. (17) and (18) replacing Eq. (3).

B. Analysis of Peristaltic Traffic Streams
The analysis of a PS traffic stream i is similar to the analysis

of non-PS traffic, except for the initial offset φPS
cl(i). This

initial offset only affects streams of the currently analyzed
PS class cl(i). All streams of other (interfering) traffic classes
can potentially transmit frames during this time. Hence, the
interference on PS stream i is maximized if interfering traffic
arrives at the end of i’s initial offset, i.e. directly after φPS

cl(i)
relative to the beginning of stream i’s busy period (e.g. at t0
in Figure 3). Any frames of streams of potentially interfering
traffic classes arriving before this point would be transmitted
without interfering with PS stream i (only after φPS

cl(i) their
transmission would affect PS stream i). Concretely, in the
worst-case, non-PS interferers start interfering with PS stream
i directly after φPS

cl(i) and the end of the first PS intervals of PS
interferers is aligned to the end of φPS

cl(i) (e.g. t0 in Figure 3).
Lower-priority blocking can be computed as in the non-

PS case. For PS streams i, it starts interfering with i just after
φPS
cl(i), but the amount of interference is independent of φPS

cl(i).

Same-priority blocking is also independent of φPS
cl(i), since

the amount of same-priority blocking only depends on the q−1
preceding frames of stream i itself and all frames of class cl(i)
that have arrived until arrival candidate aqi (see Eq. (4)).

For higher-priority blocking, the argumentation from the
non-PS analysis also holds for the PS analysis and Eqs. (17)
and (18) can be used. However, as argued above, any frames of
interfering traffic streams that are released before φPS

cl(i), do not
interfere with PS stream i during φPS

cl(i). Hence, higher-priority
blocking is maximized if we align interfering higher-priority
traffic to φPS

cl(i), so that the actual higher-priority interference
starts directly after φPS

cl(i) relative to the beginning of the busy
period. In Figure 3, for example, PS class J is aligned such
that frames J.1 and J.2 from the first PS interval of J start
interfering with PS class I at t0, i.e. just when φPS

I ended.
Finally, the worst-case queueing delay can be computed by

taking into account the length of the initial offset φPS
cl(i) as an

additional blocking term of PS stream i.

wi(q,a
q
i )=φPS

cl(i) + ILPB
i + IHPB,nPS

i

(
wi(q,a

q
i )− φPS

cl(i)

)
+

IHPB,PS
i

(
wi(q,a

q
i )− φPS

cl(i)

)
+ ISPB

i (q,aqi ) (19)
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Fig. 4. Quad star and tree topologies

Note that φPS
cl(i) is an additive term to model the initial waiting

time that is experienced only by the analyzed PS stream i
and streams of cl(i). As interference starts only after φPS

cl(i)

(relative to the beginning of wi(q,a
q
i )), interference should

not be considered during φPS
cl(i). Hence, we must subtract

φPS
cl(i) from the time intervals of both higher-priority blocking

terms. The amount of lower- and same-priority blocking is
independent of φPS

cl(i) (see above). In Figure 3, for example,
φPS
I is subtracted from wi(q,a

q
i ) so that the time interval, in

which higher-priority blocking from PS class J according to
Eq. (18) must be considered, starts directly after φPS

I at t0.
Now, we show which offset maximizes the queueing delay.

Theorem 3. A PS traffic stream i experiences its longest
queueing delay wi(q,a

q
i ), if φPS

cl(i)=t
PS
cl(i).

Proof. As the PS interval pattern repeats periodically, any
offset by more than tPS

cl(i) and any negative offset is already
covered by an offset φPS

cl(i)∈(0,tPS
cl(i)]. It can be seen, that the

queueing delay in Eq. (19) is largest, when φPS
cl(i)=t

PS
cl(i).

In TSN/PS, frames of streams of a PS class I that arrive
during a certain PS interval of I are not released before the
end of this PS interval. Consequently, frames of a PS traffic
stream under analysis that arrive in the last PS interval of its
busy period do not contribute to this busy period anymore,
as the corresponding output port is idle before these frames
are considered by its scheduler. Instead, these frames start
a new busy period. This is also the case when the end of
the busy period coincides with the end of the PS interval,
i.e. the corresponding output port’s scheduler is idle for an
infinitesimal small time interval. In Figure 3, for example,
frame I.4, even though it arrives within the busy period started
by the arrival of frame I.1, is not part of this busy period, as
the port is idle before I.4 can be scheduled (i.e. before t2). Our
TSN/PS analysis takes this into account when it computes the
arrival candidate set Aq

i in Eq. (5) and the maximum number
q̂i of frame arrivals of PS stream i to consider in Eq. (8).

Note that, according to Eqs. (18) and (19) (with φPS
cl(i)=

tPS
cl(i)), if all tPS

I approach 0, TSN/PS becomes IEEE 802.1Q.

VII. EXPERIMENTS
In this section, we evaluate the worst-case end-to-end la-

tency guarantees of TSN/TAS and TSN/PS and compare them
to standard Ethernet with priorities (IEEE 802.1Q) by using
our proposed analysis method. As suggested by [12], we
extended our analyses to take into account that an Ethernet
link can be seen as an additional shaper and limits the amount
of workload (bits) which can pass it in a given amount of time.

Our evaluation focuses on the topologies in Figure 4. A
fixed number of eight ECUs is distributed throughout the
network. The number of switches is topology-dependent.
Highly loaded links operate at 1Gbit/s. All other links are
100Mbit/s links. The network traffic is summarized in Table
I, which has been provided by Daimler AG. The traffic in
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Table I is grouped into three classes: control data traffic (CDT),
general control traffic (GCT), and camera traffic (CAM).
Traffic streams belonging to the CDT class are latency-critical
and, hence, CDT traffic is mapped to the highest Ethernet
priority and uses TSN’s shaping mechanisms. GCT traffic
streams, while still latency sensitive, are not as critical as CDT
traffic and are mapped to a priority below CDT. CAM traffic
consists of high-bandwidth video traffic with comparatively
relaxed latency requirements and is mapped to a priority below
GCT. GCT and CAM do not use TSN’s shaping mechanisms
and are scheduled only according to their priority. There
is unicast, multicast, and broadcast traffic in the network.
Multicast traffic uses the notation n(d), which indicates that
there are n multicast streams with d targets. In our evaluation
we consider each path in the multicast and broadcast trees as
an individual path. Hence, the worst-case latency guarantees
of a total of 115 paths are compared. Payloads and periods
are characterized by their average, minimum, and maximum
values. Note that all CDT traffic streams have a period of
5ms. The payload is given as the raw application payload. We
assume that IPv4/UDP is used to route the traffic, such that an
additional amount of 28bytes for the protocol overhead must
be added. During our experiments, we assume that ECUs send
their traffic streams according to a periodic with jitter event
model [4]. Even though we assume periodic traffic streams,
we set each stream’s jitter to its period in order to also
model that, in the worst-case, there might be a burst of two
frames entering the network. Additionally, each Ethernet link
is assumed to contribute 33ns of transmission delay to the
end-to-end latency, which corresponds to wires of 10m length.
Next, we evaluate the impact of each TSN shaping mechanism
on CDT traffic. Then, we investigate the impact of the shaped
CDT traffic on unshaped lower-priority GCT and CAM traffic.

Figure 5 shows the worst-case end-to-end latency guaran-
tees from our analysis for different TSN shapers against the
guarantees of IEEE 802.1Q. Although this is not a random ex-
periment, we use boxplots to efficiently summarize the latency
guarantees of the 115 analyzed paths. The box covers 50%
of the path latency guarantees with its lower and upper edges
representing the 25% and 75% quartiles. The whiskers indicate
the minimum and maximum worst-case latency guarantees
among all paths. The median is marked by a red bar and the
average by a star. Figure 6 provides a more detailed view on
the 4 shaper configurations with the lowest latency guarantees.

We briefly discuss the difference in end-to-end latency
guarantees between the quad star and the tree topologies.
The tree topology shows lower latency guarantees for CDT
traffic (Figure 5). This is because, compared to the quad star,
there is less lower-priority interference from CAM traffic and
(for example) the length of a path (ECU2→ECU4) carrying 5
CDT streams is shortened from 4 to 3 switches. The latency
guarantees for GCT and CAM traffic, in contrast, are worse

TABLE I
TRAFFIC CHARACTERISTICS

CDT GCT CAM
Unicast (#) 8 18 3

Multicast (#) 2(2) 11(2), 4(3), 1(4) 1(2)
Broadcast (#) 0 6 0

Payload (bytes) [14, 144] [1, 250] [875, 1400]
Average (bytes) 70 50 1231

Period 5ms [10ms, 1s] [100us, 1ms]
Average 5ms 230ms 440us
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Fig. 5. Worst-case end-to-end latency guarantees for CDT traffic
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Fig. 6. Worst-case end-to-end latency guarantees for CDT traffic focusing on
802.1Q, TAS 5ms/250us sync, PS 500us, and PS 250us
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Fig. 7. Worst-case end-to-end latency guarantees for GCT and CAM traffic

than in the quad star (Figure 7). This is mainly because the
path lengths of two CAM streams (both ECU7→ECU4) are
extended from 2 to 3 switches. The main focus of this paper,
however, is on the analytical worst-case performance of the
TSN shapers. Comparing both topologies, we see that, for
each topology, the relative (average) performance of the TSN
shaper configurations among each other almost stays the same,
e.g. PS 250us gives lower average latency guarantees than
PS 500us regardless of the topology.

For TSN/TAS we evaluate three shaper configurations,
which are applied to all switch ports: TAS 5ms/500us,
TAS 5ms/250us, and TAS 5ms/250us sync. The first parameter
of each configuration is tCY C and is set to the CDT period
of 5ms. The second parameter is tTAS , which is evaluated for
500us and 250us. The last configuration assumes synchronized
shapers (gate schedules) throughout the network, while the
first two are unsynchronized. Our analysis approach requires
the TSN/TAS guard bands for TAS and non-TAS classes
to be set to their maximum frame length, respectively (see
Eqs. (11) and (14)). The overhead introduced by this on the
evaluated configurations is small: the guard bands for TAS
traffic account for 3.4% (for tTAS =500us) and 6.8% (for
tTAS =250us) of the TAS interval length. The guard bands
for non-TAS traffic account for 2.6% and 2.5% (respectively)
of the interval length, in which non-TAS traffic is processed.

First, we discuss the unsynchronized configurations with
TAS interval lengths of 500us and 250us. Under IEEE 802.1Q,
on each switch, a time interval of 250us is enough to process
the longest busy period of CDT traffic. In TSN/TAS, however,
this time is not sufficient. TSN/TAS suffers from long blocking
times (4.5ms and 4.8ms in our setups, if a TAS frame just
missed its TAS interval (see Eq. (12))). This leads to large jitter
values, which cause large transient loads on subsequent switch
ports, which, in turn, require a longer time to be processed.
In the worst-case this load cannot be processed in a single
TAS interval, which leads to even larger jitter. This is the
reason why the TAS 5ms/500us configuration (tTAS =500us),



(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising 

or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

DOI: http://dx.doi.org/10.1109/VNC.2015.7385584

which offers more processing time per TAS interval, performs
better than TAS 5ms/250us (tTAS =250us). To avoid this jitter
build up effect, the TAS intervals along a communication path
should grow in size in unsynchronized TSN/TAS setups.

The third configuration does not suffer from long blocking
times, as it assumes that all TAS frames arrive just in time for
their TAS interval and, hence, only experience same-priority
blocking. This results in significantly better latency guarantees.
In this case, our analysis checks that tTAS is long enough
to process all incoming frames within a single TAS interval.
Bare in mind that, in this paper, we focus on the end-to-end
latency guarantees in the network. A system-wide end-to-end
analysis, however, might involve additional components, e.g.
the (software) communication stack in the ECUs. Also, there
might be non-periodic latency-critical communication, e.g.
spontaneous (emergency breaking) or angular-synchronized
(engine control). Hence, even if the Ethernet communication is
synchronized, data might be delayed (and experience jitter) in
other components, such that it might, in fact, not be (perfectly)
synchronized to its designated TAS interval. Synchronization
to the TAS intervals introduces additional delay (sampling
delay), when data is handed over (from ECUs) to the network.

Next we discuss TSN/PS by considering three configura-
tions, which are applied to all switch ports: PS 5ms, PS 500us,
and PS 250us. The parameter of these configurations corre-
sponds to the PS interval length tPS of the PS traffic class. As
TSN/PS, in the worst-case, just artificially delays traffic by its
PS interval length (and otherwise behaves like IEEE 802.1Q),
shorter PS intervals lead to shorter delays and smaller jitter,
which, in turn, result in lower worst-case latency guarantees.
This is why PS 250us performs best among the evaluated
TSN/PS configurations. It has been suggested to configure the
PS interval length such that the longest busy period can be
processed entirely within tPS [16]. Depending on the traffic,
this could require quite long PS intervals. As the worst-case
jitter grows at least by the PS interval length per switch port,
this can lead to large (transient) bursts, which, in turn, require
(even) longer PS intervals on subsequent switches.

Figure 7 shows the end-to-end latency guarantees for (non-
TSN) GCT and CAM traffic in the presence of (TSN)
CDT traffic. In the evaluated setup, higher-priority traffic
in IEEE 802.1Q and all TSN/PS configurations has almost
the same impact on lower-priority traffic. This is because in
TSN/PS, higher-priority blocking is modeled similar to higher-
priority blocking in IEEE 802.1Q. The reason why the impact
of TSN/TAS is higher is twofold: (a) Lower-priority (non-
TAS) traffic experiences blocking by the TAS intervals of
TAS traffic regardless of whether these TAS intervals are fully
utilized or not (TAS intervals might even be designed with an
additional safety margin to allow for occasional overload). (b)
Guard bands reduce the available bandwidth. In our setup the
guard bands of non-TAS traffic only account for about 2.5% of
the intervals in which non-TAS traffic is processed. Hence, the
blocking by the TAS intervals of TAS traffic is the dominating
factor. As expected, this is independent of whether network-
wide gate schedule synchronization is assumed or not.

Comparing Figures 5 and 6 to Figure 7 yields an interesting
result. For unsynchronized TSN/TAS, the latency guarantees
for almost all unshaped lower-priority GCT and CAM traffic
are actually lower than the ones given for CDT traffic, as,
in the worst-case, they have to wait less to receive service.
This also holds for the PS 5ms configuration of TSN/PS. For

TSN/PS with PS 500us most and for TSN/PS with PS 250us a
few GCT and CAM traffic streams have lower latency guar-
antees than CDT traffic. In these cases it would, hence, make
more sense to use non-TAS traffic classes or IEEE 802.1Q for
latency-critical traffic rather than TSN’s shapers.

VIII. CONCLUSION
In this paper, we presented a formal analysis approach to

derive worst-case timing guarantees for the time-aware (TAS)
and peristaltic shapers (PS) of the upcoming Ethernet TSN
standard. In contrast to related work, our analysis consid-
ers all blocking effects of these shapers, which enables a
thorough timing analysis for all traffic streams in Ethernet
TSN setups. We used typical automotive network setups to
evaluate our analysis and compared the results against standard
Ethernet (IEEE 802.1Q). We evaluated the worst-case latency
guarantees by TSN’s shapers for latency-critical traffic, as
well as their impact on unshaped lower-priority traffic. Our
experiments show that, TSN/TAS can give very low latency
guarantees when all shapers are synchronized. However, it
suffers from long blocking times if this cannot be guaranteed,
which underlines the need for synchronization in TSN/TAS
setups. TSN/PS suffers from the (artificial) initial delay caused
by its peristaltic interval. We showed, that TSN/PS’s worst-
case performance is always worse than that of IEEE 802.1Q.
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