

- We compare hydrogen emission from 29 T Tauri stars with a grid of 945 synthetic line profiles.
- Our synthetic line profiles match the observed H α widths, intensities and profile morphologies.
- However, our study indicates that reproducing $H\alpha$, Paschen, and Brackett lines simultaneously is problematic. The synthetic infrared lines are too narrow and exhibit a higher than observed frequency of Inverse P-Cygni profiles.

Tom J. G. Wilson

S. Matt, T. J. Harries tjgw201@exeter.ac.uk TomAstroWilson

Interactive Poster

Radiative Transfer Model – TORUS¹

TORUS

Observations

- Figure shows spectra of 29 T Tauri stars (columns) from the ESO Archive². Stars are ordered by $H\alpha$ intensity.
- Medium resolution $(R \sim 11600 18400)$ spectra from VLT's X-Shooter, observed in Jan 2010.
- Near simultaneous observations of $H\alpha$ (6562 Å), $Pa\gamma$ (10938 Å), **Paβ** (12818 Å), and **Brγ** (21655 Å).
- A correlation of structure and intensity is seen between the infrared lines but this correlation is not reflected in $H\alpha$.

Comparison

Figure shows the FWHM vs. half width at 10% maxima (HW10%). Models

are clipped so that H α matches the observed HW10% range.

- Synthetic H α lines recreate the observed range of widths and distribution of Reipurth types³.
- The same models produce $Pa\gamma$, $Pa\beta$, and $Br\gamma$ lines approximately 70 - 100 kms^{-1} too narrow.
- Over 80% of the synthetic $Pa\gamma$, $Pa\beta$, and $Br\gamma$ lines exhibit Inverse P-Cygni profiles.

Harries, T. J., Haworth, T. J., Acreman, D., Ali, A. & Douglas, T. The TORUS radiation transfer code. Astronomy and Computing 27, 63–95 (2019)

- Based on observations collected under ESO programme 084.C-1095(A)2.
- Reipurth, B., Pedrosa, A. & Lago, M. T. V. T. Ha emission in pre-main sequence stars. I. an atlas of line profiles. Astronomy and Astrophysics Supplement 120, 3. 229-256 (1996).