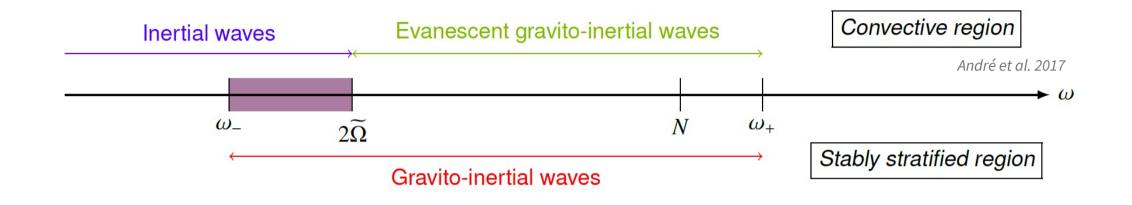

Seismic diagnosis for rapidly rotating upper-main-sequence g-mode pulsators: the combined effects of the centrifugal acceleration and differential rotation

H. Dhouib, V. Prat, T. Van Reeth, S. Mathis

PLATO Mission Conference 2021


11-15 October 2021

Space-based Asteroseismology

Christensen-Dalsgaard (1997); Van Reeth PhD Thesis (2017)

Rapidly rotating g mode pulsators

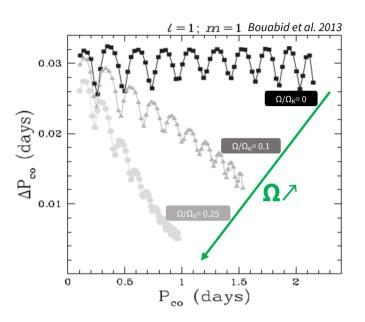
- Gravito-inertial waves (GIWs) driven by:
 - **buoyancy**: chemical and thermal stratifications
 - **rotation**: Coriolis and centrifugal accelerations

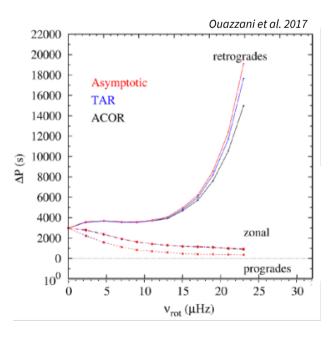
 Observing their frequencies ⇒ direct probe of internal structure, rotation and mixing

(e.g. Neiner et al. 2012; Van Reeth et al. 2016; Li et al. 2020; Ouazzani et al. 2020; Saio et al. 2021)

→ Needs the more realistic modelling of these modes in rotating stars

ΔP versus P diagram


Period spacing: $\Delta P = P_{n+1} - P_n = f(P)$


* Why this diagram?

- Slope in $\Delta P-P$ diagram \Rightarrow measure of Ω of the inner radiative regions of early type stars (Bouabid et al. 2013; Ouazzani et al. 2017)
- Dips ⇒ signature for chemical mixing & resonant coupling between inertial modes in the convective core and g modes (*Ouazzani et al. 2020, Pedersen et al. 2021, Saio et al. 2021*)
 - > a probe of the convective core rotation

* How to compute this diagram?

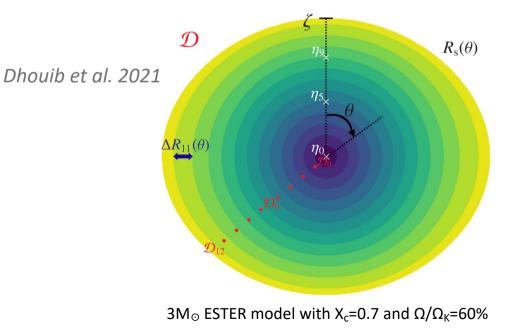
- Direct computations using 2D stellar oscillation codes TOP (Reese et al. 2021) and ACOR (Ouazzani et al. 2017)
 - Difficult to perform intensive detailed seismic modelling
- Traditional approximation of rotation (TAR) (e.g. Eckart 1960):
 - > Flexible and robust; allows us to derive powerful seismic diagnostics
 - Applicable only in stably stratified regions
 - Standard version: spherical uniformly rotating stars

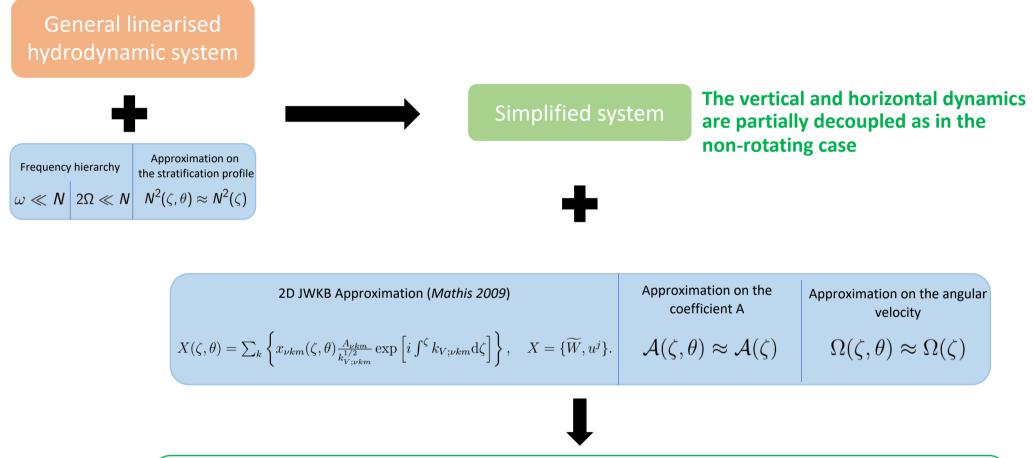
Generalisation of the TAR

Early type stars can be strongly deformed and differentially rotating

• First steps:

- ✓ Differential rotation: Mathis (2009) & Van Reeth et al. (2018) in spherical stars
- ✓ Centrifugal distortion: Mathis & Prat (2019) & Henneco et al. (2021) when perturbative
- Our work:


✓ Generalise the TAR to take into account simultaneously the centrifugal deformation and differential rotation


 New coordinate system (ζ, θ, φ) linked to spherical coordinates (r, θ,φ) (*Bonazzola et al. 1998*)

 $\zeta=0 \longrightarrow r=0$: the centre of the star

 $\zeta = 1 \longrightarrow r = R_s(\theta)$: the deformed surface of the star

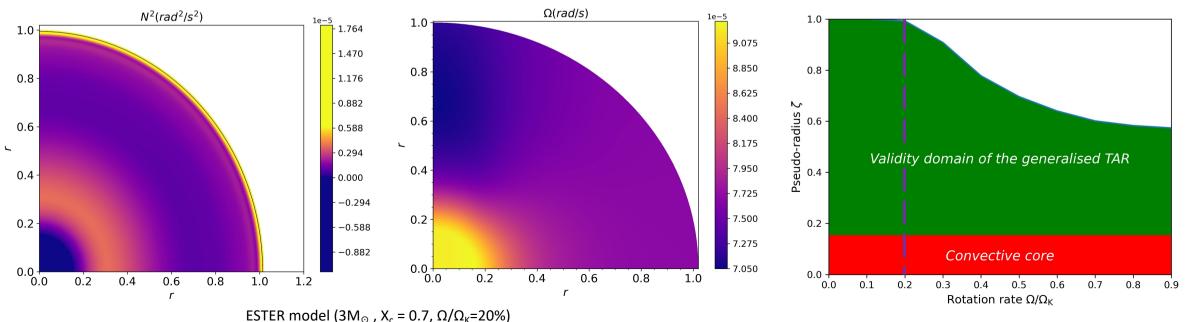
Generalised Laplace tidal equation (GLTE)

$$\mathcal{L}_{\omega^{\text{in}}m}[w_{\omega^{\text{in}}km}] = \omega \partial_x \left[\frac{1}{\omega} \frac{1}{\mathcal{B}(\mathcal{E} - \mathcal{F})} \left(\mathcal{E} + \frac{\nu^2 \mathcal{C}^2}{\mathcal{B}} \right) (1 - x^2) \partial_x \right] - \frac{m\mathcal{F}}{\nu \mathcal{C}(\mathcal{E} - \mathcal{F})} \partial_x w_{\omega^{\text{in}}km} + \left(m\omega \partial_x \left(\frac{\nu \mathcal{C}}{\omega \mathcal{B}(\mathcal{E} - \mathcal{F})} \right) - \frac{m^2}{(\mathcal{E} - \mathcal{F})(1 - x^2)} \right) w_{\omega^{\text{in}}km}$$

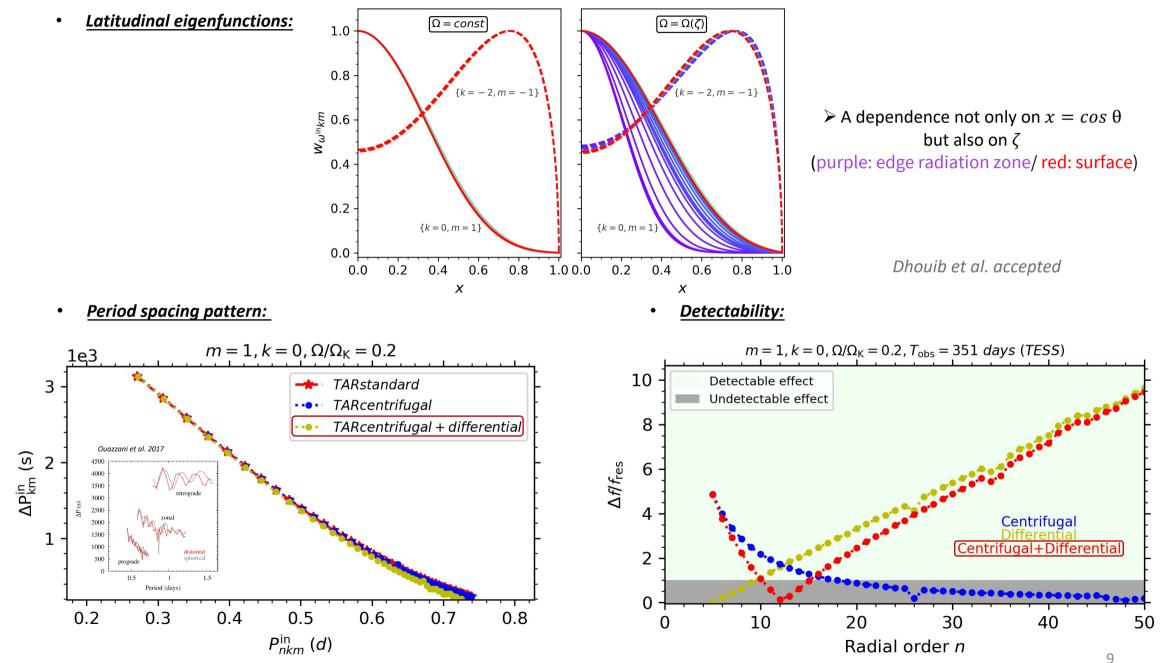
$$= -\Lambda_{\omega^{\text{in}}km}(\zeta) w_{\omega^{\text{in}}km}$$

• $\mathcal{A} \rightarrow \mathcal{E}$: centrifugal deformation | \mathcal{F} : differential rotation

Asymptotic frequency of low-frequency GIWs


- - * Easily applicable for a large number of stars
 - Great advantage when large grids of stellar models need to be calculated for detailed seismic modelling

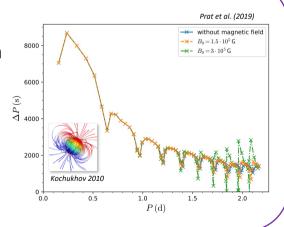
Validity domain of the generalised TAR


Dhouib et al. 2021

- Application to rapidly rotating early-type stars
- **ESTER code** (*Espinosa Lara & Rieutord 2013*):
 - o 2D stellar structure
 - o stationary hydrodynamic model
 - non-perturbative centrifugal acceleration and differential rotation

- The generalised TAR is applicable to early-type stars rotating up to $\Omega/\Omega_{\rm K}$ =20%.
- This limit proposed by Mathis & Prat (2019) using a perturbative approach was 40%
- 20% more realistic : derived from a coherent 2D model

Hough functions, Asymptotic period spacing pattern and Detectability


Take home messages and future work

- New generalisation of the TAR with simultaneously the differential rotation and the centrifugal acceleration in a nonperturbative way. Designed for 2D stellar models like ESTER
- Study the detectability and the signature of the centrifugal effects on GIWs in differentially rotating deformed stars until 20% of the critical angular velocity
- <u>Theoretically detectable</u> in early-type stars using *Kepler* and TESS

• Early-type stars can host magnetic fields

- Prat et al. (2019, 2020) and Van Beeck et al. (2020) studied the effects of a magnetic field on the periods of g modes using a perturbative treatment
- Mathis & de Brye (2011, 2012) have taken into account the toroidal magnetic fields in a non-perturbative way but with a very simple topology

⇒ Generalise the TAR to account for general magnetic field in differentially rotating stars

References

Bonazzola et al. 1998, Phys. Rev. D, 58, 104020 Bouabid et al. 2013, MNRAS, 429, 2500 Christensen-Dalsgaard 1999, Lecture Notes on Stellar Oscillations Dhouib et al. 2021, A&A, 652, A154 Eckart, C. 1960, Hydrodynamics of Oceans and Atmospheres (Pergamon Press) Espinosa Lara & Rieutord 2013, A&A, 552, A35 Henneco et al. 2021, A&A, 648, A97 Lee & Saio 1997, ApJ, 491, 839 Li et al. 2020, MNRAS, 491, 3586 Mathis 2009, A&A, 506, 811 Mathis & Prat 2019, A&A, 631, A26 Neiner et al. 2012b, A&A, 539, A90 Ouazzani et al. 2017, MNRAS, 465, 2294 Ouazzani et al. 2020, A&A, 640, A49 Pedersen et al. 2021, Nature Astronomy, 5, 715 Reese et al. 2021, A&A, 645, A46 Saio et al. 2021, MNRAS, 502, 5856 Van Reeth et al. 2016, A&A, 593, A120 Van Reeth 2017, PhD Thesis Van Reeth et al. 2018, A&A, 618, A24